沪教版高二上册数学向量的应用教案二级第一学期(1)
- 格式:doc
- 大小:122.00 KB
- 文档页数:3
向量的坐标【教学目标】向量是近代数学最重要的概念之一,它的几何形式与代数形式的“双重身份”以及它的一套优良的运算系统,使得它成为数学、物理等学科中很多问题的重要工具,成为沟通“数”与“形”的桥梁,同时也为将来研究平面、空间图形做了知识和方法上的准备。
根据上述分析结合本节内容,教学大纲的要求,确定本节可的教学目标如下:掌握向量的坐标表示法,向量的加法、减法、数与向量的乘法等运算的坐标表示形式,理解定比分点公式,掌握中点公式,能应用向量的坐标表示法解决简单的实际问题.培养学生自主学习及提出、分析、解决问题的能力.关注学生的学,使学生体验探索知识的乐趣.【教学的重点与难点】重点:向量运算的坐标表示难点:定比分点公式以及向量的综合应用【教学方法与手段】教学方法:关注学生的学,引导学生在学习过程中提出问题,自主探究,合作讨论解决问题教学手段:多媒体辅助教学,充分发挥其快捷、生动、形象的特点来提高课堂效率,提供学生学习的平台。
【教学讨论】在前面的向量学习过程中,曾在直角坐标系中给出向量始点与终点的坐标,启发学生思考向量的坐标如何表示呢?与始点、终点的坐标有何关系呢?(一)位置向量在直角坐标平面内,以原点为始点,点P为终点的向量OP,叫做点P的位置向量。
*特别的,当点P与原点O重合时,这时的位置向量就是零向量。
学生疑问一:以前学习的“普通”向量与位置向量到底有什么联系呢?为什么要提出位置向量的概念?点评:根据向量的可平移性,坐标平面内的任何一个向量都有唯一确定的位置向量与它相等。
即:任何向量都可以表示为起点为原点的向量。
(二)基本单位向量回忆:单位向量的定义1. 习惯上常把与X 轴正半轴同方向的单位向量记做i ,常把与Y 轴正半轴同方向的单位向量记做ji ,j 称为基本单位向量。
请同学们阅读教材第65页2~7行提问:若P (1,1)则OP =? 若P (-3,4)则OP =?从而很快得出P (X ,Y ),OP =x i +y j通常把有序实数对(x,y )叫做位置向量OP 的坐标。
高中高二数学向量的应用教案设计教案:高中高二数学向量的应用课时:2课时教学目标:1. 理解向量的概念和性质;2. 掌握向量的加减法和数量积的计算方法;3. 运用向量的应用解决实际问题。
教学准备:1. 教师准备教学PPT,包括向量的定义、性质和计算方法;2. 准备一些与向量相关的实际问题,如力的合成、速度等。
教学过程:Step 1:导入与概念讲解(15分钟)1. 引入向量的概念,介绍向量的定义和性质,如大小、方向和平行等;2. 带领学生观察身边的一些实际问题,如力的合成、速度等,并引导学生思考如何用向量来解决这些问题。
Step 2:向量应用的计算方法(20分钟)1. 介绍向量的加减法和数量积的计算方法;2. 分步讲解向量加减法的计算过程,答疑解惑;3. 利用实例演示向量数量积的计算方法,并提醒学生注意计算时需要注意的事项。
Step 3:练习与讨论(30分钟)1. 设计一些练习题,让学生在纸上进行计算,然后与同桌讨论答案;2. 在教学PPT上展示练习题的答案,并逐题讲解解题思路和方法;3. 针对学生容易出错的地方进行重点讲解和强化练习。
Step 4:实例分析与解决问题(30分钟)1. 设计一些与向量相关的实际问题,如力的合成、速度等;2. 分组让学生分析问题,并运用向量的概念和计算方法解决问题;3. 学生报告解题思路和结果,进行全班讨论和总结。
Step 5:课后作业(5分钟)1. 布置一些课后作业,要求学生运用向量的概念和计算方法解决实际问题;2. 在下节课开始时进行作业的讲解和讨论。
教学反思:通过本节课的教学设计,学生能够理解向量的概念和性质,并能够灵活运用向量的加减法和数量积的计算方法解决实际问题。
通过实例分析与讨论的环节,学生能够提升解题的思维能力和合作能力。
在课后作业的布置中,要求学生多进行实际问题的训练,提高应用能力。
8.1(3)定比、定比分点公式一、教学内容分析本节是8.1的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法.本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别.根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计1理解定比的概念,掌握定比分点公式;2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式;3通过本节的学习,提升发现能力、推理能力,渗透数形结合思想. 三、教学重点及难点定比的概念,定比分点公式的推导和应用. 四、教学流程设计五、教学过程设计一、 情景引入 观察思考,引入新课问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA ∥AC ,即存在实数λ,使BA = λAC ,那么实数λ= . 而若 BC CA λ=,则λ= .[说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负.问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=时,你能求出点P 的坐标吗?(引出课题)[说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课1.定比分点公式一般地,设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1,所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.师生通过上面的结论共同解决(一)中的问题2.[说明]此例题的结论可作为公式掌握,此公式叫线段21P P 的定比分点公式. 2.小组交流(1)定比分点公式中反映了那几个量之间的关系?当λ=1时,点P 的坐标是什么? (2)满足式子12PP PP λ=的点P 称为向量 12PP 的分点.思考:上式中正确反映 P 1,P ,2P 三点位置关系的是( ) A 、始→分,分→终.B 、始→分,终→分.C 、终→分,分→始(3)关于定比λ和分点P 叙述正确的序号是1)点P 在线段21P P 中点时,λ=1;2)点P 在线段21P P 上时,λ≥0 3)点P 在线段21P P 外时,λ﹤0; 4)定比λR ∈ [说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式.此公式应用很广泛. 3.例题辨析例1、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y这就是△ABC 的重心G 的坐标.[说明]本题难度不大,但综合性却比较强.不仅涉及到定比的概念,而且用到了中点公式、定比分点公式.(2)此结论可作为三角形重心的坐标公式.例2、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值.解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15), 所以定比λ=-32. 解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2 解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP PP = 32,所以λ=-32. [说明] 本题已知三点坐标求定比λ的值,学生往往偏爱第一种解法;解法二是定比分点公式的一个应用,其前提是三点共线,代公式时要注意始点、终点、分点坐标的位置;解法三是求定比λ的有效方法,简洁方便,鼓励学生大胆去尝试. 三、演练反馈,巩固知识1设12PP PP λ= ,21P P PPλ'= ,则下列正确的是( ) (A )λλ'= (B )λλ'=- (C ) 1λλ=' (D )1λλ=-' 2、△ABC 中,A (2,3),B (-3,4),重心G (-)34,32,求C 点的坐标.3、已知:A (3,-1),B (-4,-2),点P 在直线AB 上,且2AP =3BP ,求P 点坐标. 四、知识梳理,提升思维1知识与技能小结:(1)主要的知识点有定比λ的概念,中点公式、定比分点公式,及定比分点公式的多元化表示.(2)主要的应用有定比λ的意义与范围,三点共线问题,三角形重心公式及综合应用.2 学生的体会和感悟:对本节学习过程的认识、理解和体会;提出新的疑点和问题. 五、作业布置,课后探究 1、填空题(1)已知三点A 、B 、C 满足AB =2BC ,设1AC CB λ=2BA AC λ=则=∙21λλ(2)△ABC 中,A (1,2),B (-2,3),C (4,-1),D 为BC 中点,且 GA DG 3= ,则G 点坐标是 2、选择题(1)若 2143PP P -=,则下列各式中不正确的是( ) (A ) 12P P =P 131(B )P P 1234= (C ) 2113P P P -= (D )1224P PP =(2) 设点P 是12PP 反向延长线上任意一点且12PP PP λ=,则实数λ的范围是( )(A )(-∞,0) (B )(—∞,-1) (C )(-1,0) (D )[-1,0) 3、解答题(1)△ABC 中,已知A (3,1),AB 的中点D (2,4),△ABC 的重心G (3,4),求B 、C 两点的坐标.(2)已知设1P (3,2),2P (-8,3) , P (12,y ),若12PP PP λ=,求λ与y 的值.。
高中高二数学向量的应用教案设计一、教学目标1.理解向量的概念及其加减乘除的基本操作,可以进行比例运算和证明数学定理。
2.掌握能够应用向量知识解决空间方向问题,包括向量的共面条件、向量的点积、叉积及其运算应用;3.提高学生运用向量知识解决实际问题的能力,关注向量在自然科学与工程技术中的应用,培养学生应用向量解决问题的能力。
二、教学重点1.向量的基本操作和性质。
2.向量的共面条件、点积、叉积及其应用。
三、教学难点1.向量的坐标表示与运算。
2.从实际问题中抽象出向量解决方法。
四、教学过程1. 理解向量的概念及其基本操作1.引入向量的概念。
2.向量的基本操作:向量的加减乘除。
3.向量比例运算。
2. 向量的共面条件与点积1.向量的共面条件:–向量组的行列式为0;–向量组线性相关;–平面法向量相同。
2.向量的点积:–点积的定义;–点积的性质;–用点积计算夹角。
3. 向量的叉积及其应用1.向量的叉积:–叉积的定义;–叉积的性质;–叉积的几何意义。
2.向量的应用:–平面方程的向量表达式;–直线方程的向量表达式;–空间点到直线距离公式;–平面线交公式。
4. 应用1.规划设计实例。
–给定平面内三点坐标,求该三角形的面积和周长;–确定三棱锥ABCD的底面和顶点E,使它满足:四个面积相等,任意一对对角线互相垂直。
2.数学竞赛热门例题。
–已知向量 $\\overrightarrow{a}=(1,2,3), \\overrightarrow{b}=(-1, 1, 2)$,求 $\\overrightarrow{a}+\\overrightarrow{b}$,$\\overrightarrow{a} \\cdot\\overrightarrow{b}$ 和 $\\overrightarrow{a} \\times \\overrightarrow{b}$。
–已知四面体的四个顶点坐标分别为A(−1,2,0),B(0,−1,0),C(1,0,2),D(1,0,0),判断四面体的形状,并计算出四面体的体积。
例4、已知平行四边形中,、是对角线、上的两点,且,试用向量方法证明四边形也是平行四边形分析:由平面向量的基本定理可知向量及用一组基底来唯一表示,要证明四边形是平行四边形,只要证明用相同的基底表示出来的向量及是相同的即可.(分析很重要,突出向量基本定理及基底的作用,使学生对问题的认识在原有的基础上更深入一步)证设,则,而.所以,四边形为平行四边形.例5、如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。
证:设BE、CF交于一点H,AB= a, AC= b, AH= h,则BH= h-a , CH= h-b , BC= b-a∵BH⊥AC, CH⊥AB∴0)()()()()(=-⋅⇒⋅-=⋅-⇒⎭⎬⎫=⋅-=⋅-abhabhbahaahbah∴AH⊥BC又∵点D在AH的延长线上,∴AD、BE、CF相交于一点变式练习:已知O为△ABC所在平面内一点,且满足|OA|2 + |BC|2 = |OB|2 + |CA|2 = |OC|2 + |AB|2,求证:AB⊥OC证:设OA= a, OB= b, OC= c,则BC= c-b, CA= a-c, AB= b-aAB CDEF H证明:设AM =m ,AB =b ,AC =c ,则m =2c b +,m ·m =2c b +·2cb + =41b 2+21b ·c +41c 2 =41AB 2+41AC 2+21AB ·AC ·cos ∠BAC =41AB 2+41AC 2+21AB ·AC ·AC AB BC AC AB ⋅-+2222=41AB 2+41AC 2+41(AB 2+AC 2-BC 2). ∴AM 2=21AB 2+21AC 2-41BC 2. 又∵BC 2=4BM 2,∴AB 2+AC 2=2(AM 2+BM 2). 向量章节测试一、选择题1.已知,,AB a BC b CA c ===u u u r r u u u r r u u u r r ,则0a b c ++=r r r r是,,A B C 三点构成三角形的 ( )A. 充分不必要条件 B . 必要不充分条件 C. 充要条件 D.既不充分也不必要条件2.已知(,),n a b =r 向量n m ⊥r u r ,且n m =r u r,则m u r 的坐标是 ( )A .(,)(,)b a b a --或 B. (,)a b - C. (,)(,)a b a b --或 D. (,)b a -3.63,1,9a b a b ===-r r r rg ,则a r 与b r 的夹角是 ( )A. 120︒ B . 150︒ C. 60︒ D. 30︒4.在平行四边形ABCD 中,若AB AD AB AD +=-u u u r u u u r u u u r u u u r,则必有 ( ) A. 0AD =u u u r r B. 00AB AD ==u u u r r u u u r r或 C . ABCD 是矩形 D. ABCD 是正方形5.已知11(1,),(0,),,22a b c a kb d a b ==-=+=-rr r r r u r r r ,c r 与d u r的夹角为4π,则k 等于 ( )A . 1 B. 2 C.12D.-16.已知下列各式:(1)22a a =r r ;(2)2a b ba a=r r rg r r ;(3)222()a b a b =r r r r g g ;(4)222()2a b a a b b -=-+r r r r r r g ,其中正确的有 ( )A. 1个 B . 2个 C. 3个 D. 4个7.若(1,1),(1,1),(1,2),a b c c ==-=-=r r r r则 ( )A.1322a b -+r r B . 1322a b -r r C. 3122a b -r r D. 3122a b-+r r8.已知8,5AB AC ==u u u r u u u r ,则BC u u u r的取值范围是 ( )A. [3,8]B. (3,8) C . [3,13] D. (3,13)9.已知2,5,3a b a b ===-rrr rg ,则a b +r r等于 ( )A. 23 B. 35 C .23 D.3510.设1(2,3),(1,5),,33A B AC AB AD AB -==u u u r u u u r u u u r u u u r且,则C 、D 的坐标分别是 ( )A .11(1,),(7,9)3- B. 5(1,),(5,8)3-- C. 17(,),(5,7)23- D. 8(1,),(7,9)3-11.已知向量(3,4),(sin ,cos ),a b αα==r r 且//a b r r,则tan α=( ).A .34 B. 34- C. 43 D. 43-12.已知向量的夹角为与则若c a c b a c b a ,25)(,5||),4,2(),2,1(=⋅+=--= ( )A .30°B .60°C .120°D .150°13.若||1,||2,a b c a b ===+r r r r r,且c a ⊥r r ,则向量a r 与b r 的夹角为( ) A.30° B.60° C .120° D.150°14.若三点(1,1),(2,4),(,9)P A B x --共线,则x = ( ) A. 1- B . 3 C.92D. 51 15.已知a r 、b r均为单位向量,它们的夹角为60°,那么|3|a b +r r =( ).A .7B .10C .13D .416.已知,AD BE u u u r u u u r 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==u u u r r u u u r r ,则BC u u u r为( )A. 4233a b +r r B . 2433a b +r r C. 2233a b -r r D. 2233a b -+r r二、填空题17.若3,a b =r r r与a 的方向相反,且||5,______b a b ==r r r 则 18.化简:(1)AB BC CD ++=u u u r u u u r u u u r_____________。
一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用. 二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用. 三、教学重点及难点重点:平面向量知识在各个领域中应用. 难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力 (2)功 (3)位移 (4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么? [说明]复习数量积的有关知识. 二、学习新课 例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看 例2(书中例3)证法(一)原不等式等价于)1(2212122212121x y y x y y x x +≤,由基本不等式知(1)式成立,故原不等式成立. 证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明. 二、巩固练习1、如图,某人在静水中游泳,速度为 km/h.(1)如果他径直游向河对岸,水的流速为 4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2)他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 42、(补充)(1)已知作用于同一物体的两个力、,||=5N,||=3N,、所成的角为,则|+|= 7 ; +与的夹角为.[说明]力的分解与合成是向量在物理中运用的典型例子之一.(2)上网查阅柯西——许瓦兹不等式有关知识并整理一些证法.[说明]①柯西——许瓦兹不等式是一个著名不等式,教学时应加以渗透数学史的教学,并且通过对不同证明方法的整理可以感受数学知识的有机联系以及解决问题的多样性.②以小组形式,时间为一星期为宜.一、教学内容分析这一节重点介绍矩阵的三种基本运算:矩阵的加减、实数与矩阵相乘、矩阵的乘法.例2、例3是二阶矩阵的加、减法;例6是二阶矩阵与23阶矩阵的乘法;这三个例题是矩阵的基本运算.必须掌握好矩阵基本运算,并掌握它们的运算律.例7、例8是矩阵的实际应用题,说明矩阵可用于处理一些复杂的数据问题.二、教学目标设计1、理解和掌握矩阵的运算及其运算律;2、提高分析矩阵的实际问题和解决矩阵的实际问题的能力.三、教学重点及难点1、提高矩阵的运算能力是重点;2、矩阵乘法是教学难点.四、教学流程设计:五、教学过程设计(一)情景引入小王、小李在两次数学考试中答对题数如下表表示:填空题每题4分,选择题4分,解答题每题10分.1、观察:2、思考(1):如何用矩阵表示他们的答对题数?他们期中、期末的成绩?思考(2):如果期中占40%,期末占60%,求两同学的总评成绩3、讨论:今天如何通过矩阵运算来研究上述问题?(二)学习新课1、矩阵的加法(1)引入记期中成绩答题数为A 期末答题数为B确定两次考试的小王,小李的各题型答题总数的矩阵C(2)矩阵的和(差)当两个矩阵A,B的维数相同时,将它们各位置上的元素加(减)所得到的矩阵称为矩阵A,B的和(差),记作:A+B(A-B)(3)运算律加法运算律:A+B=B+A加法结合律:(A+B)+C=A+(B+C)(4)举例:P80 例2,例32、数乘矩阵(1)引入:计算小王、小李各题型平均答题数的矩阵(2)矩阵与实数的积设为任意实数,把矩阵A 的所有元素与相乘得到的矩阵叫做矩阵A 与实数的乘积矩阵.记作:A(3)运算律:(为实数) 分配律: ; 结合律: (4)举例:P81 例43、矩阵的乘积(1)引入:P83的两次线性变换 (2)矩阵的乘积:一般,设A 是阶矩阵,B 是阶矩阵,设C 为矩阵如果矩阵C 中第i 行第j 列元素是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积.记作:C=AB (3)运算律 分配律:, 结合律:,注:交换律不成立,即 (4)举例例1(1) (2)(3)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛011211724543 (4)⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-724543011211(5)⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-122645243011211 答案:1) 2) 3)⎪⎪⎪⎭⎫ ⎝⎛--4591019617 4) 5)注:(1)(2)结果不同.(3)(4)结果不同,说明矩阵乘法交换律不成立.例2:P85 例8(三)回归情景:讨论如何使用矩阵运算进一步研究小王、小李的考试成绩.(四)课堂练习:P83,P86(五)课堂小结(六)布置作业:见练习册七:教学设计说明1、通过情景题小王、小李的成绩情况引入矩阵运算,说明矩阵运算的重要性.2、课堂按“加减法→数乘→乘法”展开研究,层层深入,重在掌握2阶,3阶的矩阵的基本运算.3、对矩阵运算律只进行总结,不进行证明.旨在今后学生能灵活地使用运算律进行运算.这里特别强调乘法的交换律不成立.这是学生思维上不易接受点,在过去的学习的实数运算、集合运算、向量运算的不同之处,必须引起重视.4、加强了实际问题的分析,说明矩阵在实际问题中的重要运用.5、。
课 题:平面向量的坐标运算教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线。
教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课课时安排:1课时教学过程:一、复习引入:1.向量的加法:求两个向量和的运算,叫做向量的加法。
向量加法的三角形法则和平行四边形法则。
2.向量加法的交换律:a +b =b +a 3.向量加法的结合律:(a +b ) +c =a + (b +c )4.向量的减法向量a 加上的b 相反向量,叫做a 与b的差。
即:a - b = a + (-b )5.差向量的意义: OA = a , OB = b , 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量。
6.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=0 7.运算定律 λ(μa ρ)=(λμ)a ρ,(λ+μ)a ρ=λa ρ+μa ρ,λ(a ρ+b ρ)=λa ρ+λb ρ8. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ。
9.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量10.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底。
8.4(1)向量的应用(1)一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用。
本小节的重点是结合向量知识证明平面几何中的平行、垂直问题,以及不等式、有关三角公式的证明、物理学中的应用.本小结的难点是如何结合向量知识去解决有关问题,突破难点的关键是如何启发学生发现问题和提出问题,学会分析问题和创造性地解决问题.二、教学目标设计运用平面向量的知识解决平面几何中的平行、垂直等问题;提高分析问题、解决问题的能力.三、教学重点及难点教学重点:利用平面向量知识证明平行、垂直等问题; 教学难点:数形结合方法的渗透,思维能力的提高. 四、教学流程设计五、教学过程设计一、复习与回顾思考并回答下列问题1.判断:(平行向量的理解)(1)若A、B、C、D四点共线,则向量//;()(2)若向量//,则A、B、C、D四点共线;()(3)若=,则向量=;()(4)只要向量→→ba,满足→→=ba,就有→→=ba;()2.提问:(1)两个非零向量平行的充要条件是什么?(2)两个非零向量垂直的充要条件是什么?[说明] 教师可引导学生多写出一些两向量平行、垂直的表达形式.二、学习新课例题分析例1、证明:菱形对角线互相垂直。
(补充)证:设==→a , ==→b∵ABCD为菱形∴|→a| = |→b|∴⋅= (→b +→a)(→b-→a) =→b 2 -→a2 =|→b|2 - |→a|2 = 0 ∴AC⊥BD证法二:设B(b ,0),D(d1,d2),则AB= (b ,0), AD= (d1,d2)于是=AB+AD= (b ,0) + (d1,d2)= (b +d1 ,d2)C A=-= (d 1 -b ,d 2)∵•= (b +d 1)(d 1 -b ) + d 2d 2 = (d 12+ d 22)- b 2= ||2- b 2= ||2- b 2= b 2- b 2= 0∴AC ⊥[说明]二种方法进行比较,开拓学生的解题思维,提高能力.例2、已知)2,1(A ,)3,2(B ,)5,2(-C ,求证ABC ∆是直角三角形.(补充).,900),3,3(),1,1(:0是直角三角形即证明ABC BAC ∆=∠∴=⋅-==Θ例3、.,,.AC BH BC AH ABC ⊥⊥∆已知中在如图.:AB CH ⊥求证(课本P72例2)[小结]以上三题均是垂直问题的证明,请同学们注意它们间的区别与联系. 例4、证明:对角线互相平分的四边形是平行四边形.(课本P71例1)三、课堂练习例5、用向量方法证明:对角线相等的平行四边形是矩形.(习题册P39习题8.4 A 组1)四、课堂小结1.用向量知识证明平行、垂直问题.2.要注意挖掘平面图形本身的几何性质.四、作业布置1、书面作业:课本P73, 练习8.4 1, 2, 32、习题册P39,习题8.4 A 组/1;习题册P40,习题8.4 B 组/13、思考题:如图,在ABC 中,D ,E 分别是边AB 、AC 的中点,F ,G 分别是DB 、EC 的中点, 求证:向量与共线.3、思考题:如图,AD 、BE 、CF 是△ABC 的三条高,求证:AD 、BE 、CF 相交于一点.七、教学设计说明1.注意区分两向量平行、垂直充要条件的差别.建议学生结合图形,这样理解较为深刻. 2.在用向量证明有关数学问题时,要注意利用平面图形的几何性质,找到解题的突破口. 3.学生要注重综合能力的训练,要会举一反三、融会贯通.EB C。
8.1(1)向量的坐标表示及其运算(1)一.教学内容分析按现行上海市中小学数学课程标准,本章内容是在初中学习了向量的基本概念、向量的加法、减法、实数与向量的积等基础之上的后继学习.但与初中有所不同的是,初中教材对向量的学习是以“形”为主,主要从“形”的角度展开,而本章内容则主要是以“数”为主,从“数”的角度进行论述.当然,由于向量本身所具有的数形结合的特点,本章教材在以“数”为主旨处理教学内容的同时并没有弱化向量的“形”的方面的特征,而是二者相得益彰,互为依赖、互为补充.以“数”为主旨研究向量,其核心手段是向量及其运算的坐标表示.向量的坐标表示,实际上是向量的代数表示.在引入向量的坐标表示后,向量的加法、减法、实数与向量的积、向量的数量积等就完全可以用它们的坐标的加法、减法、数乘、数量积等运算来进行,使向量运算完全代数化,将数与形紧密结合起来.这样,就使得很多问题,可以转化为熟知的数量的运算进行解决.向量及其运算的坐标表示,一方面为用代数方法处理几何问题提供了通道,另一方面也为向量概念推广到高维空间指明了途径,同时,它也是高中数学中描述与处理如立几、解几、三角等诸多问题的一个有力的工具,在高考中也占有一个重要的地位.作为本章的第一课时,本节课的主要内容是向量的坐标表示及其运算.它是本章重要的基础性与前提性内容,它引入了将向量问题代数化的基本手段与方法——向量的坐标表示.本节内容课本上的基本处理方法是在引入一些相关的基础性的概念之后,通过任意向量都可以正交分解为基本单位向量,i j的线性组合,在向量的正交分解的基础上抽象概括出向量的坐标表示形式,并依据向量的正交分解的本质得到向量坐标形式下的运算法则.本节课要着力解决三个问题:一是要解决引入向量的坐标形式的必要性的问题,以引起学生学习的动机,二是要解决如何引入向量的正交分解及如何由此抽象出向量的坐标形式或者说是如何让学生理解向量坐标的本质的问题,三是要解决引入向量坐标形式以后如何以坐标形式进行运算的问题.作为本节课(本章的第一个课时)来说,第二个问题是重中重之中,因为如果学生不能理解向量的坐标是怎么来的,它的本质是什么,就会对后继学习带来一定的困难.因此,我们在课上要对这一点特别的重视.二.教学目标设计1.了解基本单位向量、位置向量、向量的正交分解等概念;会用坐标表示向量;会用两向量的坐标形式的和、差及实数与向量的积等运算解决相关问题.2. 经历如何将位置向量及任意向量表示为基本单位向量的线性组合这一正交分解的过程,以及经历如何通过向量的正交分解的本质概括抽象出向量的坐标表示的过程,初步形成抽象思维的能力;理解平面向量与一对有序实数对的一一对应关系,理解向量的坐标表示方法及其运算法则;体会数形结合的思想方法.3.感知数学中的运动、变化、相互联系与相互转化的规律,加深对辩证唯物主义观点的体验;发展从数学的角度分析和解决问题的能力,以及通过积极参与数学学习和问题解决的过程,增强学习的主体意识,形成数学的应用意识,养成严谨、慎密的思维习惯.三.教学重点及难点教学重点是如何写向量的坐标以及向量坐标形式的运算及其应用;教学难点是对向量的正交分解的过程的理解以及由向量的正交分解抽象出向量的坐标表示的过程的理解.四.教学流程设计五.教学过程设计一.情境引入上海市莘庄中学的健美操队四名队员A 、B 、C 、D 在一个长10米,宽8米的矩形表演区域EFGH 内进行健美操表演.(1)若在某时刻1t ,四名队员A 、B 、C 、D 保持如图1所示的平行四边形队形.队员A 位于点F 处,队员B 在边FG 上距F 点3米处,队员D 位于距EF 边2米距FG 边5米处.你能确定此时队员C 的位置吗?GHG[说明] 此时队员C 在位于距EF 边5米距FG 边5米处.这个图形比较特殊,学生很快就会得到答案,这时教师引入第二个问题.(2)若在某时刻2t ,四名队员A 、B 、C 、D 保持如图2所示的平行四边形队形.队员A 位于距EF 边2米距FG 边1米处,队员B 在距EF 边6米距FG 边3米处,队员D 位于距EF 边4米距FG 边5米处.你能确定此时队员C 的位置吗?[说明] 不要求学生写出结果,只引导学生思考.这个图形更为一般一些,学生解决的可能不是很顺,这时,教师就可以说,这一节我们就来学习一个新的内容:向量的坐标表示及其运算,学习了这个内容之后,同学们只要花上两分钟或者只要一分钟的时间就可以解决这个问题了,引起学生学习的兴趣与探究的欲望.二.学习新课 1. 向量的正交分解我们称在平面直角坐标系中,方向与x 轴和y 轴正方向分别相同的的两个单位向量叫做基本单位向量,分别记为,i j ,如图,称以原点O 为起点的向量为位置向量,如下图左,OA 即为一个位置向量.思考1:对于任一位置向量OA ,我们能用基本单位向量,i j 来表示它吗?如上图右,设如果点A 的坐标为(),x y ,它在小x 轴,y 轴上的投影分别为M ,N ,那么向量OA 能用向量OM 与ON 来表示吗?(依向量加法的平行四边形法则可得OA OM ON =+),OM与ON 能用基本单位向量,i j 来表示吗?(依向量与实数相乘的几何意义可得,OMxi ON y j ==),于是可得: OA OM ON xi y j =+=+由上面这个式子,我们可以看到:平面直角坐标系内的任一位置向量OA 都能表示成两个相互垂直的基本单位向量,i j 的线性组合,这种向量的表示方法我们称为向量的正交分解.2.向量的坐标表示思考2:对于平面直角坐标系内的任意一个向量a ,我们都能将它正交分解为基本单位向量,i j 的线性组合吗?如下图左.显然,如上图右,我们一定能够以原点O 为起点作一位置向量OA ,使O Aa=.于是,可知:在平面直角坐标系内,任意一个向量a 都存在一个与它相等的位置向量OA .由于这一点,我们研究向量的性质就可以通过研究其相应的位置向量来实现.由于任意一个位置向量都可以正交分解为基本单位向量,i j 的线性组合,所以平面内任意的一个向量a 都可以正交分解为基本单位向量,i j 的线性组合.即:a =OA =xi y j +上式中基本单位向量,i j 前面的系数x,y 是与向量a 相等的位置向量OA 的终点A 的坐标.由于基本单位向量,i j 是固定不可变的,为了简便,通常我们将系数x,y 抽取出来,得到有序实数对(x,y ).可知有序实数对(x,y )与向量a 的位置向量OA 是一一对应的.因而可用有序实数对(x,y )表示向量a ,并称(x,y )为向量a 的坐标,记作:a =(x,y )[说明](x,y )不仅是向量a 的坐标,而且也是与a 相等的位置向量OA 的终点A 的坐标!当将向量a 的起点置于坐标原点时,其终点A 的坐标是唯一的,所以向量a 的坐标也是唯一的.这样,我们就将点与向量、向量与坐标统一起来,使复杂问题简单化.显然,依上面的表示法,我们有:(1,0),(0,1),0(0,0)ij ===.例1.(课本例题)如图,写出向量,,a b c 的坐标. 解:由图知()1,2a=与向量b 相等的位置向量为OA , 可知()1,2b OA ==与向量c 相等的位置向量为OB , 可知()1,2c OB ==-[说明] 对于位置向量a ,它的终点的坐标就是向量的坐标;对于起点不在原点的向量,b c ,我们是通过先找到与它相等的位置向量,再利用位置向量的坐标得到它们的坐标.那么,有没有不通过位置向量,直接就写出任意向量的坐标的方法呢?答案是肯定的,而且很简便,但我们需几分钟后再来解决这个问题.让我们先学习向量坐标表示的运算:3.向量的坐标表示的运算我们学过向量的运算,知道向量有加法、减法、实数与向量的乘法等运算,那么,在学习了向量的坐标表示以后,我们怎么用向量的坐标形式来表示这些运算呢?设λ是一个实数,1122(,),(,).a x y b x y == 由于1111(,),a x y x i y j ==+ 2222(,)b x y x i y j ==+所以1122(,)(,)a b x y x y ±=±()()1122x i y j x i y j=+±+ ()()()()()121212121212,x i x i y j y j x x i y y j x x y y =±+±=±+±=±±()()11111111(,),ax y x i y j x i y j x y λλλλλλλ==+=+=于是有:1122(,)(,)x y x y ±()1212,x x y y =±±()1111(,),x y x y λλλ=[说明]上面第一个式子用语言可表述为:两个向量的和(差)的横坐标等于它们对应的横坐标的和(差),两个向量的和(差)的纵坐标也等于它们对应的纵坐标的和(差),可笼统地简称为:两个向量和(差)的坐标等于对应坐标的和(差);同样,第二个式子用语言可表述为:数与向量的积的横坐标等于数与向量的横坐标的积,数与向量的积的纵坐标等于数与向量的纵坐标的积,也可笼统地简称为:数与向量积的坐标等于数与向量对应坐标的积.4.应用与深化下面我们来研究刚才提出的不通过位置向量,如何直接写出任意向量的坐标的问题: 例2.如下图左,设()11,Px y 、()22,Q x y 是平面直角坐标系内的任意两点,如何用P 、Q 的坐标来表示向量PQ ?解:如上图右,向量PQ OQ OP =-()()()22112121,,,x y x y x x y y =-=--从而有 ()2121,PQ x x y y =--[说明]上面这个式子告诉我们:平面直角坐标系内的任意向量的横坐标等于它终点的横坐标与它起点的横坐标的差,纵坐标也等于它终点的纵坐标与它起点的纵坐标的差,可简称为“任意向量坐标=终点坐标-起点坐标”.例3.(课本例题)如图,平面上A 、B 、C 三点的坐标分别为()2,1、()3,2-、()1,3-.(1)写出向量,AC BC 的坐标;(2)如果四边形ABCD 是平行四边形,求D 的坐标.解:(1)()()12,313,2AC =---=-()()()13,322,1BC=----=(2)在上图中,因为四边形ABCD 是平行四边形,所以DC AB =设点D 的坐标为(),D D x y ,于是有()1,3D D x y AB ---=又 ()()32,215,1AB =---=-故()()1,35,1D D x y ---=-由此可得1531D D x y --=-⎧⎨-=⎩ 解得42D D x y =⎧⎨=⎩因此点D 的坐标为()4,2.练习:(1)请大家用两分钟的时间解答本节课一开始我们所提出的在某时刻2t ,健美操队员C 的位置问题.即:在某时刻2t ,四名队员A 、B 、C 、D 保持如图所示的平行四边形队形.如下图左,队员A 位于距EF 边2米距FG 边1米处,队员B 在距EF 边6米距FG 边3米处,队员D 位于距EF 边4米距FG 边5米处.你能确定此时队员C 的位置吗?GH解:以点F 为坐标原点,以边FG 为x 轴,以边FE 为y 轴,建立如上图右所示直角坐标系.则依题意有A(2,1),B(6,3),D(4,5),设C(x,y),则由ABCD 是平行四边形可得:(4,2)(2,4)(6,6)AC AB AD =+=+=又(,)(2,1)(2,1)ACx y x y =-=--故(2,1)(6,6)x y --= 于是 x=8, y=7,即C (8,7).答:队员C 位于距EF 边8米、距FG 边7米处.(2)在某时刻3t ,四名队员A 、B 、C 、D 保持平行四边形队形.已知队员A 位于距EF 边2米距FG 边1米处,队员B 在距EF 边6米距FG 边3米处,队员C 位于如下图左所示的矩形阴影部分区域内(包括边界)某一位置.你能确定此时队员D 可能的位置区域吗?解:以点F 为坐标原点,以边FG 为x 轴,以边FE 为y 轴,建立如上图右所示直角坐标系.依题意有A(2,1),B(6,3),设D(x,y),则由ABCD 是平行四边形可得:(4,2)DC AB == 又D(x,y),所以可得C(x+4,y+2)由题意54101642826x x y y ≤+≤≤≤⎧⎧⇒⎨⎨≤+≤≤≤⎩⎩ 于是可得队员D 可能的位置区域如图所示阴影部分(除去点B ):例4.已知向量()4,1a =-与()5,2b =,求23a b +的坐标.解:因为()28,2a =-,()315,6b =所以 ()()23815,2623,4a b +=+-+=三.巩固练习1. 如图,写出向量,,a b c 的坐标.2.已知(1,2)a =-,若其终点坐标是(2,1),则其起点的坐标是 ;若其起点坐标是(2,1),则其终点的坐标是 .3.已知向量()2,3a =-与()1,5b =-,求3a b -及3b a -的坐标.解:1.由题意:()()()()()()2,1,1,1,2,11,121,1(1)1,2a b c ==-=--=---=2.设起点的坐标是(x,y),则(2,1)-(x,y)=(-1,2),解得:(x,y)=(3,-1),即起点的坐标是(3,-1);设终点的坐标是(x,y),则(x,y)-(2,1) =(-1,2),解得:(x,y)=(1,3),即起点的坐标是(1,3).3. 3a b -=3()7,14---()()1,57,14-=- 3b a -=()1,5--3()2,3-()7,14=-[另法]:3b a -=()3a b --=()7,14--()7,14=-四.课堂小结: 本节课我们讲了哪些内容?(请学生作答)1.向量的正交分解(是如何对向量进行正交分解的?)2.向量的坐标表示(是用什么表示向量的坐标的?)3.向量的坐标运算(运算法则是什么?)五.作业布置1.已知(2,0),(1,3),a b ==-则a b +与a b -的坐标分别为( )(A)(3,3),(3,-3) (B)(3,3),(1,-3)(C)(1,3),(3,3) (D)(1,3),(3,-3)2.若点A 坐标为(2,-1),AB 的坐标为(4,6),则B 点的坐标为( )(A)(-2,-7) (B)(2,7)(C)(6,5) (D)(-2,5)3.已知(,4),(3,2).a x b y ==-若1,2a b =则x= ,y= . 4.已知AB (1)i x j +-=(2-x),且AB 的坐标所表示的点在第四象限,则x 的取值范围是 .5.已知A(5,-2),B(2,-5),C(7,4),D(4,1),求证:AB=CD .6.已知(1,2),(3,1),(11,7),a b c =-=-=-并且.c xa yb =+求x,y 的值.7.已知22(,2),(5,)a mn b mn =+=,且.a b =求,.m n 的值.六.教学设计说明及反思在本节课的设计上,我是先用一个实际的情境问题引入,引起学生学习的兴趣,同时也在最后通过应用向量坐标这个工具对于这个问题的简便解决以及对于这一问题的进一步深化,使学生体会到引入向量坐标形式这个工具的必要性,并培养学生数学的应用意识,体会到数学是有用的,是有价值的;另外,在新授课内容的设计上,主要采用了以知识内容本身的逻辑关系而形成的继承关系为顺序的直线型的设计,主要有四个板块:一是向量的正交分解,二是向量的坐标表示,三是向量的坐标运算,四是应用与深化.其中向量的正交分解是从介绍基本单位向量与位置向量的概念入手,然后通过先处理位置向量的正交分解,再处理任意向量的正交分解;向量的坐标表示也是先处理位置向量的坐标表示然后再处理可化为位置向量的向量的坐标表示,最后在研究了坐标形式的运算之后才以例题的形式处理任意向量的坐标表示,这样设计的思路与课本上先交代任意向量都可以作一个与之相等的位置向量,然后只要研究位置向量就能得到原来向量的性质的思路略有不同,这样设计的出发点主要是希望能够给学生的学习创造一个按知识自身的逻辑顺序而层层递进的、螺旋上升的学习过程,使学生能够步步为营的在充分弄清前一个问题的基础上进入下一个问题,从而达到有效分散学生在学习中的难点的目的.在应用与深化这一板块上,我主要设计了五个问题,第一个问题是例1,置于向量的坐标表示这一板块之中,其目的是为了在初次接触坐标表示时,加深对位置向量与可化为位置向量的坐标的理解,以及舒缓一下学生在较长时间的数学纯理论学习中所聚集的紧张或疲劳情绪,为下面的学习作点准备;第二个问题是例2,解决任意向量的坐标表示问题,这也是这一节课必须要解决的一个重点问题;第三个问题是例3,其目的是通过对任意向量的坐标表示公式的应用,强化对这一公式的记忆与掌握,同是也为下一问题即引入问题的解决作知识与方法上的铺垫;第四个问题是解决引入的情境问题并作进一步深化;第五个问题是对向量坐标表示运算公式的应用.同时,最后又设置了三个小题,作为课内练习,机动使用.整个一节课,如果用一句话概括基本的设计思路,那就是:低起点(使学生容易入手)、小步走(使学生容易理解)、重视过程(重视知识的发生过程及重视学生的学习过程)、强化训练(训练是掌握与提高的有效途径).。
2e111222()()e e λλλλ-⋅+-⋅22λ=.【典型例题分析】、已知平行四边形,、是对角线、上的两点,且边形由平面向量的基本定理可知向量及要证明四边形是平行四边形证明用相同的基底表示出来的向量及.所以四边形用这一基底向量表示出来,若不能,请说明理由。
解析:,a b不共线,顾一定能以(1)有一两岸平行的河流,水速为1,小船的速度为,为使所走路程最短,小船应朝3(3,,),;若存在不同时为零的实数b=⋅32∞-,递减区间(-,1)(-,1)、已知:|a| =2,|b| = 3与b夹角为45︒,求使a+与λa+b夹角为锐角的λ的取值范围。
=+AD AB AF22⋅=⋅AC AD AD AB⋅=⋅AD AF EF AD AF EF)(__-BM).一、选择题充要条件 D.既不充分也不必要条件n m =,则(,)b a -或 B. (,)a b - C. (,a b -63,9a b b ===-,则B . 150︒ .在平行四边形ABCD 中,若AD AB AD =,则必有0AD = C . ABCD 是矩形.已知(1,),),,22a c a kb d a =-=+=- B. 2 C.2 D.-12a 2b baa=;()b a b =;(4)(a b b +,其中正 ( )个 D. 4个1322a b + B . 1322a b - C. 3122a b - D.8,AB AC ==BC 的取值范围是2,3a b b ===-,则b 等于A. 23 B. 35 C . 23 D. )(1,),(5,8)3-- C. (,),(23-43.若三点(1,1),(2,4),(,9)P A B x --共线,则x = (知,AD BE 分的中线,a AB BC CD ++=_____________AB AD DC --=______________()(AB CD AC BD ---.已知向量(,12),OA k OB ==分别是ABC ∆的边,,BC CA AB 的中点,且.若向量3-与72a ba b-垂直,则非零向量a与ba b+与5b-垂直,4++的值等于AB BC BC CA CA AB如果a与b的夹角是钝角,则的取值范围是________________3(3,,),;若存在不同时为零的实数23. -25 24x>或3-θn+=θ(cosθsin)cos,2+sinθ。
8.3平面向量的分解定理一、教学内容分析本节课内容是对前面向量知识的综合运用,在本章知识结构中起着承上启下的作用,是平面向量线性运算向坐标运算过渡的桥梁,是运用向量知识解决问题的理论基础.二、教学目标1.理解和掌握平面向量的分解定理;2.掌握平面内任一向量都可以用两个不平行向量来表示;3.掌握基的概念,并能够用基表示平面内的向量;4.经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、交流合作能力.三、教学重点及难点平面向量分解定理的发现和形成过程.四、教学用具准备电脑,幻灯机,实验用的图片等等.五、教学流程设计设置情景,引入课堂1.数学实验12.数学实验23.探究结果4.证明唯一性5.归纳概括,得出结论六、教学过程设计(一)、 设置情景,引入课题 1.观察前面我们学过向量的加法,知道两个向量可以合成一个向量,反过来,一个向量是否可以分解成两个向量呢?下面让我们来看一个实例:实例:一盏电灯,可以由电线CO 吊在天花板上,也可以由电线OA 和绳BO 拉住.CO 所受的力F 与电灯重力平衡,拉力F 可以分解为AO 与BO 所受的拉力F 1和 F 2 .2.思考:从这个实例我们看到了什么?答:一个向量可以分成两个不同方向的向量.3. 概括讨论,提出新问题:如果21,e e 是平面内的两个不平行的向量,a 是该平面内的任意一个非零向量,那么与21,e e 之间有什么关系呢? (二)、探索探究,主动建构 1、 数学实验1 实验设计:(1)实验目的:通过实验让学生探究:给定平面内的两个不平行向量21,e e ,对于给定的非零向量是否能分解成21,e e 方向上的两个向量,且分解是否是唯一的? (2)实验步骤:a.以四位同学为一组,给每一位同学一个图,上面有两个不平行向量21,e e 和;b.每个同学先独立作图;c.小组对照,比较所分解的两向量的长度和方向是否相同.并得出结论. (3)实验报告:(由小组长发言)可以分解,且分解的长度和方向唯一的.师:既然可以分解并且是唯一的,能不能用数学式子把a 和21,e e 的关系表示出来?生:21,e e 是不平行向量,a 是平面内给定的向量 (1) 作111,e OM e OA λ==, (2) 作222,e ON e OB λ==, (3) 作c OC =,(4)作平行四边形ONCM ,则2211e e λλ+=+==.对于给定的向量可以唯一分解成给定的两个不平行向量,那么对于任意的向量a 是否也可以得到同样的结论呢?下面让我们来做一个实验. 2、数学实验2 实验设计:(1)实验目的:通过几何画板向量分解动画,让学生体会对于任意向量都可以分解成给定的两个不平行向量,且分解是唯一的. (2)实验步骤:a.利用几何画板画出两个不平行向量21,e e ,画出一个任意向量(该向量可以任意拖动终点来改变);b.学生自己拖动从中体会其向量的任意性. (3)实验报告:(让学生来概括整实验的过程.) 3、探究结果(实验报告)平面内的任一非零向量a 都可以表示为给定的两个不平行向量21,e e 的线性组合,即2211e e λλ+=,且分解是唯一的.4、证明唯一性:证明:(1)当0=a 时,21000e e ⋅+⋅=(2)当0≠a 时,假设2211e e a⋅'+⋅'=λλ,则有0)()(2211=⋅'-+⋅'-e e λλλλ.由于21,e e 不平行,故0)(,0)(21='-='-λλλλ,即'='=21,λλλλ.5、概括得出定理:平面向量分解定理:如果21,e e 是平面内的两个不平行向量,那么对于这一平面内的任意向量a ,有且只有一对实数21,λλ,使2211e e λλ+=,我们把不平行的向量21,e e叫做这一平面内所有向量的一组基. (三).例题分析例1:自定义两个不共线向量21,e e ,求作向量 2123e e +-.(图见课件ppt) 解:1.取点O ,作212,3e OB e OA =-=; 2.作平行四边形OACB ,OC 即为所求例2.如图:平行四边形ABCD 的两条对角线相交于点M ,且b AD a AB ==, ,分别用b a ,表示MC MB MA ,,和MD .(图见课件ppt) 解: 在平行四边形ABCD 中,,b a AD AB AC +=+= ,b a AD AB DB -=-=,2121)(2121b a b a AC MA --=+-=-=∴,2121)(2121b a b a DB MB -=-==∴ )(2121+==,212121+-=-=-= 思考题:例 3.如图,已知OB OA ,是不平行的两个向量,k 是实数,且)(R k AB k AP ∈=,用OB OA ,表示OP .(图见课件ppt)解:,AB k AP =.)1()(OB k OA k OA k OB k OA OA OB k OA AB k OA AP OA OP +-=-+=-+=+=+=∴(四)、课堂小结 (五)、作业布置1、组织学生完成教材后面练习,由学生自评或互评。
高二数学向量的应用教案设计简介这是一节关于高二数学向量的应用教学课程,主要包括向量的概念、向量的加减、数量积及其应用,以及叉积及其应用。
通过本课程的学习,学生应该能够熟练掌握向量及其应用问题的解法,提高数学思维和创造力,增强学生对向量的理解和兴趣。
教学目标1.理解向量的基本概念,知道向量加减的基本操作;2.掌握向量的数量积及其应用,能够灵活运用数量积求解问题;3.理解向量的叉积及其应用,了解叉积在几何和物理学中的应用。
教学重点和难点教学重点1.向量的基本概念;2.向量的数量积及其应用;3.向量的叉积及其应用。
教学难点1.向量运算的应用;2.叉积在几何和物理学中的应用。
教学过程1. 向量的基本概念1.向量的定义及其表示法;2.向量的长度及其坐标表示法;3.向量的方向及其单位向量表示法。
2. 向量的加减1.向量的加法及其几何意义;2.向量的减法及其几何意义;3.向量的线性运算及其几何意义。
3. 向量的数量积及其应用1.数量积的定义及其坐标表示法;2.数量积的性质和计算方法;3.应用:向量的正交、平行、夹角及其相关问题。
4. 向量的叉积及其应用1.叉积的定义及其坐标表示法;2.叉积的性质和计算方法;3.应用:向量的垂直、面积及其相关问题。
教学反思通过本次教学,我发现学生在学习向量的概念和基本运算时掌握较好,但在应用问题上还存在一定的困难。
在教学过程中,我注重了解学生掌握情况,及时进行疑难解答,并利用多种教学方法激发学生的兴趣,帮助学生提高应用水平。
在下一次教学中,我将更加注重应用问题的训练,增加应用练习题的数量,加强学生对数学概念的理解和思考能力。
同时,在教学过程中,我将会积极参考学生的建议和反馈,不断改进教学方法,提高教学效果。
8.4(2)向量的应用(2)
一、教学内容分析
向量作为工具在数学、物理以及实际生活中都有着广泛的应用.
本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.
二、教学目标设计
1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.
2、了解构造法在解题中的运用.
三、教学重点及难点
重点:平面向量知识在各个领域中应用.
难点:向量的构造.
四、教学流程设计
五、教学过程设计
一、复习与回顾
1、提问:下列哪些量是向量?
(1)力 (2)功 (3)位移 (4)力矩
2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[说明]复习数量积的有关知识.
二、学习新课
例1(书中例5)
向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看
例2(书中例3)
证法(一)原不等式等价于)1(2212122212121x y y x y y x x +≤,由基本不等式知(1)式成立,故原不等式成立.
证法(二)向量法
[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现→→→→≤⋅b a b a (等号成立的充要条件是b a //)
例3(书中例4)
[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.
二、巩固练习
1、如图,某人在静水中游泳,速度为34 km/h.
(1)如果他径直游向河对岸,水的流速为4 km/h ,他实际沿什么方向前进?速度大小为多少?
答案:沿北偏东︒30方向前进,实际速度大小是8 km/h .
(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少? 答案:朝北偏西3
3arcsin 方向前进,实际速度大小为24km/h .
三、课堂小结
1、向量在物理、数学中有着广泛的应用.
2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.
四、作业布置
1、书面作业:课本P73, 练习8.4 4
2、(补充)
(1)已知作用于同一物体的两个力→1F 、→2F ,|→1F |=5N ,|→2F |=3N ,→1F 、→2F 所成的角为︒60,则|→1F +→2F |= 7 ; →1F +→2F 与→1F 的夹角为
1413arccos . [说明]力的分解与合成是向量在物理中运用的典型例子之一.
(2)上网查阅柯西——许瓦兹不等式有关知识并整理一些证法.
[说明]①柯西——许瓦兹不等式是一个著名不等式,教学时应加以渗透数学史的教学,并且通过对不同证明方法的整理可以感受数学知识的有机联系以及解决问题的多样性. ②以小组形式,时间为一星期为宜.。