(新人教A版选修2-1)数学:1.1《命题及其关系》
- 格式:ppt
- 大小:185.00 KB
- 文档页数:16
专题:命题及其关系与充分、必要条件※知识要点1.命题(1)概念:用语言、符号或式子表达的,可以叫做命题,其中判断为真的语句叫做,判断为假的语句叫做.(2)一般形式:若/如果,则/那么.2.四种命题及其关系(1)四种命题若用p和q分别表示原命题的条件和结论,四种命题的形式是:①原命题:若则或;①逆命题:若则或;①否命题:若则或;①逆否命题:若则或.注意:命题p的否定是指,记作;(2)四种命题间的关系:(3)四种命题的真假性关系①两个命题互为逆否命题,它们的真假性;①两个命题为逆命题或否命题,它们的真假性.3.充分条件与必要条件(1)若p①q,则p是q的条件,q是p的条件;(2)若p①q,则p是q的条件,q是p的条件;(3)若p①q,q /p,则p是q的条件,同时,q是p的条件;(4)若p q,q /p,则p是q的条件,同时,q是p的条件;注意:充分条件与必要条件的具备以下两个特征:①对称性:若“p⇒q”,则“”;②传递性:若“p⇒q且q⇒r”,则p与r的关系是.※题型讲练【例1】判断下列命题的正误:(1)“x2+2x-3<0”是命题()(2)“sin 45°=1”是真命题()(3)命题“若p,则q”的否命题是“若p,则非q”()(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真()变式训练1:1.按要求写出下列命题的相关命题并判断其真假:(1)命题“若α=π3,则cos α=12”的逆命题;(2)命题“若x=4,则x2+3x-4≥0”的否命题;(3)命题“若m>0,则方程x2+x-m=0有实根”的逆否命题;(4)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题;【例2】在下列各题中,p是q的什么条件?(1)p:x2=3x+4,q:x=3x+4;(2)p:x-3=0,q:(x-3)(x-4)=0;(3)p:b2-4ac≥0(a≠0),q:ax2+bx+c=0(a≠0)有实根.变式训练2:1.给下列命题选择合适的条件:A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD 为菱形”是“AC①BD”的;(2)若命题p:φ=π2+kπ,k①Z,命题q:f(x)=sin(ωx+φ)(ω≠0)是偶函数,则p是q的;(3)已知命题p:m<-2,命题q:方程x2-x-m=0无实根,则命题p是q的;(4)给定两个命题p,q.若¬p是q的必要而不充分条件,则命题p是¬q的.2.已知p是r的充分而不必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件,现有下列命题:①s是q的充要条件;①p是q的充分条件而不是必要条件;①r是q的必要条件而不是充分条件;①¬p 是¬s 的必要条件而不是充分条件; ①r 是s 的充分条件而不是必要条件. 则正确命题的序号是 .【例3】设x ,y ①R ,求证:|x +y |=|x |+|y |的充要条件是xy ≥0.变式训练3:1.已知数列{a n }的前n 项和S n =p n +q (p ≠0,且p ≠1), 求证:数列{a n }为等比数列的充要条件为q =-1.【例4】已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m },根据下列条件,分别求实数m 的取值范围: (1)若x ①P 是x ①S 的必要条件;(2)若¬P 是¬S 的必要不充分条件. 变式训练4:1.函数f (x )=⎩⎨⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C .12<a <1 D .a ≤0或a >12.若命题“x <m -1或x >m +1”是命题“x 2-2x -3>0”的必要不充分条件,则实数m 的取值范围是________.3.设p :|4x -3|≤1;q :x 2-(2a +1)x +a (a +1)≤0,若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是________. ※课后练习1.命题“若x 2>y 2,则x >y ”的逆否命题是( ) A .“若x <y ,则x 2<y 2” B .“若x >y ,则x 2>y 2” C .“若x ≤y ,则x 2≤y 2” D .“若x ≥y ,则x 2≥y 2” 2.已知向量a =(m 2,-9),b =(1,-1),则命题“m =-3”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.给定两个命题p 、q ,若¬p 是q 的必要不充分条件,则p 是¬q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 4.已知条件p :-2<x <4,条件q :(x +2)(x +a )<0;若q 是p的必要而不充分条件,则a 的取值范围是( )A .(4,+∞)B .(-∞,-4)C .(-∞,-4]D .[4,+∞) 5.命题“任意x ①[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≥4B .a ≤4C .a ≥5D .a ≤56.命题“如果x 、y ∈R ,且x 2+y 2=0,则x 、y 全为0”的否命题是 . 7.给下列命题选择合适的条件:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 (1)“a =2”是“{1,2}⊆{1,a ,b }”的 ;(2)“m <14”是“方程x 2+x +m =0有实数解”的_______;(3)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的_______; (4)“a =1”是“直线x -2ay =1和ax -2y =1平行”的_____; 8.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是 ____ .9.已知集合A ={x |12<2x <8,x ∈R},B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是____________.10.设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.11.设p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且¬p 是¬q 的必要不充分条件,求a 的取值范围.。
数学·选修2-1(人教A版)
常用逻辑用语
本章知识概述
课程导航
正确地使用逻辑用语是现代社会公民应该具备的基本素质.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想.在本章中,同学们在义务教育阶段的基础上,将学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流.
学习内容
1.命题及其关系.
(1)了解命题的逆命题、否命题与逆否命题.
(2)理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系.
2.简单的逻辑联结词.
通过数学实例,了解逻辑联结词“或”“且”“非”的含义.
3.全称量词与存在量词.
(1)通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.
(2)能正确地对含有一个量词的命题进行否定.
在本章学习中,应特别注意以下几个问题:
(1)命题是指明确地给出条件和结论的语句,对“命题的逆命题、否命题与逆否命题”只要求做一般性了解,重点关注四种命题的相互关系和命题的必要条件、充分条件、充要条件.
(2)对逻辑联结词“或”“且”“非”的含义,只要求通过数学实例加以了解,能正确地表述相关的数学内容.
(3)对于量词,重在理解它们的含义,不要追求它们的形式化定义.
(4)在使用常用逻辑用语的过程中,掌握常用逻辑用语的用法,纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简洁性.避免对逻辑用语的机械记忆和抽象解释.
网络构建。
选修2-1 第一章 常用逻辑用语§1.1 命题及其关系、命题及其真假、四种命题的关系班级 姓名一、目标导引1.了解命题的概念和分类,能判断命题的真假;2.了解命题的构成形式,能将命题改写为“若p ,则q ”的形式;3.会写出所给命题的逆命题、否命题和逆否命题以及真假性之间的联系; 4.会利用命题的等价性解决问题.二、教学过程 (一)命题1.用 表达的,可以判断真假的 叫做命题.判断为真的语句叫做 命题.判断为假的语句叫做 命题.2.命题定义的 , ,判断的结果可真可假,但真假必居其一。
判断一个语句是不是命题,关键看这语句是否符合“ ”和“ ”这两个条件.3.有些语句中 ,这样的语句叫开语句,不构成是命题. 例1:判断下面的语句是否为命题?若是命题,指出它的真假.(1)空集是任何集合的子集 ( ) (2)若整数a 是素数,则a 是奇数( )(3)指数函数是增函数吗? ( )(4)2(2)2-=- ( ) (5)x +3>15 ( ) (6)求证3是无理数( ) (7)并非所有的人都喜欢苹果( )(二) “若p ,则q ”形式的命题1.在“若p ,则q”这种形式的命题中,p 叫做命题的条件,q 叫做命题的结论.2.“若p ,则q”中的p 和q 可以是命题也可以不是命题.3.“若p ,则q”形式的命题的优点是条件与结论容易辨别,缺点是太格式化且不灵活. 4.“若p ,则q”形式的命题是命题的一种形式而不是唯一的形式. 命题也可写成“如果p ,那么q”,“只要p ,就有q”等形式.5.“若p 则q”形式的命题的书写:对于一些条件与结论不明显的命题,一般采取先添补一些命题中省略的词句,确定条件与结论.如命题:“垂直于同一条直线的两个平面平行” .写成“若p ,则q”的形式为:“若两个平面垂直于同一条直线,则这两个平面平行.”例2:把下列命题改写成“若p ,则q ”的形式,并判定命题的真假. (1)对顶角相等.(2)偶函数的图像关于y 轴对称.(3)垂直于同一条直线的两条直线平行. (4)垂直于同一个平面的两个平面互相平行.(三)四种命题1.互逆命题:如果第一个命题的 是第二个命题的 ,且第一个命题的 是第二个命题的 ,那么这两个命题叫 .如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.2.互否命题:如果第一个命题的 是第二个命题的 ,那么这两个命题叫做互否命题。
人教版高中数学选修2-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;. 否命题:“若非 p ,则非 q ”,或“若 ⌝p ,则 ⌝q ”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非 q ,则非 p ”,或“若 ⌝q ,则 ⌝p ”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若 p ,则 q ”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原 命题若p 则q互互 互 逆为 逆否逆命题 若q 则p互 否否 命 题互为逆否否逆 否命 题若⌝p 则⌝q四种命题之间的真值关系互 逆若⌝q 则⌝p原命题真真 假假逆命题真假 真假否命题真假 真假逆否命题真真 假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.【典型例题】类型一:命题的概念例 1.判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题(1)末位是 0 的整数能被 5 整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行,则斜率相等;(△4)ABC中,若∠A=∠B,则sinA=sinB;(5)余弦函数是周期函数吗?【思路点拨】依据命题的定义判断。
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
第一章常用规律用语1.1 命题及其关系1.1.1 命题A级基础巩固一、选择题1.下列语句是命题的是( )①三角形的内角和等于180°;②2>3;③偶数是自然数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤解析:①②③是命题,④中x>2无法推断真假,⑤是感叹句,所以④⑤不是命题.答案:A2.下列命题中,是真命题的是( )A.a>b,c>d⇒ac>bdB.a<b⇒a2<b2C.1a<1b⇒a>bD.a>b,c<d⇒a-c>b-d解析:可以通过举反例的方法说明A,B,C为假命题.答案:D3.下列命题中真命题的个数为( )①若x2=1,则x=1;②若x=y,则x=y;③若a>b,则a+c>b+c;④梯形的对角线肯定不垂直.A.1 B.2 C.3 D.4解析:只有③正确.答案:A4.给出下列命题:①四个非零实数a,b,c,d满足ad=bc,则a,b,c,d成等比数列;②若整数a能被2整除,则a是偶数;③在△ABC中,若A>30°,则sin A>12.其中为假命题的序号是( )A.② B.①② C.②③ D.①③解析:①中,若a=-1,b=52,c=2,d=-5满足ad=bc,但a,b,c,d不成等比数列,故是假命题;③中,若150°<A<180°,则sin A<12,故是假命题.答案:D5.下列命题中,是真命题的是( )A.若a3+b3=0,则a2+b2=0B.若a>b,则ac>bcC.若M∩N=M,则N⊆MD.若M⊆N,则M∩N=M解析:A.取a=1,b=-1,推不出a2+b2=0,A不成立;B.c≤0时,不成立;C.M∩N=M⇒M⊆N,C不成立;D成立.答案:D二、填空题6.命题“末位数字是4的整数肯定能被2整除”,写成“若p,则q”的形式为________.解析:条件是整数的末位数字是4,结论是它肯定能被2整除.答案:若一个整数的末位数字是4,则它肯定能被2整除7.已知下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线相互垂直.其中假命题的个数是________.解析:①②③④全为假命题.答案:48.给出下列三个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同始终线的两条直线相互平行.其中,是真命题的是________(填序号).答案:②三、解答题9.推断下列命题的真假.(1)二次函数y=ax2+bx+c (a≠0)有最大值;(2)正项等差数列的公差大于零;(3)函数y=1x的图象关于原点对称.解:(1)假命题.当a>0时,抛物线开口向上,有最小值.(2)假命题.反例:若此数列为递减数列,如数列20,17,14,11,8,5,2,它的公差是-3.(3)真命题.y=1x是奇函数,所以其图象关于(0,0)对称.10.把下列命题改写成“若p,则q”的形式,并推断真假,且指出p和q分别指什么.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同始终线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”,它是真命题.p:两个实数乘积为1;q:两个实数互为倒数.(2)“若一个函数为奇函数,则它的图象关于原点对称”.它是真命题.p:一个函数为奇函数;q:函数的图象关于原点对称.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.p:两个平面与同一条直线平行;q:两个平面平行.B级力量提升1.已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是( )A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a、b相交,则α、β相交D.若α、β相交,则a、b相交解析:易知选项A、B、C都正确,对于D,α、β相交时,a、b肯定不平行,但不肯定相交,有可能异面,故D为假命题.答案:D2.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中真命题的序号是________.解析:易知①②④正确,对于③,对角线相等且平分时的四边形是矩形,只满足相等不是矩形.故③错误.答案:①②④3.推断“函数f(x)=2x-x2有三个零点”是否为命题.若是命题,是真命题还是假命题?说明理由.解:这是一个可以推断真假的陈述句,所以是命题,且是真命题.函数f(x)=2x-x2的零点即方程2x-x2=0的实数根,也就是方程2x=x2的实数根,即函数y=2x,y =x2的图象的交点的横坐标,易知指数函数y=2x的图象与抛物线y=x2有三个交点,所以函数f(x)=2x-x2有三个零点.。
第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________.9.下列语句是命题的是________.①求证3是无理数;②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x ∈R ,则x 2+4x +7>0.三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ;(2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根;(4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1; ③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析第一章 常用逻辑用语§1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假2.条件 结论作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.8.若一个函数是奇函数 这个函数的图象关于原点对称9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根.(4)假命题.因为不共线的三点确定一个圆. 11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题. 12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1;若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2. 故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1,∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.] 14.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
【新人教A版】高中数学选修2-1教案第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。
教学设想:通过学生的参与,激发学生学习数学的兴趣。
(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
逆否命题原命题为:若a,则b。
逆否命题为:若非b,则非a如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。
命题的否定只否结论。
一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。
原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.名称定义命题:可以判断真假的语句叫做命题。
原命题为:若a,则b逆命题为:若b,则a否命题为:若非a,则非b逆否命题为:若非b,则非a互为逆否命题:如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。
命题的否定只否结论。
性质一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。
原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.逻辑学认为命题与逆否命题是等价的,也就是命题真,则逆否命题也真。
命题同它的逆否命题等价是作为公理存在的,你既不能证明它正确也不能证明它错误。
其实这个东西可以认为是公理。
它和公理“排中律”是等价的。
我们数学的体系就是建立在这些公理之上。
2逆否命题的滥用现实生活中存在许多对逆否逻辑的滥用,使用时须注意以下几点:1、逆否命题、逆命题、否命题概念适用的前提是原命题为复合命题,而非简单命题。
复合命题是由简单命题通过逻辑连接词互相连接而组成的。
简单命题难以区分前提和结论,其真假只能通过生活经验和客观事实加以判断。
例如:“我爱你”。
这个句子不能算作命题。
因为是否“爱”的真假没有一个明确的判断标准。
如果“我爱你”是命题,那么它是一个简单命题。
我们可以把它等价转换为“若p,则q”的形式。
再谈论其逆否命题。
(”我爱你“不具有排他性)等价转换为:若我存在,则至少存在一个爱你的人(或”若我存在,则存在我爱你“)。
逆否命题为:若不存在一个爱你的人,则我不存在(如果所有人都不爱你了,那么我也不存在了)。