【解析】A:∃x0∈{无理数},x02∈Q. B:∃x0∈{无理数}, x02∉Q. C:∀x∈Z,2x+1是奇数. D:∃x0∈R,2x0+1是奇数.
【方法技巧】判断一个语句是全称命题还是特称命题 的步骤 (1)判断语句是否为命题,若不是命题,就当然不是全称 命题或特称命题. (2)若是命题,再分析命题中所含的量词,含有全称量词 的命题是全称命题,含有存在量词的命题是特称命题.
2.基本不等式的内容和指数函数的定义域是什么?
提示:基本不等式:a,b∈R+时, a b
,指数函数的 ab
定义域为R.
2
【解析】1.选C.对于①,这是全称命题,因为Δ=(-3)24×2×4<0,所以2x2-3x+4>0恒成立,故①为真命题;对于 ②,这是全称命题,因为当x=-1时,2x+1>0不成立,故② 为假命题;对于③,这是特称命题,当x0=0或x0=1时,有 x02≤x0成立,故③为真命题;对于④,这是特称命题,当 x0=1时,x0为29的约数成立,所以④为真命题.
【解析】1.选C.因为“有的”“存在”为存在量 词,“任意”为全称量词,所以选项A,B,D均为特称命题, 选项C为全称命题.
2.(1)可以改写为“所有的凸多边形的外角和等于 360°”,是全称命题. (2)含有存在量词“有些”,故是特称命题. (3)含有全称量词“任意”,故是全称命题. (4)含有存在量词“有一个”,是特称命题. 【延伸探究】把本例1中的各个选项用符号∃,∀表示:
【知识探究】 探究点 全称量词(全称命题)与存在量词(特称命题) 的理解 1.你能说出一些常用的全称量词和存在量词吗? 提示:全称量词:一切、任意、任给、每一个、都是 (有)、全体、全部、…,存在量词:有一个、有一些、 有的、对某个、不都是、个别的、部分、….