2020年职业教育对口数学模拟试题7(带答案)
- 格式:doc
- 大小:203.33 KB
- 文档页数:9
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.已知集合A={ x 1≤x≤4},B={ x x- a>0}, 若A ⊆ B,则实数a的取值范围为()(A) (1,+∞) (B) (-∞,1)(C) [1,+∞) (D) (-∞,1]2.已知方程x2 +a x+ (a+3)=0有实根,则a的取值范围()(A) {a|a>6或a<- 2} (B) {a| -2≤a ≤6}(C) {a|a≥6或a≤- 2} (D) {a| -2< a < 6}3. 已知圆的方程为22-+-=,则点(1,2)(3)(5)16x y-().(A)在圆内(B)在圆上(C)在圆外(D)与圆心重合4.函数y=f (x) 的图象与直线x=k (k 是常数)的交点的个数()(A) 有且只有一个(B) 至少有一个(C) 至多有一个(D) 有一个或两个5.若x > y > 0, 0 < a < 1, 则下列各式成立的是()(A) a x≤a y(B) log a x < log a y(C) a x ≥a y(D) log a x > log a y6. 设a , b是实数,则a2+b2 ≠ 0的充要条件是()(A) a ≠ 0 (B) b ≠ 0 (C) a ≠ 0且b ≠ 0 (D) a ≠ 0或b ≠ 0 7.二次函数 y =x 2+px +q 的顶点在第二象限, 则p 和q 的符号是( )(A) p > 0, q >0 (B) p > 0, q < 0 (C) p < 0, q < (D) p < 0, q > 0 8.在数列3,4,7,12,x ,28, … 中,x 的值是( ).(A ) 18 (B ) 19 (C ) 20 (D ) 21 9. 过点()1,0且平行于y 轴的直线方程是( ).(A )1y = (B ) 1y =- (C )1x = (D ) 1x =-10.在四边形ABCD 中,若→A B = 2→a ,→C D = - 3 →a , ∣→A D ∣=∣→B C ∣ , 则 四边形ABCD 是( ) (A) 平行四边形 (B)菱形 (C) 等腰梯形 (D) 矩形 11.函数y =3 sin (ω x + π3 )(ω > 0)的最小正周期为π3, 则ω等于( )(A) 3 (B) 6 (C) 52(D) 912. 若平面α∥平面β,P 是平面α、β外一点,过P 的两条直线AB 、CD 交平面α于A 、C ,交平面β于B 、D ,且P A =6,AB =2,BD =12,则AC 的长是( ). (A ) 10 (B ) 9 (C ) 8 (D ) 713. 若双曲线的焦点在x 轴上,并且6a =、2b =,则双曲线的标准方程为( ). (A) 221364x y -= (B ) 221436x y -= (C ) 22162x y -= (D ) 22126x y -=14. 某数学兴趣小组成员的数学中考成绩如下:116 99 108 93 100 111 98 95 106 113 若102分以上(包括102)为优秀, 则优秀率为( ).(A ) 0.30 (B ) 0.40 (C ) 0.50 (D ) 0.60 15.0.3()log (2)f x x =,若()0f a =,则实数a 的值是( ).(A )16 (B ) 1 (C ) 0 (D ) 1216. 抛甲、乙两粒骰子,甲骰子点数不小于乙骰子点数的概率是( ). (A )512 (B ) 12 (C ) 712 (D ) 2317. 若椭圆的方程为224312x y +=,则它的焦点坐标为( ). (A ) ()()1,01,0-、 (B ) ()()0,10,1-、(C ) ((0,、 (D ))()、18.有四条线段,长度分别是2cm ,3cm ,4cm ,5cm ,从中任取两条, 长度之和不小于8cm 的概率是( ).(A) 14(B) 12(C) 13(D) 119.不等式 | 3- 2x | ≥ 5 的解集是( )(A) [-1, 4 ] (B) (- ∞, - 1]∪[ 4,+∞) (C) (- ∞, - 4)∪[ 1,+∞) (D) [- 4, 1]20.已知f (x )是奇函数,且x ≥ 0时,f (x )= 2x -x 2,则当x < 0时,f (x ) 的解析式为( )(A) f (x ) = x 2+2x (B) f (x ) = - x 2- 2x (C) f (x ) = x 2- 2x (D) f (x ) = - x 2+2x 21.设函数log ()4a x f x =,且1(16)2f =,则a 的值为( ). (A ) 4 (B ) 8 (C )18(D ) 1422.已知∣→a ∣= 4,→b 在 →a 方向上的射影的数量为- 3,则 →a ·→b =( ) (A) - 12 (B) - 7 (C) - 34 (D) 3423. 若抛物线的焦点在x 轴正半轴上,焦点到准线的距离是12,则它的 标准方程是( ).(A ) 2y x =- (B ) 2y x = (C ) 2x y =- (D ) 2x y = 24.5人参加4项比赛,每人限报一项,报名方法有( )(A) 45 (B) 54 (C) 20 (D) 25 25.函数y = 2sin 2x +4sin x +2 的最大值和最小值分别为( )(A) 6, 0 (B) 6, - 1 (C) 8, 0 (D) 8, - 1 26.等差数列前10项和1060S =,则110a a +等于( ).(A )10 (B ) 11 (C ) 12 (D ) 13 27. 函数()f x 在()5,5-上是增函数,下列选项错误的是( ).(A ) (2)(0)f f ->(B ) (1)(1)f f -< (C ) (2)(3)f f < (D ) (0)(4)f f < 28.△ABC 中:AB =10,S △= 160, 则边AC 的最小值为( )(A) 32 (B) 16 (C) 8 (D) 16 3 29.函数22y x x =+与22y x x =-的图像( ).(A ) 关于x 轴对称 (B ) 关于y 轴对称(C ) 关于原点对称 (D ) 关于x 轴和y 轴都不对称 30.在等比数列{a n }中,a 1+ a 2=30,a 3+ a 4=120,那么a 5+ a 6 =( ) (A) 210 (B) 240 (C) 480 (D) 700第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31. 某超市大米3.5元/千克,现设x表示购买大米的重量(千克),y表示应付款数(元),将,x y 的函数关系用列表法表示为:32.若正四棱锥的体积为12,底面对角线的长为_____.33. 若圆的方程222230x y by b+--=,则圆心坐标为_______,半径为_______.34.已知t anα是方程x2-2x-3=0的一个根,且α是第一象限的角,则cosα·tanα= . 三、解答题(本大题共4小题,共28分)35. (7分)设二次函数的图象的顶点是(-2, 32)与x轴的两个交点之间的距离是6,求这个二次函数的解析式.36. (7分) 角α.37.(7分) 如图,正三棱柱ABC —A 1B 1C 1的底面边长为a ,在侧棱BB 1上取BD =2a,在侧棱CC 1上截取CE =a ,过A 、D 、E 作棱柱的截面,试证明截面ADE 与侧面ACC 1A 1垂直。
第二部分 数学(模拟题1)一、单项选择:(每小题5分,共40分)1.下列关系式中不正确的是( ).A.-2∈ZB. 4∉{3,6}C.1∈{(1,-1)}D.3∈{ x |x ≤3}2.不等式2log )(f 2-=x x 定义域是( ).A.{x | x ≥4}B.{ x |x ≥1}C.{ x |x ≥2}D. {x |x ≥0}3.下列函数中f (x )=a x -5,若f (2)=1,则f (1)=( ).A.5B.3C.2D. -2 4. =56sinπ( ). A. 21- B. 23- C. 21 D. 23 5.下列各组向量互相平行的是( ).A.a =(0,2),b =(-1,4)B. a =(1,-2),b =(-2,4)C.a =(3,0),b =(-1,8)D. a =(2,-3),b =(-3,2)6.半径为2,且与x 轴相切于原点的原方程可能为( ).A.(x -2)2+y 2=2B.(x -2)2+y 2=4C. x 2+(y -2)2=2D. x 2+(y -2)2=47.下列命题正确的是( ).A.平面内两条直线平行于另一个平面内的两条直线,则这个平面互相平行。
B.一条直线垂直于平面内的两条直线,则这条直线垂直于这个平面。
C.一条直线平行于一个平面,则这条直线平行于平面内的所有直线。
D.一条直线垂直于一个平面,则这条直线垂直于平面内的所有直线。
8.在1000张奖券中,有10张一等奖,20张二等奖,30张三等奖,某人从中任意摸出一张,那么他中奖的概率是( ). A.1001 B.0012 C. 0013 D. 053 二、填空题:(每题6分,共30分)9.时针一天转过的角度是 (用弧度制表示);10.直线2x+y-4=0与两坐标轴围成的三角形的面积是;11.某农场要在4种不同类型的土地上,实验种植A,B,C,D这4种不同品种的小麦,要求每种土地上试种1种小麦,有种不同的实验方案;12.圆柱的地面周长为4π,高为5,则它的体积为 ;13.过直线x+y-2=0和直线x-y+4=0的交点,且与直线x=-1垂直的直线方程是。
2020年三轮随堂检测(七) (本试卷满分90分,答题时间40分钟)姓名_______________得分______一、选择题(本大题共12小题,每小题5分,共60分。
)1.已知集合A ={-1,0,1,2},B ={}x |x 2≤1,则A ∩B =( ). A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}2.不等式2x 2-x -1>0的解集是( ). A.(-12,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-12)∪(1,+∞)3.下列函数中是偶函数的是( ). A.y =2|x |-1,x ∈[-1,2] B.y =x 2+xC.y =x 3D.y =x 2,x ∈[-1,0)∪(0,1] 4.函数f (x )=x 2-5x +6的定义域为( ). A .{x |x ≤2或x ≥3} B .{x |x ≤-3或x ≥-2} C .{x |2≤x ≤3}D .{x |-3≤x ≤-2}5.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A.第一象限B.第二象限C.第三象限D.第四象限6.已知角α的终边经过点P (-3,1),则cos2α=( ) A.35B.-35C.45D.-457.在等差数列{an }中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.98.已知向量→a=(m,2), →b=(3,-6),若|→a+→b|=|→a-→b|,则实数m的值是().A.-4B.-1C.1D.49.若直线x+(1+m)y-2=0和直线mx+2y+4=0平行,则m的值为()A.1B.-2C.1或-2D.-2 310.由数字0,1,2,3组成的无重复数字的4位数中,比2019大的数的个数为()A.10B.11C.12D.1311.下面四个结论:(1)垂直于同一个平面的两个平面平行(2)垂直于同一直线的两个平面平行(3)平行于同一直线的两个平面平行(4)平行于同一平面的两个平面平行其中正确的结论个数是A.0B.1C.2D.312已知双曲线的实轴长为2,焦点为(-4,0),(4,0),则该双曲线的标准方程为()A.x 212-y 24=1B.x 24-y 212=1C.x 2-y215=1D.y 215-x 2=1二、填空题(本大题共6小题,每小题5分,共30分。
中等职业学校对口升学考试数学模拟试题及答案本试卷分选择题和非选择题两部分。
满分 100 分,考试时间为 90 分钟。
答卷前先填写 密封线内的项目和座位号。
考试结束后,将本试卷和答题卡一并交回。
选择题注意事项:1.选择题答案必须填涂在答题卡上,写在试卷上的一律不计分。
2.答题前,考生务必将自己的姓名、准考证号、座位号、考试科目涂写在答题卡上。
3.考生须按规定要求正确涂卡,否则后果自负。
一、单项选择题(本大题共 10 小题,每小题 4 分,共计 40 分)1. 己知 M={x|x>4}, .N={x|x<5},则 M∪N=( )A. {x|4<x<5}B.RC. { x|x>4}D. {x|x>5}22. 已知 sin α= ,则 cos 2α值为( ) 32 5A. -1 3 1B. 9 5C. 9 5D.1- 33. 函数 y=x 3 是( )A.偶函数又是增函数B. 偶函数又是减函数C.奇函数又是增函数D. 奇函数又是减函数4.不等式|2x -1|<3 的解集是( )A. { x ︱ x <1}B. { x ︱ -1<x <2}C. { x ︱ x >2}D. { x ︱ x < -1 或 x >2}5.在等差数列{a n }中, a 5+a 7=3,则 S 11=( )A.15B.16.5C.18D.18.56. 已知直线a,b 是异面直线,直线 c ∥a ,那么 c 与 b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面7.将 3 封信投入 4 个不同的邮筒的投法共有 ( )种A.34 B .43 C .A 34 D .C 348. 已知|a|=8, |b|=6,<a,b >=150°, 则 a ·b=( )A.-24 3B.-24C.24 3D.169. 函数 f(x)=x 2-3x+1在区间[-1,2]上的最大值和最小值分别是 ( )5 5A.5,-1B. 11,-1C.5, -D. 11,- 4 4x 2 y 25 16A . (±11,0)B . (0, ± 11 ) C. (0, ±11) D . (± 11 ,0)10.椭圆 + =1 的焦点坐标是( )非选择题注意事项:用蓝黑色钢笔或圆珠笔将答案直接写在试卷上。
第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。
B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。
C.两平行直线一定能够确定一个平面。
D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。
8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有 种方法;13.已知圆柱体的模具的底面半径为10cm ,高15cm ,现在在模具中间挖空一个半径为4cm ,高为15cm 的小圆柱体,问剩下的这个模具的体积为 ;三、解答题(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。
第二部 数学(模拟题1)一、单项选择题1.设集合M={-2,0,2}, N={0}, 则 ( )A .N=Ø B. N ∈M C .N ⊆M D .M ⊆N2.下列不等式中正确得到是 ( )A .5a>3aB .5+a>3+aC .3+a>3-aD .a3a 5> 3.函数56x y 2+-=x 的定义域为是( )A .),5[]1,-(+∞∞YB .),51,-(+∞∞()YC .),5]1,-(+∞∞(YD .),5[1,-(+∞∞Y )4.若}1,0,1{x 12f(x )2-∈+=,且x 则f (x )的值域是( )A .}1,0,1{-B )(3,1 C .]3,1[ D .}1,3{ 5.函数x x y )31(3y ==与的图像关于( ) A .原点对称 B .x 轴对称 C .直线y=1对称 D .y 轴对称6.若角α是第三象限角,则化简αα2sin -1tan ⋅的结果为( )A .αsin -B .αsinC . αcosD .αcos -7.已知点A (5,-3),点B (2,4)则向量BA ( )A .)7,1(B .)3,7(- C .)7,3(- D .)1,7( 8.空间中垂直于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共4小题)9.21-x >的解集是 .10.若角a 的终边上的一点坐标为(-2,1),则cosa 的值为 .11.在4和16之间插入3个数a ,b ,c ,使4,a ,b ,c,16成等差数列,则b 的值是 .12.学校餐厅有10根底面周长为3.6m ,高是5m 的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5kg ,则刷这些柱子需要用 kg 。
三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A Y I , .(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少? (10分)(2)求以P (4,1)为圆心且与直线5x -12y -60=0相切的圆的标准方程。
2020年对口升学数学模拟试卷时量120分钟 满分120分一、单项选择题(每小题4分,共40分) 1.设集合{}{}10,1<<=>=x x B x x A ,则等于( )A. {}0>x xB.{}1≠x xC.{}10≠>x x x 或 D. {}10≠>x x x 且2. “2x >”是“211x ->”的( ) A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件3.已知四边形ABCD 的三个顶点()()()1,3,2,1,2,0C B A --,且 AD BC 2=,则顶点D 的坐标为( ) A. ⎪⎭⎫ ⎝⎛27,2 B. ⎪⎭⎫⎝⎛-21,2 C.()2,3 D. ()3,1 4.已知{}n a 是等差数列, 28,48721=+=+a a a a ,则该数列前10项和=10S ( ) A.64B. 100C.110D. 1205.在ABC ∆中,已知222a bc b c +=+,则A=( )A. 30︒B. 45︒C. 60︒D. 120︒6.有ABCDEF 六人站成一排照相且E 必须排在AC 两个人的中间并相邻的排法有( )A. 3344P P 种B. 2233P P 种 C 2244P P 种 D 3355P P 种7. 下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) 21.()A f x x =2.()1B f x x =+ 3.()C f x x =.()2x D f x -=8.已知过点A(1,a ),和B(2,4)的直线与直线x-y+1=0垂直,则a 的值为( ) A.15B.13C.3D.59. 已知ABC PA 平面⊥,ο90=∠BAC ,PA=AC=AB=4,则点A 到平面PBC 的距离是 ( )A. 34B.338 C.334 D.38 10.已知点P (-2,3),点Q 在圆22(1)(1)4x y -++=上移动,则PQ 的取值范围为 ( ) A.[]1,7B. []1,9C. []3,7D. []3,9二、填空题。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin α,则α=( ) A .300 B .600 C .1200 D .300 或15005.已知点A(2,1)与点B(-2,-4),则向量BA =( )A. (-4,-5)B.(4,5)C.(-4,5)D.(4,-5)6.已知圆的方程为x 2-2x +y 2+4y -11=0,则它的圆心与半径分别是( )A .(1,2),4B .(-1,2),4C .(1,-2),4D .(-1,-2),47.下列命题错误的是( )A.如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。
B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
D .如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。
8.某样本容量为60,若采取分层抽样的方法,若一、二、三级品的个数之比为2:3:5,则从二级品中应抽取( )个。
A .12B .18C .30D .60二、填空题(本大题共5小题,每小题6分,共30分)9.已知sinα∙cosα>0,则α是第 象限角;10.若直线2x -ay +1=0与3x +2y -1=0互相垂直,那么a = ;11.已知球的半径是8cm,则这个球的表面积是;12.由数字1,2,3,4,5可以组成个没有重复数字的三位奇数;13.加工一批零件,先用30分钟准备,若加工5个零件用了1小时,则加工60个零件要用分钟.三、解答题(本大题共2小题,共30分)14. 某林场计划第一年造林50公顷,以后每一年比前一年多造林10%,求该林场五年内的造林数(精确到1).(10分)15.如图,利用一面墙,另三边用长度等于16(单位:米)的篱笆围成一个矩形区域EFGH,设FG=x(单位:米)(1)写出另一边长与x的函数关系式,并指出其定义域;(5分)(2)写出矩形的面积S关于x的函数关系式,并指出其定义域;(5分)(3)当x取何值时,矩形的面积不小于24平方米。
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设集合A={1,2,4,5},B={2,5,6,7},则A ∪B 等于﹙ ﹚ (A ){2,5}(B ){1,2,,3,4,5,6,7}(C ){1,2,4,5,6,7} (D ){2,4,5} 2. 对于命题p :x >3,命题q :x >1,则p 是q 的﹙ ﹚ (A )充分条件 (B )必要条件(C )充要条件 (D )既不充分也不必要条件 3.函数y =2x -1的定义域是( )(A ){x ︱x >0} (B ){x ︱x <0} (C ){x ︱x =0} (D )x ∈R 4.设log a 13>1,则a 的取值范围是( )(A )(13 ,1) (B )(0,13)(C)(0,1) (D)(1,+∞)5.等差数列{a n}中,a1=3, a100=36,则a5+a96=()(A)39 (B)36 (C)38 (D)426.已知:∣→a∣= 4, ∣→b∣= 3,<→a,→b>= 60°,则∣→a+2→b∣=()(A)13 (B)10 (C)27(D)219 7.已知f (2x)=x2+x+1,则f (-2) = ( )(A)0 (B)1 (C)3 (D)68.直线y-3=k (x+2)恒过点()(A)(3,-2)(B)(-2,3)(C)(2,-3) (D)(-3,2)9.某同学到4个景点旅游,每个景点游览一天,则不同的游览次序有()种。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,1}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∈N2.函数12y -+=x x 的定义域为是( ) A .(-2,1) B .(-∞,-2)∪(1,+∞) C .(-∞,1]∪(2,+∞) D .[-2,1)∪(1,+∞)3.函数y=| x|-2的值域是( )A .(0,+∞)B .(2,+∞)C .[2,+∞)D .R4.函数y =sin α 的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称5.若α=-450,则下列终边相同的角是( )A .-3150B .2πC .6750D .-3π6.已知点A (1,-2)到直线3x - 4y -1=0的距离为( )A .0B .1C .2D .37.空间中两平面同时垂直于另一个平面,则两个平面的位置关系是( )A .相交B .平行C .相交或平行D .无法确定8. 随机抽查工厂生产的一批灯泡100个,一等品和二等品为合格产品,其余为残次品,抽到一等品为60件,抽到二等品为36件,则该灯泡的合格率为( )A .60%B .36%C .96%D .4%二、填空题(本大题共5小题,每小题6分,共30分)9.已知集合A ={(x,y )|x+y -1=0},B ={(x,y )|2x -y +4=0},则A ∩B= .10.已知若→a =(-2,n ),→b =(2,-3),且b a ρρ⊥,则n 的值为 . 11.经过点P(-3,4) ,且圆心在(1,0)的圆的标准方程是 .12.有20个学生,8个老师,要分别派一个学生和一个老师组合参加会议,共有种不同派法;13.圆锥的底面半径为5cm,母线长为8cm,则这个圆锥的侧面积为.三、解答题(本大题共2小题,共30分)14. 已知数列{a n}中,a1=2且a n+1-a n=n,求a8 . (10分)15.为了鼓励节约用水,某地方水费按这样的形式:每户每月用水不超过10立方时,按1.8元每立方收费,超过15立方时,超出部分按2元每立方收费,设某户用水量为x立方,应每月缴费为y元.(1)列出的函数解析式.(10分)(2)若该户某月用了18立方水,应交多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题2)一、单项选择:(第二部分数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。
第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。
B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。
C.两平行直线一定能够确定一个平面。
D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。
8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={奇数}, N ={x |x <6,x ∈N },则M ∩N = ( )A .{x |x <6}B .{x |0≤x <6}C .{1,3,5}D .{x |x <6,x ∈N }2.函数13)(--=x x x f 的定义域为是 ( ) A .{x |x ≤0且x ≠1} B .{x |x ≥3且x ≠1} C .(-∞,1)∪[3,+∞) D .(-∞,1)∪(1,+3]3.函数32-=x y 的值域是( ) A .(0,+∞) B . ),3[+∞- C .),3[+∞ D .R4.“以a 为底x 的对数等于y ”记作( )A .x =log y aB .x =log a yC .y =log a xD .y =log x a5.与角-450终边相同的角的集合是( )A .{x |x=-450+k ∙900,k ∈Z }B .{x |x=-450+k ∙1800,k ∈Z }C .}4{Z ,k +k x|x=∈-ππD .}24{Z ,k k +x|x=∈-ππ 6.函数y =3-2sin 2x 的最大、最小值分别是( )A .1,4B .4,1C .7,-1D .5,17.等比数列1,-2,4,..中-128是( )A .第9项B .第8项C .第7项D .第10项8.一容量为n 的样本,分组后,如果某数的频数为60,频率为0.3,则n =( )A .200B .18C .60.3D .180二、填空题(本大题共5小题,每题6分,共30分)9.log 64+log 69= .10.已知若→a =(-2,n ),→b =(1,-4),且b a ρρ⊥,则n 的值为 .11.经过点P(-3,4) ,圆心在(1,1)的圆的标准方程是 .12.样本2,5,6,9,13的均值是 .13.圆锥的底面半径为6cm ,母线长为10cm,则这个圆锥的体积为 .三、解答题(本大题共2小题,共30分)14.已知21-=sin α,且角α是第三象限角,求角α的余弦值和正切值.(10分)15.依法纳税时每个公民的应尽义务,国家征收个人工资,薪金所得税是分段计算的。
2020年对口升学数学模拟试卷时量120分钟 满分120分一、单项选择题(每小题4分,共40分) 1.设集合{}{}10,1<<=>=x x B x x A ,则等于( )A. {}0>x xB.{}1≠x xC.{}10≠>x x x 或 D. {}10≠>x x x 且2. “2x >”是“211x ->”的( ) A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件3.已知四边形ABCD 的三个顶点()()()1,3,2,1,2,0C B A --,且 AD BC 2=,则顶点D 的坐标为( ) A. ⎪⎭⎫ ⎝⎛27,2 B. ⎪⎭⎫⎝⎛-21,2 C.()2,3 D. ()3,1 4.已知{}n a 是等差数列, 28,48721=+=+a a a a ,则该数列前10项和=10S ( ) A.64B. 100C.110D. 1205.在ABC ∆中,已知222a bc b c +=+,则A=( )A. 30︒B. 45︒C. 60︒D. 120︒6.有ABCDEF 六人站成一排照相且E 必须排在AC 两个人的中间并相邻的排法有( )A. 3344P P 种B. 2233P P 种 C 2244P P 种 D 3355P P 种7. 下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) 21.()A f x x =2.()1B f x x =+ 3.()C f x x =.()2x D f x -=8.已知过点A(1,a ),和B(2,4)的直线与直线x-y+1=0垂直,则a 的值为( ) A.15B.13C.3D.59. 已知ABC PA 平面⊥,ο90=∠BAC ,PA=AC=AB=4,则点A 到平面PBC 的距离是 ( )A. 34B.338 C.334 D.38 10.已知点P (-2,3),点Q 在圆22(1)(1)4x y -++=上移动,则PQ 的取值范围为 ( ) A.[]1,7B. []1,9C. []3,7D. []3,9二、填空题。
第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。
(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。
()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。
(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。
在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。
第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。
(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。
()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。
(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。
在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。
机密★启用前山东省高等职业教育对口招生数学模拟试题 注意事项:1 .本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分.满分 100分,考试时间 90分钟.考试结束后,将本试卷和答题卡一并交回.2 .本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到 0.01.第I 卷(选择题,共60分)一、 选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出 )1 .已知集合 A ={ xx-1 0}, B ={ x x-3 0},则下列正确的是()(A) A U B ={ x x 3} (B) AU B ={ x 1 x 3} (C) APB ={ x x 1}(D) AA B ={x 1 x 3}2,已知2x 2 - 4x+n 可化为2 (x - 1)2,则实数n 的值为()3.下列函数与y = x 具有相同图像的函数是()(A) y = x 2(B) y = log a a x(a > 0, a 1)(C) y = x 2(D) y = ( X )24 .过点(0,1)且与直线y 2x 平行的直线方程是().5 .某商场4月份随机抽查了 6天的营业额,结果如下(单位:万元):2.8, 3.2, 3.4, 3.7, 3.0, 3.1,(A) 1(B) 2 (C) -1(D) -2(A)x 2y 2 0(C) 2x y 1 0(B)x 2y 2 0 (D) 2x y 1 0(B) 77 (C) 96(A)既是等差数列,也是等比数列(B)既不是等差数列,又不是等比数列(D)等比数列10.已知A(1,-1 )、B(4, 2 ) , P 为AB 的中点,则AP 的坐标为(试估算1^商场4月份的总营业额大约是()万元.6.当 x [ -1,1]时, 函数f (x)= 3x-2的最大值是( (A) 1 (B)-1 (C)-2 (D)227.如果圆(x a) 2 2 , (y b) r 与两坐标轴都相切,那么实数 r,a,b 满足().(A) a | b | |r (B) a b (C) b r (D) a b r8.下列事件中是随机事件的是( (A)如果a, b 都是实数,那么a +b=b + a (B)某人射击两次,恰有一次中靶 (C)没有水分,种子发芽 (D)同性电荷,相互排斥 9.数列a,b,c 成等差数列,则数列 2 2b).(A) 85(D) 102(C)等差数列 (A) (5, 4)(B) ( 3, - 3)(C)3 1 (2,-2)3 3(D) ( 2 , 2 )11.以点 F(0, 4)为焦点的抛物线的标准方程为 ). (A)16x(B)y 216x(C) x 216y(D) x 216y12.设 6,则角的终边与单位圆的交点 P 的坐标是((A)( 1 ,亭) 1(B)(1 ,2 )13.若双曲线的焦点坐标为F I 0, 5、F2 0,5 ,并且a 4, 则该双曲线的标准方程为().2 2(A)匚上116 92 x162 2(C)土匕134 92(D)L1614.设命题“ p q”与命题“ p”都是真命题,则必有(A)p真q假(B)p假q真(C)p真q真(D)p假q假15.若函数y = x2—4x + 2a+6的值域是[0, + 00)则a的值为((A) 0 (B)1(C)T或1 (D) -116.分段函数y1, x>0 _ ,的(1, x 0 )•(A)最大值是(B)最小值是-1 (C)最大值是-1 (D)最小值是017. 若lOg a2 < lOg b2 < 0,则()(A)0 < a < b <1 (B)0 < b < a < 118.19. (C) a > b > 1 (D) b > a > 1等差数列{a n}中, a1=3 , a100=36, 则a5+ a96等于()(A) 36 (B) 38 (C) 39 (D) 42若椭圆标准方程为2 x252*1,则该椭圆的焦点坐标为().(B) 0,5、0,(C) ,1)(A) 5,0、5,0(C) 0,12、0, 12 (D) 12,0、 12,020 .已知:a = V 3 , b= 2, c = V 5,判断△ ABC 的形状()(A))锐角三角形 (B)直角三角形 (C)钝角三角形(D)不确定, f 一 ,— —21 .已知A ABC 中 a = 3, b = 1, ZC =30° ,则 BC • CA =()3 - 3 — (A)4 3 (B) 2 3 (C) - 4 5(D) - 3 V 322.若颉=2,则黑-+cCSs 的值为()(A) 5 (B) - 5(C) 1(D) - 15523 .下面各命题中,正确的命题是().①平面a 内有两条直线和平面 3平行,那么这两个平面平行; ②平面a 内有无数条直线和平面3平行,则a 与3平行;③平面a 内△ ABC 的三个顶点到平面 3的距离相等,则 a 与3平行;④平面a 内的两条相交直线和平面3内的两条相交直线分别平行,则 a 和3平行。
第二部分 数学(模拟题7)一、单项选择题1.ab=0是a=0或b=0的( )A .充分条件B .必要条件C .充要条件D .无法确定2.函数14x f(x)+=,4},3,2,{1x ∈的值域是( )A .(5,9,13,17)B .}7x 5{x ≤≤C .()∞+∞,- D .{5,9,13,17} 3.下列表述错误的是:( )A .函数f(x)=2x+1在()∞+∞,- 上是增函数; B. 函数x1f(x)=在()∞+,0 上是减函数; C. 如果函数y=f (x )是偶函数,且f(2)=4,那么f(-2)=4 ; D .如果函数y=f (x )是奇函数,且f(-3)=9,那么f(3)=9 。
4.=0cos330( )A .21-B .21 C .23 D . -235>=<==b ·a ,则43( )A. 21B. 3πC. 12D. 6π 6.1)43(-=( ) A .43 B .43- C .34 D .34- 7. 下列正确的是( );A.垂直于同一个平面的两个平面互相平行。
B.三点确定一个平面。
C.如果两个平面互相垂直,那么这两个平面内的直线也互相垂直。
D .两个平面不可能只有一个交点。
8.点p (1,1)到直线y=-2x+1的距离是( )A .52B .2C .552D .5二、填空题(本大题共4小题,每题5分)9.已知{1,2,3,4,5,6}={1,2,2a-1,4,5,6},则a= 。
10.比较这两个式子大小,则x ² (x+1)(x -1)。
11.已知等差数列9,5,1.......,则6a = .12.某射击运动员进行射击比赛,命中10环的概率是0.2,命中9环的概率为0.4,那么他命中低于9环的概率是 。
三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少? (10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1) 设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2) 如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.x +1=0是(x -2)(x +1)=0的( )A .充分条件B .必要条件C .充要条件D .无法确定2.函数2)(2-=x x f 的值域是( )A .RB .),(2-∞C .)2[∞+-,D .)2[∞+,3.下列函数在定义域内是增函数的是( )A .y =x 2+3 B. y =-2x +1 C.y =0.8x D .y =lgx4.=)(413-t πan ( )A .1B .-1C .±1D .3-5.已知→a =2,→b =4,→a ∙→b =-4,则→a 与→b 的夹角为( )A.1200B.600C. 32-π D.34π6.半径为2,且与x 轴相切于原点的圆的方程为( )A .(x +2)2+y 2=4B .(x -2)2+y 2=4C .x 2+(y +2)2=2D .x 2+(y -2)2=47.下列命题不正确的是( )A 在空间中,互相垂直的两条直线不一定是相交直线。
B 过空间一点与已知直线垂直的直线有无数条。
C 空间内垂直同一条直线的两条直线一定平行。
D 平行于同一条直线的两条直线必平行。
8.小明从一副54张的扑克牌中任抽取一张,抽中3的概率是( )A .541B .5413C .41D .272二、填空题(本大题共5小题,每题6分,共30分)9.已知某器械内的转子逆时针旋转,每秒钟旋转80圈,问该转子1分钟内转过的圆心角为 ;(用弧度制表示)10.已知直线l 1: x -y+2=0与l 2: x -2y -1=0的交点坐标为(a,b),则a -b= ;11.已知一副扑克牌有54张,那么任抽一张是红心的概率是= .(保留分数)12.已知矩形ABCD ,AB =4cm ,BC =3cm ,现以BC 为旋转轴旋转一周,得到一个几何体,那么这个几何体的表面积是 cm 2;13.已知⎩⎨⎧--=33)(2x x x f 00x x ≤>,则f(-2)= 。
2020年对口升学数学模拟试卷时量120分钟 满分120分一、单项选择题(每小题4分,共40分)1.设集合{}{}10,1<<=>=x x B x x A ,则A ∪B 等于( ) A. {}0>x x B.{}1≠x x C.{}10≠>x x x 或 D. {}10≠>x x x 且2. “2x >”是“211x ->”的( ) A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件3.已知四边形ABCD 的三个顶点()()()1,3,2,1,2,0C B A --,且 AD BC 2=,则顶点D 的坐标为( ) A. ⎪⎭⎫ ⎝⎛27,2 B. ⎪⎭⎫⎝⎛-21,2 C.()2,3 D. ()3,1 4.已知{}n a 是等差数列, 28,48721=+=+a a a a ,则该数列前10项和=10S ( ) A.64B. 100C.110D. 1205.在ABC ∆中,已知222a bc b c +=+,则A=( )A. 30︒B. 45︒C. 60︒D. 120︒6.有ABCDEF 六人站成一排照相且E 必须排在AC 两个人的中间并相邻的排法有( )A. 3344P P 种B. 2233P P 种 C 2244P P 种 D 3355P P 种7. 下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) 21.()A f x x =2.()1B f x x =+ 3.()C f x x =.()2x D f x -=8.已知过点A(1,a ),和B(2,4)的直线与直线x-y+1=0垂直,则a 的值为( ) A.15B.13C.3D.59. 已知ABC PA 平面⊥,ο90=∠BAC ,PA=AC=AB=4,则点A 到平面PBC 的距离是 ( )A. 34B.338 C.334 D.38 10.已知点P (-2,3),点Q 在圆22(1)(1)4x y -++=上移动,则PQ 的取值范围为 ( ) A.[]1,7B. []1,9C. []3,7D. []3,9二、填空题。
2020年中职数学对口升学模拟试题一.选择题(本大题10小题,每小题3分,共30分) 1.集合M={x |x ≤4},15a =,那么正解的关系是( )A.M ⊆aB.M ∉aC. M ∈}a {D.M ⊆}a {2.“三角形一个内角是︒60”是“三角形三个内角成等差数列”的( )A.充分条件B.必要条件C.充要条件D.以上都不对3.12log x 3=,则x4=( )A.6B.9C.2l 34og D.44.已知向量→→→→→→+--==b -a b a ),1,8(b ),,1(a 与且x 相互垂直,则x=( )A.-8B.8±C.8D.不存在5.函数212)52()(f +-=x x x 的值域是( );A.),0[+∞B.),2[+∞C.),4[+∞D.),-[+∞∞6.直线ax+2y-8=0与直线x+(a+1)y+4=0平行,则a=( )A.1B.1或-2C.-2或-1D.-17.=︒︒-︒15cos 15sin 415cos 32( )A.2-B.22C.22-D.28.抛物线px 2y 2=与直线ax+y-4=0交于A,B 两点,其中点A(1,2),设抛物线焦点为F ,则|FA|+|FB|=( )A.4B.5C.6D.7 9.52)1(xx +的展开式中的系数之和是( )A.32B.12C.10D.1610.如果偶函数f(x)在区间[-6,-2]上是减函数且最大值为5,则函数f(x)在[2,6]上是( ) A.增函数且最小值为-5 B.增函数且最大值为5 C.减函数且最小值为-5 D.减函数且最大值为5二.填空题(本大题共8小题,每小题4分,共32分) 1.已知=<<<=-=βπαββαα则若,20,1413)cos(,71c os . 2.若实数x,y 满足=+==y1x 1,217,213则yx. 3.圆4x 22=+y 上的点到直线4x+3y+c=0的最小距离为5,则圆上的点到直线的最大距离为 4.用1,2,3,4,5五个数组成没有重复数字的四位数,从这四位数中任取一个数,不是5的倍数的概率是5.圆锥的侧面积是其底面积的2倍,则其母线与底面所有的角为 .6.过圆4x 22=+y 上一点P (1,-3)的切线方程是 .7.等比数列}{n a 中,173a a 和是方程016102=+-x x 的两根,则=10a .8.已知双曲线19y 16x 22=-,过右焦点2F 交双曲线右支的弦AB ,|AB |=5,双曲线另一个焦点为F 1, 则1ABF ∆点的周长是 . 三.解答题(本大题共6小题,共38分)1.求函数)352(log )(f 22--=x x x 的定义域,单调区间和值域.(6分)2.已知等差数列}{n a 中,14,5a 52==a (1)求}{n a 的通项公式(2)设}{n a 的前n 项和为n S =155,求n 的值.(6分)3.一个袋中有6个球,编号分别为1,2,3,4,5,6,现从中任取3只,求3只球中号码最大的编号X 的概率分布及其期望.(6分)4.已知→→→→→→→→→→-=+=︒>=<==bamdbacbaba3,53,60,,2,3,问(6分)(1)当m取何值时,→→dc与垂直;(2)当m为何值时→→dc与平行。
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.已知集合A ={ x x-1>0},B ={ x x-3<0},则下列正确的是()(A) A∪B ={ x x<3} (B) A∪B ={x 1<x<3}(C) A∩B ={ x x>1} (D) A∩B ={x 1<x<3}2.已知2x2 - 4x+n可化为2 (x - 1)2 ,则实数n的值为()(A) 1(B) 2 (C) -1 (D) -23.下列函数与y = x具有相同图像的函数是()(A) y =x2(B) y = log a a x(a > 0, a≠1)(C) y =x2x(D) y = (x)24. 过点(0,1)且与直线2y x=平行的直线方程是().(A)220x y+-=(B)220x y-+=(C)210x y-+=(D)210x y--=5. 某商场4月份随机抽查了6天的营业额,结果如下(单位:万元):2.8,3.2,3.4,3.7,3.0,3.1,试估算该商场4月份的总营业额大约是( )万元.(A ) 85 (B ) 77 (C ) 96 (D ) 102 6.当x ∈[ -1,1] 时,函数f (x )= 3x -2 的最大值是( )(A) 1(B) -1 (C) -2(D) 27. 如果圆222()()x a y b r -+-=与两坐标轴都相切,那么实数,,r a b 满足( ). (A ) 0a b r ==≠ (B ) a b = (C )b r = (D )a b r == 8. 下列事件中是随机事件的是( ) (A) 如果a , b 都是实数,那么a +b =b + a (B) 某人射击两次,恰有一次中靶(C)没有水分,种子发芽 (D)同性电荷,相互排斥9. 数列,,a b c 成等差数列,则数列2a ,2b ,2c 一定是( ).(A ) 既是等差数列,也是等比数列 (B ) 既不是等差数列,又不是等比数列 (C ) 等差数列 (D ) 等比数列10.已知A (1, -1 ) 、B (4, 2 ) , P 为AB 的中点,则→A P 的坐标为( ) (A) (5, 4) (B) ( 3, - 3) (C) ( 32 , - 12 ) (D) ( 32 , 32 )11. 以点(0,4)F -为焦点的抛物线的标准方程为( ).(A )216y x = (B ) 216y x = (C )216x y = (D ) 216x y =- 12.设α= π6,则角α的终边与单位圆的交点P 的坐标是( )(A )( 12 , 3 2 ) (B )(1 , 12 )(C )(3 2 ,1) (D )( 3 2 , 12) 13.若双曲线的焦点坐标为()10,5F -、()20,5F ,并且4a =,则该双曲线的标准方程为( ). (A ) 221169x y -= (B ) 221916y x -=(C )221349x y -= (D )221169y x -=14.设命题“p ∨ q ”与命题“⌝p ”都是真命题,则必有( ) (A) p 真q 假 (B) p 假 q 真 (C) p 真q 真 (D) p 假q 假15. 若函数y = x 2-4x + 2a +6的值域是[0, +∞) 则a 的值为( )(A) 0 (B) 1 (C) – 1或 1 (D) -1 16.分段函数1,01,0x x y x x -⎧=⎨-+<⎩≥的 ( ).(A )最大值是1 (B )最小值是- 1 (C )最大值是-1 (D )最小值是0 17.若log a 2 < log b 2 < 0, 则( )(A) 0 < a < b <1(B) 0 < b < a < 1(C) a > b > 1 (D) b > a > 118.等差数列{a n }中,a 1=3 , a 100=36,则a 5+ a 96 等于( )(A) 36 (B) 38 (C) 39 (D) 42 19. 若椭圆标准方程为22125169x y +=,则该椭圆的焦点坐标为( ). (A ) ()()5,05,0-、 (B ) ()()0,50,5-、(C ) ()()0,120,12-、 (D ) ()()12,012,0-、 20.已知:a = 3 , b = 2, c = 5 ,判断△ABC 的形状( ) (A))锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D)不确定 21.已知ΔABC 中a = 3, b = 1, ∠C =30°,则 →B C ·→C A = ( ) (A) 34 3 (B) 32 3(C) - 34 3 (D) - 32 322.若tan α= 2,则sin α- cos α2sin α+ cos α的值为( )(A )5 (B )- 5 (C )15 (D ) - 1523. 下面各命题中,正确的命题是( ).①平面α内有两条直线和平面β平行,那么这两个平面平行; ②平面α内有无数条直线和平面β平行,则α与β平行;③平面α内△ABC 的三个顶点到平面β的距离相等,则α与β平行;④平面α内的两条相交直线和平面β内的两条相交直线分别平行,则α和β平行。
(A ) ③④ (B ) ②④ (C ) ②③④ (D ) ④ 24.不等式7 - | 1- 2x | ≥ 4 的解集是( )(A) {x |- 2 ≤ x ≤ 1} (B) {x |x ≥2或 x ≤ - 1} (C) {x | x ≥- 2或 x ≤ 1} (D) {x |- 1≤ x ≤ 2} 25.如果0<<1a ,那么下列不等式中正确的是( ). (A ) 1132(1)(1)a a -<-(B ) 1(1)1a a +->(C ) (1)log (1)0a a -+> (D ) (1)log (1)0a a +-<26.若等差数列{a n }的公差为2,则数列a 1 + a 4,a 2 + a 5,a 3 + a 6,⋅⋅⋅ 的公差为( ) (A) 2 (B) 4 (C) 6 (D) 827. 有四条线段,长度分别是2cm ,3cm ,4cm ,5cm ,从中任取三条,能构成三角形的概率是( ).(A ) 25% (B ) 50% (C ) 75% (D ) 100% 28.已知偶函数f (x )在(0, +∞) 上是增函数, 则f (-3),f (π) , f ( 3 ) 的大小关系是( ) (A) f (π) > f ( 3 )> f (-3) (B) f (π) < f ( 3 )< f (3) (C) f (π) > f (-3) > f ( 3 ) (D) f (π) < f (-3) < f ( 3 )29.从装有2个白球和1个红球的袋中每次摸出1个球,每次摸出后不再放回,连续模2次,则摸出的2个小球中恰有1个红球的概率为( )(A) 13 (B) 16 (C) 12 (D) 2330. 函数22()x f x x+=是( )(A ) 奇函数 (B ) 偶函数(C ) 非奇非偶函数 (D ) 既是奇函数,又是偶函数第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31. 函数 y =1-| x +3 | 的定义域是 .32.函数y = cos 2x +sin x ,在x ∈[- π4 , π4] 的最小值是 。
33. 如图,正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1中,则AB 与C 1D 1所在直线所成的角为_________.34. 若方程11222=--m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是______. 三、解答题(本大题共4小题,共28分)35. (7分)已知二次函数f (x )= ax 2+bx +c 的图像在y 轴上的截距是5,且满足f (x )= f (2-x ),f (-1)=2 f (1),求当f (x ) ≤53时,对应x 的取值范围.36. (7分) 已知sin 3cos 0θθ+=,求值:(2)22sin 3sin cos 2θθθ-+37.(7分) 如图,已知正三棱柱ABC—A1B1C1中,D、E分别为A1B1和AA1的中点,DE⊥EB,试证明C1E与BE垂直.38. (7分) 已知抛物线22(0)y px p=>与椭圆22198x y+=有共同的右焦点2F,1F是椭圆的另一个焦点,并且它们在第一象限相交于Q点,求12ΔQF F的面积.答案一、选择题1.D 2.B 3.B 4.C 5.C 6.A 7.A 8.B 9.D 10.D 11.D 12.D 13.D 14.B 15.D 16.B 17.B 18.C 19.C 20.D 21.A 22.C 23.D24.D25.D26.B27.C28.C29.D30.A二、填空题 31.[ -4,-2] 32. 1- 2233.60︒ 34.m < 0三.解答35. 解:由题得c =5 , -b2a= 1, a -b +2= 2(a +b +c ) . 解之得:a =1 ,b = - 2 , 所以:f (x )= x 2 – 2x + 5 当f (x )≤ 53 时, x 2 – 2x + 5≤ 53 所以:- 6≤x ≤8 当f (x ) ≤53时,对应x 的取值范围是[ - 6, 8 ] . 36.答案:(1)- 2- 3 (2)471037. 证明:连结C 1D , 则C 1D ⊥A 1B 1, 又∵C 1D ⊥BB 1 ∴C 1D ⊥平面A BB 1A 1, ∴ C 1D ⊥BE 又∵BE ⊥DE ∴BE ⊥平面EDC 1 ∴BE ⊥C 1E .38. 答案:12ΔQF F 的面积是 6 .。