5.2认识函数 新浙教版 八上数学
- 格式:ppt
- 大小:2.59 MB
- 文档页数:24
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
浙教版数学八年级上册5.2《认识函数》教案(2)一. 教材分析《认识函数》是浙教版数学八年级上册第五章第二节的内容,本节课主要让学生通过具体例子了解函数的概念,理解函数的性质,能够找出实际问题中的函数关系。
通过本节课的学习,为学生后面学习一次函数、二次函数等更复杂的函数打下基础。
二. 学情分析学生在七年级时已经接触过一些函数的知识,如正比例函数和反比例函数,他们对函数的概念和性质有一定的了解。
但学生对函数的定义和判断函数的能力还不够熟练,需要通过本节课的学习进一步巩固和提高。
三. 教学目标1.了解函数的概念,理解函数的性质。
2.能够找出实际问题中的函数关系。
3.提高学生判断函数的能力。
四. 教学重难点1.函数的概念和性质。
2.找出实际问题中的函数关系。
3.判断函数的能力。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,培养学生的逻辑思维能力和解决问题的能力。
通过案例教学,让学生直观地理解函数的概念和性质。
通过小组合作学习,让学生互相交流、讨论,提高学生的合作能力和表达能力。
六. 教学准备1.准备相关的案例和问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备学生的学习资料,如教材、练习题等。
七. 教学过程1.导入(5分钟)通过一个实际问题引出函数的概念,如“某班有30名学生,男女生人数之比为2:3,求该班男生和女生的人数。
”让学生思考和讨论,引导学生认识到函数是描述变量之间关系的一种数学模型。
2.呈现(10分钟)呈现教材中关于函数的定义和性质,让学生阅读和理解。
同时,通过多媒体展示一些实际的函数图象,如正比例函数、反比例函数等,让学生直观地感受函数的特点。
3.操练(10分钟)让学生通过教材中的例题和练习题,自己动手计算和画图,巩固对函数概念和性质的理解。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)通过一些判断题和填空题,让学生巩固对函数概念和性质的理解。
浙教版数学八年级上册5.2《认识函数》教案(1)一. 教材分析《认识函数》是浙教版数学八年级上册第五章第二节的内容。
本节课主要让学生初步认识函数的概念,了解函数的性质,以及会运用函数解决一些实际问题。
教材通过引入实际例子,引导学生探究函数的定义,进而总结出函数的性质。
本节课的内容是学生进一步学习函数的重要基础,对于培养学生的数学思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了代数基础知识,对变量、常量、有理表达式等概念有一定的了解。
但函数的概念对学生来说比较抽象,不易理解。
因此,在教学过程中,需要结合学生的实际情况,从他们熟悉的生活实例出发,引导学生逐步理解函数的概念和性质。
三. 教学目标1.理解函数的概念,掌握函数的性质。
2.能够运用函数解决一些实际问题。
3.培养学生的数学思维和解决问题的能力。
四. 教学重难点1.函数的概念和性质。
2.运用函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过生活实例引导学生提出问题,探究函数的定义和性质,并在解决问题的过程中,培养学生的数学思维和团队合作能力。
六. 教学准备1.准备相关的生活实例和案例。
2.设计好问题引导和小组合作学习的内容。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个生活实例引入本节课的主题,如“汽车的油量与行驶路程之间的关系”。
引导学生观察这个实例,并提出问题:“油量与路程之间是否存在某种关系?”2.呈现(10分钟)呈现教材中关于函数的定义和性质的内容。
通过讲解和举例,让学生理解函数的概念,并掌握函数的性质。
同时,引导学生总结函数的三个要素:自变量、因变量和对应关系。
3.操练(10分钟)让学生分组讨论,选取一个案例,如“某商品的销售额与销售价格之间的关系”,运用函数的知识进行分析。
每组给出自己的结论,并选代表进行汇报。
4.巩固(5分钟)针对学生汇报的内容,进行点评和讲解。
认识函数教学三维目标:知识目标:了解函数、自变量、函数值的概念及函数的三种常用表示法,会在简单情况下,根据函数的不同表达方式求函数的值。
能力目标:初步认识函数的概念,理解函数值的实际意义。
情感目标:通过用函数来表示一些实际问题,说明生活离不开数学,数学的发展来源于社会的发展。
教学重难点:教学重点:函数的概念、表示法等,是今后进一步学习其他函数,以及运用函数模型解决实际问题的基础,因此函数的有关概念是本节的重点。
教学难点:函数概念的引入有些抽象。
自变量取值范围在实际问题中的意义。
用图像法来表示函数关系涉及到“数形结合”思想方法,学生理解它需要一个较长且具体的过程,是本节教学的难点。
教学过程:一、创设情境、引入新课1、让我们先玩一个游戏:把明码译成密码第一关:第一重地进门的明码是“OWDUGEW”,你能否根据破译规则表(一)写出这个明码的密码?若能,密码是(welcome);若不能,说明理由。
第二关:第二重地进门的明码是“HDSOKS”,你能否根据破译规则表(二)写出这个明码的密码?若能,密码是(please );若不能,说明理由。
第三关:第三重地进门的明码是“KFMOYZ”,你能否根据破译规则表(三)写出这个明码的密码?若能,密码是;(密码不一样?出不来?)若不能,说明理由。
(留一定的时间让学生思考、讨论,在学生感到困惑的过程中积蓄了强烈的求知欲望。
)到底此破译规则表(三)与上面破译规则表(一)(二)的区别在哪里?比较这三张破译规则表,发现:破译规则表(一)(二)是一个明码对应一个密码;而破译规则表(三)是一个明码不对应一个密码,如明码中的J可以对应两个密码a、r。
今天,我们就研究一个明码对应一个密码。
【意图】:通过本环节,让学生在有趣的游戏中体验数学的魅力,提高学习数学的兴趣与信心。
在观察、实验、自主探索、小组活动、集体交流的过程中体验多样的数学学习方式。
对学生思维能力的发展,数学思想的领悟具有重要作用。
浙教版数学八年级上册5.2《认识函数》教学设计(1)一. 教材分析《浙教版数学八年级上册5.2认识函数》这一节的内容是在学生已经掌握了函数的概念、自变量、因变量等基本知识的基础上进行进一步学习的。
本节内容主要让学生了解函数的表示方法,包括解析法、表格法和图象法,同时让学生通过实例了解函数的实际应用,培养学生的数学应用能力。
二. 学情分析学生在学习本节内容时,已经具备了一定的函数知识基础,能够理解函数的基本概念。
但是,对于函数的表示方法,特别是表格法和图象法,学生可能还不够熟悉。
因此,在教学过程中,需要引导学生通过实际例子来理解这些方法,并能够灵活运用。
三. 教学目标1.让学生了解函数的表示方法,包括解析法、表格法和图象法。
2.培养学生通过实例分析,理解函数的实际应用。
3.培养学生的数学观察能力、思考能力和动手能力。
四. 教学重难点1.重点:函数的表示方法。
2.难点:理解函数的实际应用,以及如何选择合适的表示方法。
五. 教学方法采用讲授法、引导法、实践法、讨论法等相结合的方法,通过实例分析和实际操作,引导学生主动探索,培养学生的数学思维能力。
六. 教学准备1.准备相关的教学PPT,包括函数的定义、表示方法等内容。
2.准备一些实际的例子,用于引导学生理解和应用函数的知识。
3.准备一些练习题,用于巩固所学内容。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,例如:“某商店进行打折活动,原价100元的商品打8折后出售,求打折后的价格。
”让学生思考如何用数学方法来表示这个问题。
2.呈现(10分钟)讲解函数的表示方法,包括解析法、表格法和图象法。
通过具体的例子,让学生理解这些方法的含义和应用。
3.操练(10分钟)让学生分组讨论,每组选择一个实际的例子,用所学的表示方法来表示函数。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些练习题,巩固所学的内容。
教师选取部分学生的作业进行讲解和分析。
《函数》教学目标1、初步掌握函数概念,能判断两个变量间的关系是否可以看成函数.2、根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值.3、了解函数的三种表示方法.4、通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力.教学重点变量与常量.教学难点对函数概念的理解.教学过程一、引入新课展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,提请学生思考问题.承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性.生活中的实例,更能激发了学生的研究热情,起到很好的导入效果.二、探究新知问题1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放.随着层数的增加,物体的总数是如何变化的?填写下表:问题3.一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是多少?(2)给定一个大于-273℃的t值,你能求出相应的T值吗?通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点.想一想:上述问题中,自变量能取哪些值?三、拓展练习书p145课内练习.(题目略)四、课堂小结1、初步掌握了函数的概念,并能判断两个变量之间的关系是否是函数的关系.2、在一个函数关系式中,能否识别自变量与因变量,并能由给定的自变量的值,相应的求出函数的值.3、了解函数的三种表示法.。
《函数》教学目标1、初步掌握函数概念,能判断两个变量间的关系是否可以看成函数.2、根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值.3、了解函数的三种表示方法.4、通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力.教学重点变量与常量.教学难点对函数概念的理解.教学过程一、引入新课展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,提请学生思考问题.承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性.生活中的实例,更能激发了学生的研究热情,起到很好的导入效果.二、探究新知问题1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放.随着层数的增加,物体的总数是如何变化的?填写下表:问题3.一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是多少?(2)给定一个大于-273℃的t值,你能求出相应的T值吗?通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点.想一想:上述问题中,自变量能取哪些值?三、拓展练习书p145课内练习.(题目略)四、课堂小结1、初步掌握了函数的概念,并能判断两个变量之间的关系是否是函数的关系.2、在一个函数关系式中,能否识别自变量与因变量,并能由给定的自变量的值,相应的求出函数的值.3、了解函数的三种表示法.。