高中数学选修2-1课时作业1:1.1.2 四种命题
- 格式:doc
- 大小:72.00 KB
- 文档页数:5
高二数学上:选修2-1答案答案:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。
假。
7.若 $AB \neq B$,则 $AB \neq A$,真;8.3;9.原命题是真命题,则它的逆否命题是真命题。
10.略。
11.原命题真;逆命题:“已知 $\alpha,\beta \in \{x|x\neqk\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则 $\alpha=\beta$”假;否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则 $\tan\alpha\neq\tan\beta$”假;逆否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”真。
改写:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。
这是错误的。
7.若 $AB \neq B$,则 $AB \neq A$,这是正确的;8.3;9.原命题是真命题,则它的逆否命题也是真命题。
10.略。
11.原命题是真命题;逆命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则$\alpha=\beta$”是错误的;否命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则$\tan\alpha\neq\tan\beta$”是错误的;逆否命题:“已知$\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”是正确的。
1.1.2四种命题1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”2.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数3.命题“若x≠1,则x2-1≠0”的逆否命题的真假性为(填“真”或“假”).4.命题“若直线a,b不平行,则直线a,b相交”的逆命题是,这是命题.(填真或假)5.已知命题p:“若ac≥0,则一元二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题.(2)判断命题p的否命题的真假,并证明你的结论.——★参考答案★——1. B[解析]互逆命题的条件与结论的位置是互换的.故选B.2. B[解析]原命题的否命题既否定条件又否定结论.3. 假[解析]逆否命题为“若x2-1=0,则x=1”,显然此命题是假命题.4.若直线a,b相交,则直线a,b不平行真[解析]逆命题只需将原命题中的条件与结论互换即可,即逆命题为“若直线a,b相交,则直线a,b不平行”,此说法显然正确,是真命题.5.解:(1)命题p的否命题为:“若ac<0,则一元二次方程ax2+bx+c=0有实根”.(2)命题p的否命题是真命题.证明如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0,所以一元二次方程ax2+bx+c=0有实根,所以该命题是真命题.。
1.1.2四种命题【课时目标】 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的____________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的命题结构:用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:原命题:若p成立,则q成立.即“若p,则q”.逆命题:________________________.即“若q,则p”.否命题:______________________.即“若綈p,则綈q”.逆否命题:__________________.即“若綈q,则綈p”.一、选择题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1 B.2 C.3 D.42.命题“若A∩B=A,则A⊆B”的逆否命题是()A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠AD.若A⊇B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是()A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是____________________________;逆命题是_______;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出其逆命题、否命题、逆否命题,并判断真假.11.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.12.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【能力提升】13.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数14.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.2四种命题知识梳理1.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定2.若q成立,则p成立若綈p成立,则綈q成立若綈q成立,则綈p成立作业设计1.B[由a>-3⇒a>-6,但由a>-6 a>-3,故真命题为原命题及原命题的逆否命题,故选B.]2.C[先明确命题的条件和结论,然后对命题进行转换.]3.D 4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.若x≤y,则x3≤y3-18.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解逆命题:已知a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题否命题:已知a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.11.解(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.12.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.13.B[命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.] 14.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
人教版数学选修2—1作业本答案与提示第一章常用逻辑用语1.1.命题及其关系1.1.1命题1.1.2 四种命题1.C 2.C 3.D 4.若A不是B的子集,则A∪B≠B5.①6.逆7.(1)若一个数为一个实数的平方,则这个数为非负数.真命题(2)若两个三角形等底等高,则这两个三角形全等.假命题8.原命题:在平面中,若两条直线平行,则这两条直线不相交.逆命题:在平面中,若两条直线不相交,则这两条直线平行.否命题:在平面中,若两条直线不平行,则这两条直线相交.逆否命题:在平面中?若两条直线相交,则这两条直线不平行。
以上均为真命题9.若ab≠0,则a,b都不为零.真命题10.逆否命题:已知函数f(x)在R上为增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b <0,真命题.证明略11.甲1.1.3 四种命题间的相互关系1.C 2.D 3.B 4.0个、2个或4个5.原命题和逆否命题6.若a+b是奇数,则a,b至少有一个是偶数;真7.逆命题:若a^2=b^2,则a=b.假命题.否命题:若a≠b,则a^2≠b^2.假命题.逆否命题:若a^2≠b^2,则a≠b.真命题8.用原命题与逆否命题的等价性来证.假设a,b,c都是奇数,则a^2,b^2,c2也都是奇数,又a^2+b^2=c^2,则两个奇数之和为奇数,这显然不可能,所以假设不成立,即a,b,c不可能都是奇数9.否命题:若a^2+b^2≠0,则a≠0或b≠0.真命题.逆否命题:若a≠0,或b≠0,则a2+b2≠0.真命题10.真┌(4a)2一4(一4a+3)<0,11.三个方程都没有实数根的情况为┤(a-1)2一4a2<0,=>-3/2<a<-l└4a2+8a<0所以实数a的取值范围a≥一l,或a≤-3/21.2 充分条件与必要条件1.2.1 充分条件与必要条件1.A 2.B 3.A 4.(1) ≠> (2) ≠> (3) ≠> (4)≠>5.充分不必要6.必要不充分7.“c≤d”是“e≤f”的充分条件8.充分条件,理由略9.一元二次方程ax^2+2x+l=0 (a≠0)有一个正根和一个负根的充要条件为a<0 10.m≥911.是1.2.2 充要条件1.C 2.B 3.D 4.假;真5.C和D 6.λ+μ=17.略8.a=-39.a≤l10.略11.q=-1,证明略1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.A 2.C 3.C 4.真5.①③6.必要不充分7.(1)p:2<3或q:2=3;真(2)p:1是质数或q:1是合数;假(3)非p,p:0∈φ;真(4)p:菱形对角线互相垂直且q:菱形对角线互相平分;真8,(1)p∧q:5既是奇数又是偶数,假;p∨q:5是奇数或偶数,真;┑p:5不是偶数,真(2)p∧q:4>6且4+6≠10,假;p∨q:4>6或4+6≠10,假;┑p:4≤6,真9.甲的否定形式:x∈A,且x∈B;乙的否命题:若(x-1)(x-2)=0,则x=1,或x=2 10.m<-l 11.(5/2,+∞)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.D 2.C 3.(1)真(2)真4,③5.所有的直角三角形的三边都满足斜边的平方等于两直角边的平方和6.若一个四边形为正方形,则这个四边形是矩形;全称;真7.(1)x,x^2≤0(2)对x,若6|x则3|x (3)正方形都是平行四边形8.(1)全称;假(2)特称;假(3)全称;真(4)全称;假9.p∧q:有些实数的绝对值是正数且所有的质数都是奇数,假;p∨q:有些实数的绝对值是正数或所有的质数都是奇数,真;┑p:所有实数的绝对值都不是正数,假10.(1)存在,只需m>一4即可(2)(4,+∞)11.a≥一21.4.3 含有一个量词的命题的否定1.C 2.A 3.C 4.存在一个正方形不是菱形5.假6.所有的三角形内角和都不大于180°7.(1)全称;┑p假(2)全称;┑p假(3)全称;┑p真8.(1)┑p:存在平方和为0的两个实数,它们不都为0(至少一个不为0);假⑵┑p: 所有的质数都是偶数;假(3)┑p:存在乘积为0的三个实数都不为0;假9.(1)假(2)真(3)假(4)真10.a≥311.(一√2,2)单元练习1.B 2.B 3.B 4.B 5.B 6.D 7.B 8.D 9.C 10.D11.5既是17的约数,又是15的约数:假12.[1,2)13.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角14.充要;充要;必要15.b≥0 16.既不充分也不必要17.①③④18.a≥319.逆命题:两个三角形相似,则这两个三角形全等;假;否命题:两个三角形不全等,则这两个三角形不相似;假;逆否命题:两个三角形不相似,则这两个三角形不全等;真;命题的否定:存在两个全等三角形不相似;假20.充分不必要条件21.令f(x) = x^2+(2k一1)x+k^2,方程有两个大于1的实数根┌ △=(2k2-1)-4k2≥0,<=>┤->1,即是k<-2,所以其充要条件为k<-2.└ f (1)>0,22.(-3,2]10.a√3/3。
1.1.2 四种命题1.1.3 四种命题间的相互关系基础过关1.若“x>y,则x2>y2”的逆否命题是()A.若x≤y,则x2≤y2B.若x>y,则x2<y2C.若x2≤y2,则x≤yD.若x<y,则x2<y2[解析]由互为逆否命题的定义可知,把原命题的条件的否定作为结论,原命题的结论的否定作为条件即可得逆否命题.[答案] C2.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数[解析]否命题是既否定条件又否定结论.因此否命题应为“若f(x)不是奇函数,则f(-x)不是奇函数”.[答案] B3.已知命题“若x=5,则x2-8x+15=0”,那么它的逆命题、否命题与逆否命题这三个命题中,真命题有()A.0个B.1个C.2个D.3个[解析]原命题“若x=5,则x2-8x+15=0”为真命题.当x2-8x+15=0时,x=3或x=5.故其逆命题:“若x2-8x+15=0,则x=5”为假命题.又由四种命题之间的关系知该命题的逆否命题为真命题,否命题为假命题. [答案] B4.“若x,y全为零,则xy=0”的否命题为________________________.[解析]由于“全为零”的否定为“不全为零”,所以“若x,y全为零,则xy =0”的否命题为“若x,y不全为零,则xy≠0”.[答案]若x,y不全为零,则xy≠05.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.[解析]其中原命题和逆否命题为真命题,逆命题和否命题为假命题.[答案] 26.判断命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”的逆否命题的真假.解方法一(利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.方程判别式为Δ=4b2-4(b2+b)=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.方法二(利用逆否命题)原命题的逆否命题为“若关于x的方程x2-2bx+b2+b =0无实根,则b>-1”.方程判别式为Δ=4b2-4(b2+b)=-4b,因为方程无实根,所以Δ<0,即-4b<0,所以b>0,所以b>-1成立,即原命题的逆否命题为真.7.给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅;命题乙:函数y=(2a2-a)x为增函数.(1)甲、乙至少有一个是真命题;(2)甲、乙有且只有一个是真命题.分别求出符合(1)(2)的实数a 的取值范围.解 甲为真时,Δ=(a -1)2-4a 2<0,即A ={a |a >13或a <-1};乙为真时,2a 2-a >1,即B ={a |a >1或a <-12}.(1)甲、乙至少有一个是真命题时,解集为A ,B 的并集,这时实数a 的取值范围是{a |a >13或a <-12}. (2)甲、乙有且只有一个是真命题时,有两种情况:当甲真乙假时,13<a ≤1;当甲假乙真时,-1≤a <-12.所以甲、乙有且只有一个是真命题时,实数a 的取值范围为{a |13<a ≤1或-1≤a <-12}.能力提升8.命题“若函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数,则log a 2<0”的逆否命题是( )A.若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数B.若log a 2<0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数C.若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数D.若log a 2<0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数[解析] 先对命题取逆,然后取否可得“若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数”,选A.[答案] A9.有下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为()A.①②B.②③C.①③D.③④[解析]命题①:“若x,y互为相反数,则x+y=0”是真命题;命题②:可考虑其逆命题“面积相等的三角形是全等三角形”,是假命题,因此命题②是假命题;命题③:“若x2+2x+q=0有实根,则q≤1”是真命题;命题④是假命题.[答案] C10.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②正方形的四条边相等;③若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有__________;互为否命题的有__________;互为逆否命题的有__________(填序号).[答案]②和③①和③①和②11.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有________个.[解析]原命题为真命题,逆命题“当△ABC是等腰三角形时,AB=AC”为假命题,否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题,逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.[答案] 212.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)当m>14时,mx2-x+1=0无实根;(2)当abc=0时,a=0或b=0或c=0.解(1)逆命题:当mx2-x+1=0无实根时,m>14;真命题;否命题:当m≤14时,mx2-x+1=0有实根;真命题;逆否命题:当mx2-x+1=0有实数根时,m≤14;真命题.(2)逆命题:当a =0或b =0或c =0时,abc =0;真命题;否命题:当abc ≠0时,a ≠0且b ≠0且c ≠0;真命题;逆否命题:当a ≠0且b ≠0且c ≠0时,abc ≠0;真命题.13.(选做题)证明:已知x >0,y >0,若x +y >2,则1+x y 与1+y x 至少有一个小于2.证明 将要证的命题“已知x >0,y >0,若x +y >2,则1+x y 与1+y x 至少有一个小于2”视为原命题,只需证明其逆否命题为真,即证明:已知x >0,y >0,若1+x y 与1+y x 都不小于2,则x +y ≤2为真.若1+x y ≥2,1+y x ≥2,则1+x ≥2y ,1+y ≥2x ,所以1+x +1+y ≥2y +2x ,所以x +y ≤2,这就证明了逆否命题的正确性,所以原命题得证.。
第一章常用逻辑用语课后篇巩固提升基础巩固A.若a n ≠2n -1,则数列{a n }不是等差数列B.若数列{a n }不是等差数列,则a n ≠2n -1C.若a n =2n-1,则数列{a n }不是等差数列D.若数列{a n }是等差数列,则a n ≠2n -1A.若sin x<12,则x<π6B.若x≥π6,则sin x≥12C.若x<π6,则sin x<12D.若sin x≤12,则x≤π6A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.能被6整除的整数,一定不能被3整除A.0B.1C.2D.3{a n}中没有为零的项,则数列{a n}为等比数列.ABC中,若∠C≠90°,则∠A,∠B不都是锐角x≠0或y≠0,x,y∈R,则x2+y2≠010.已知p3+q3=2,求证:p+q≤2.p+q>2,则q>2-p,根据幂函数y=x3的单调性,得q3>(2-p)3,即q3>8-12p+6p2-p3,]≥2,p3+q3>8-12p+6p2=6[(p-1)2+13故p3+q3>2.因此p3+q3≠2.这与题设p3+q3=2矛盾,从而假设不成立.故p+q≤2成立.能力提升A.0B.1C.2D.38.求证:若a2+2ab+b2+2a+2b-3≠0,则a+b≠1.因为a+b=1,所以a2+2ab+b2+2a+2b-3=(a+b)2+2(a+b)-3=12+2-3=0.。
1.1.2 四种命题1.1.3 四种命题间的相互关系一、选择题1.“△ABC中,若∠C=90°,则∠A,∠B全是锐角”的否命题为()A.△ABC中,若∠C≠90°,则∠A,∠B全不是锐角B.△ABC中,若∠C≠90°,则∠A,∠B不全是锐角C.△ABC中,若∠C≠90°,则∠A,∠B中必有一钝角D.以上都不对2.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确3.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为() A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数4.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是()A.(-2,2) B.(-2,0)C.(-2,1) D.(0,1)5.原命题为“若a n+a n+12<a n,n∈N*,则{a n}为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是()A.真、真、真B.假、假、真C.真、真、假D.假、假、假6.给出下列四个命题:①如果一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②如果一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④如果两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是()A .①②B .②③C .③④D .②④二、填空题7.命题:“若|x |=1,则x =1”的否命题为______________________________________.8.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.9.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②若一个四边形对角互补,则它内接于圆;③正方形的四条边相等;④圆内接四边形对角互补;⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有________;互为逆否命题的有________.10.给出下面3个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图象一定过原点;③“若0<log a b <1,则a >b >1”的逆命题.其中真命题的序号是________.三、解答题11.已知命题P :lg(x 2-2x -2)≥0,命题Q :1-x +x 24<1,若命题P 、Q 至少有一个是真命题,求实数x 的取值范围.12.判断命题:“若b ≤-1,则关于x 的方程x 2-2bx +b 2+b =0有实根”的逆否命题的真假.13.已知:在△ABC 中,∠BAC >90°,D 是BC 边的中点,如图所示.求证:AD <12BC .[答案]精析1.B 2.A 3.D 4.D 5.A 6.D7.若|x |≠1,则x ≠1 8.[1,2]9.②和④,③和⑥ ①和⑥,②和⑤①和③,④和⑤ 10.③11.解 由lg(x 2-2x -2)≥0,得x 2-2x -2≥1,解得x ≤-1或x ≥3.由1-x +x 24<1,得x 2-4x <0, 解得0<x <4.若命题P 、Q 至少有一个是真命题,则有以下三种情形:①P 真Q 假;②P 假Q 真;③P 真Q 真.当P 真Q 假时,有⎩⎪⎨⎪⎧x ≤-1或x ≥3,x ≤0或x ≥4. 解得x ≤-1或x ≥4. 当P 假Q 真时,有⎩⎪⎨⎪⎧-1<x <3,0<x <4,解得0<x <3. 当P 真Q 真时,有⎩⎪⎨⎪⎧x ≤-1或x ≥3,0<x <4,解得3≤x <4.综上,满足条件的实数x 的取值范围为以上三种情况的并集,即(-∞,-1]∪(0,+∞).12.解 (利用逆否命题)原命题的逆否命题为“若关于x 的方程x 2-2bx +b 2+b =0无实根,则b >-1”.方程判别式为Δ=4b 2-4(b 2+b )=-4b ,因为方程无实根,所以Δ<0,即-4b <0,所以b >0,所以b >-1成立,即原命题的逆否命题为真.13.证明 假设AD ≥12BC . (1)若AD =12BC ,由平面几何中“若三角形一边上的中线等于该边长的一半,则这条边所对的角为直角”,知∠BAC =90°,与题设矛盾.∴AD ≠12BC . (2)若AD >12BC ,由题意知BD =DC =12BC ,∴在△ABD 中,AD >BD ,从而∠B >∠BAD ;同理∠C >∠CAD .∴∠B +∠C >∠BAD +∠CAD ,即∠B +∠C >∠BAC .∵∠B +∠C =180°-∠BAC ,∴180°-∠BAC >∠BAC ,则∠BAC <90°,与题设矛盾.由(1)(2)知AD <12BC .。
1.1.2 四种命题
1.1.3四种命题间的相互关系
一、基础过关
1.若“x>y,则x2>y2”的逆否命题是()
A.若x≤y,则x2≤y2B.若x>y,则x2<y2
C.若x2≤y2,则x≤y D.若x<y,则x2<y2
[答案] C
[解析]由互为逆否命题的定义可知,把原命题的条件的否定作为结论,原命题的结论的否定作为条件即可得逆否命题.
2.命题“若a∉A,则b∈B”的否命题是()
A.若a∉A,则b∉B B.若a∈A,则b∉B
C.若b∈B,则a∉A D.若b∉B,则a∉A
[答案] B
[解析]命题“若p,则q”的否命题是“若綈p,则綈q”,“∈”与“∉”互为否定形式.
3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()
A.1 B.2 C.3 D.4
[答案] B
[解析]原命题显然为真命题,故其逆否命题为真命题,而其逆命题为“若a>-6,则a>-3”,这是假命题,从而否命题也是假命题,因此只有两个真命题.
4.“若x,y全为零,则xy=0”的否命题为.
[答案]若x,y不全为零,则xy≠0
[解析]由于“全为零”的否定为“不全为零”,所以“若x,y全为零,则xy=0”的否命题为“若x,y不全为零,则xy≠0”.
5.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有个.
[答案] 2
[解析]原命题为真命题,逆命题“当△ABC是等腰三角形时,AB=AC”为假命题,否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题,逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.
6.下列命题中:
①若一个四边形的四条边不相等,则它不是正方形;
②正方形的四条边相等;
③若一个四边形的四条边相等,则它是正方形.
其中互为逆命题的有;互为否命题的有;互为逆否命题的有.(填序号)
[答案]②和③①和③①和②
7.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.
(1)写出命题p的否命题;
(2)判断命题p的否命题的真假,并证明你的结论.
解(1)命题p的否命题为“若ac<0,则二次方程ax2+bx+c=0有实根.”
(2)命题p的否命题是真命题.
证明如下:
∵ac<0,
∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.
∴该命题是真命题.
二、能力提升
8.有下列四个命题:
①“若x+y=0,则x、y互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若q≤1,则x2+2x+q=0有实根”的逆命题;
④“不等边三角形的三个内角相等”的逆否命题.
其中真命题的序号为()
A.①②B.②③C.①③D.③④
[答案] C
[解析]命题①:“若x、y互为相反数,则x+y=0”是真命题;命题②:可考虑其逆命题“面积相等的三角形是全等三角形”是假命题,因此命题②是假命题;命题③:“若x2+2x+q=0有实根,则q≤1”是真命题;命题④是假命题.
9.已知原命题“两个无理数的积仍是无理数”,则:
(1)逆命题是“乘积为无理数的两数都是无理数”;
(2)否命题是“两个不都是无理数的积也不是无理数”;
(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;
其中所有正确叙述的序号是.
[答案](1)(2)
[解析]原命题的逆命题、否命题叙述正确.逆否命题应为“乘积不是无理数的两个数不都是无理数”.
10.给定下列命题:
①若k>0,则方程x2+2x-k=0有实数根;
②若x+y≠8,则x≠2或y≠6;
③“矩形的对角线相等”的逆命题;
④“若xy=0,则x、y中至少有一个为零”的否命题.
其中真命题的序号是.
[答案]①②④
[解析]①∵Δ=4-4(-k)=4+4k>0,∴①是真命题.
②其逆否命题为真,故②是真命题.
③逆命题:“对角线相等的四边形是矩形”是假命题.
④否命题:“若xy≠0,则x、y都不为零”是真命题.
11.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.
解逆命题:已知a,b∈R,若a>b,则a2>b2;
否命题:已知a,b∈R,若a2≤b2,则a≤b;
逆否命题:已知a,b∈R,若a≤b,则a2≤b2.
∵原命题是假命题,∴逆否命题也是假命题.
∵逆命题是假命题,∴否命题也是假命题.
12.判断命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”的逆否命题的真假.
解方法一(利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.
方程判别式为Δ=4b2-4(b2+b)=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.
方法二(利用逆否命题)原命题的逆否命题为“若关于x的方程x2-2bx+b2+b=0无实根,则b>-1”.方程判别式为Δ=4b2-4(b2+b)=-4b,因为方程无实根,所以Δ<0,即-4b<0,所以b>0,所以b>-1成立,即原命题的逆否命题为真.
三、探究与拓展
13.已知函数f(x)在(-∞,+∞)上是增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”
(1)写出逆命题,判断其真假,并证明你的结论;
(2)写出逆否命题,判断其真假,并证明你的结论.
解(1)逆命题:若f(a)+f(b)≥f(-a)+f(-b),
则a+b≥0,为真命题.
由于逆命题与否命题具有相同的真假性,因此可转化为证明其否命题为真,即证明“若a +b<0,则f(a)+f(b)<f(-a)+f(-b)”为真命题.
因为a+b<0,则a<-b,b<-a.
因为f(x)在(-∞,+∞)上为增函数,
则f(a)<f(-b),f(b)<f(-a),
所以f(a)+f(b)<f(-a)+f(-b).
因此否命题为真命题,即逆命题为真命题.
(2)逆否命题:若f(a)+f(b)<f(-a)+f(-b),则a+b<0,为真命题.
因为一个命题的真假性与它的逆否命题的真假性相同,所以可证明原命题为真命题.因为a+b≥0,所以a≥-b,b≥-a.
又因为f(x)在(-∞,+∞)上是增函数,
所以f(a)≥f(-b),f(b)≥f(-a).
所以f(a)+f(b)≥f(-a)+f(-b).
所以逆否命题为真命题.。