地基基础工程事故分析与处理
- 格式:doc
- 大小:33.00 KB
- 文档页数:5
目录案例一 (2)案例二 (2)案例三 (3)案例四 (3)地基基础事故分析与处理案例案例一2005年5月10日早上,浙江萧甬铁路余姚西至驿亭区间,由于地方一砖瓦厂取土,造成铁路地基土体移位,路堤发生整体下沉事故,导致铁路中断行车,杭州至宁波间途经该处的旅客列车受到影响。
事故原因:为一砖瓦厂取土,造成铁路地基土体移位,路堤发生整体下沉。
地方相关部门说,事故地段地处软土地基,地质情况比较复杂,事故原因有待进一步调查确定。
处理措施:萧甬铁路有限责任公司负责指挥现场抢修工作的陈姓工程师勘察现场后,立即制定了抢修方案:做好地基处理——先修因移位而塌陷的公路,再通过公路运石方,把下陷后悬空的铁路填平,同时稳固拱起来的流泥土,保证土层不再流动。
案例二北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高-3.0m,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。
在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。
该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。
地下水分为上层滞水和承压水两种。
基坑开挖完毕后,进行底版施工。
一夜大雨过后,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑,西侧基坑周围地面也出现大小不等的裂缝。
事故原因:1.锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。
2.持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。
同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。
3.基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆失效。
目录案例一 (2)案例二 (2)案例三 (3)案例四 (3)地基基础事故分析与处理案例案例一2005年5月10日早上,浙江萧甬铁路余姚西至驿亭区间,由于地方一砖瓦厂取土,造成铁路地基土体移位,路堤发生整体下沉事故,导致铁路中断行车,杭州至宁波间途经该处的旅客列车受到影响。
事故原因:为一砖瓦厂取土,造成铁路地基土体移位,路堤发生整体下沉。
地方相关部门说,事故地段地处软土地基,地质情况比较复杂,事故原因有待进一步调查确定。
处理措施:萧甬铁路有限责任公司负责指挥现场抢修工作的陈姓工程师勘察现场后,立即制定了抢修方案:做好地基处理——先修因移位而塌陷的公路,再通过公路运石方,把下陷后悬空的铁路填平,同时稳固拱起来的流泥土,保证土层不再流动。
案例二北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高-3.0m,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。
在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。
该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。
地下水分为上层滞水和承压水两种。
基坑开挖完毕后,进行底版施工。
一夜大雨过后,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑,西侧基坑周围地面也出现大小不等的裂缝。
事故原因:1.锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。
2.持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。
同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。
3.基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆失效。
地基基础事故分析与处理案例分析
1、工程概述
北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高-3.0m,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。
在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。
该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。
地下水分为上层滞水和承压水两种。
基坑开挖完毕后,进行底版施工。
一夜的大雨,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑。
西侧基坑周围地面也出现大小不等的裂缝。
2、事故分析
2.1锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。
2.2持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。
同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。
2.3基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆
失效。
3、事故处理
事故发生后,施工单位对西侧桩后出现裂缝的地段紧急用工字钢斜撑支护的圈梁,阻止其继续变形。
西南角塌方地带,从上到下进行人工清理,一边清理边用土钉墙进行加固。
地基基础工程事故分析及处理摘要:古语有云:万丈高楼平地起,地基时建筑工程的基础部分,故而祁重要性不言而喻。
此外,随着中国经济及城市建设的发展,高层建筑和市政工程大量涌现,对基础方面的要求也就越来越高。
同样随之而来的地基事故问题也越来越多,地基基础工程事故发生可能是因勘测、设计、构造、制造、安装与使用等因素相互作用引起的。
在这些因素中,可能会有某些因素引起突发事故。
也可能是消耗性逐渐发生的事故,从安全上讲,突发事故是危险的。
所以,研究并探讨地基基础工程事故发生的原因,更具有普遍性。
地方性和经验性,对它的分析后得到的经验教训,更是建筑工程技术人员需要不断积累的知识财富。
总而言之,对地基基础工程事故的分析和采取有效的处理措施,是一个应该提上日程的重要课题。
关键词:地基基础事故事故分析处理方法防治前言:随着中国经济及城市建设的发展,高层建筑和市政工程大量涌现。
有限的城市地面空间已不能满足人们日益增长的工作和生活的需要,于是人们开始向高空和地下寻求发展空间。
近20年,尤其是近10年来,基坑工程数量急剧增加,技术上也有了长足的进步。
上世纪70年代末以前,中国国内只在少数大型工程项目中有开挖深度在10m以上的基坑工程,而且处在较少或没有相邻建筑或地下结构物的地区。
多数高层建筑都有1到3层的地下室,基坑开挖深度通常为6到15米。
进入21世纪后则出现了更多的超高层建筑和大型的地下工程。
而现在各类地下工程诸如越江隧道、地下商场、地下民防等已随处可见。
事实上,人类土木工程的频繁活动促进了基坑工程的发展。
这些工程的共同特点是都要进行大规模地下开挖,必然导致大量的基坑工程产生。
基坑工程是一个古老而具有划时代特点的综合性的岩土工程课题, 放坡开挖和简易木桩围护可以追溯到远古时代,既涉及土力学中典型的强度和变形问题,又涉及到土体与支护结构的相互作用问题。
为了保证建筑物的稳定性,建筑基础都必须满足地下埋深嵌固的要求。
建筑高度越高,其埋置深度也就越深,对基坑工程的要求越来越高,随之出现的问题也越来越多,这给建筑施工、特别是城市中心区的建筑施工带来了很大的困难。
第二章地基与基础工程事故分析与处理第一节地基工程质量事故分析与处理一、建(构)筑物对地基的要求1.地基承载力或稳定性问题地基承载力或稳定性问题是指地基在建(构)筑物荷载(包括静、动荷载的各种组合)作用下能否保持稳定。
若地基承载力不能满足要求,在建(构)筑物荷载作用下,地基将会产生局部或整体剪切破坏,影响建(构)筑物的安全与正常使用,甚至造成建(构)筑物的破坏。
天然地基承载力的高低主要与土的抗剪强度有关,也与基础形式、大小和埋深有关。
边坡稳定也属于这类问题。
2.沉降、水平位移及不均匀沉降问题在建(构)筑物的荷载(包括静、动荷载的各种组合)作用下,地基将产生沉降、水平位移以及不均匀沉降。
若地基变形(沉降、水平位移、不均匀沉降)超过允许值,将会影响建(构)筑物的安全与正常使用,严重的将造成建(构)筑物破坏。
其中不均匀沉降超过允许值造成的工程事故比例最高,特别在深厚软粘土地区。
天然地基变形大小主要与荷载大小和土的变形特性有关(见图2-1),也与基础型式有关。
3.渗透问题渗透问题主要分两类:一类是堤坝蓄水构筑物地基渗流量超过其允许值时,其后果是造成较大水量损失,甚至蓄水失败;另一类是地基中水力比降超过其允许值时,地基土会因潜蚀和管涌产生破坏,严重的将导致建(构)筑物破坏。
天然地基渗透问题主要与地基中水力比降和土的渗透性有关。
二、建筑工程地基事故类别及特征建筑物事故的发生,不少与地基问题有关。
而地基工程事故的主要原因是由于勘察、设计、施工不当或环境和使用情况改变而引起的。
其最终反映是产生过量的变形或不均匀变形,从而使上部结构出现裂缝,倾斜,削弱和破坏了结构的整体性、并影响到建筑物的正常使用。
严重者,地基失稳,导致建筑物倒塌。
地基事故可分为天然的地基事故和人工地基事故两大类。
无论是天然地基上事故还是人工地基上事故,按其性质都可概括为地基强度和变形两大问题。
地基变形问题引起的地基事故常发生软土、湿陷性黄土、膨胀土、季节性冻土等地区。
建筑结构地基与基础工程缺陷事故的分析及预防导言当前,在建筑结构的施工以及设计过程中,工程技术人员一般认为比较困难操作的不是上部结构,而是这个建筑工程的地基以及基础。
由于它存在比较多的不可见因素,并且其都是低下比较隐蔽的工程。
当工程项目完工之后不容易检查。
在使用建筑物期间出现的事故不容易察觉。
如果出现安全事故,将很难进行补救,甚至出现比较严重的灾难性的后果。
因此,建筑结构地基以及基础工程当中发生的缺陷以及事故,有着比较强的地方性、经验性以及普遍性。
建筑结构的地基与基础工程事故原因分析1.地基失稳、变形造成的工程事故第一,地基土的抗剪强度比较缺乏能够造成地基整体的失稳破坏。
一般的形式含有三种,分别为整体剪切破坏、局部剪切破坏、冲切剪切破坏。
它的结果为建筑物受到破坏或者倒塌。
第二,在建筑物荷载的作用之下,地基土产生出沉降。
当建筑物沉降量、局部倾斜、不均匀沉降超过了地基变形的允许值的时候,将直接影响了建筑物日常使用。
当出现严重高的时候,将会在造成地基失稳的破坏。
2.土坡滑动以及地下水渗流所造成的事故第一,渗流造成潜蚀。
在地基土中形成土洞、溶洞。
使土体结构改变以及流砂、管涌等导致地基破坏。
第二,土坡滑动造成事故。
指建造在土坡上或土坡顶和土坡脚附近的建筑物因坡上加载、坡脚取土、雨水渗流等等,使土坡滑动而产生破坏。
3.施工人员对工程场地地质情况缺乏全面、正确的了解首先,工程勘察工作不符合要求。
没有按规定要求进行工程勘察工作,如勘察布孔间距偏大、钻孔取土深度太浅,造成勘察取样不能全面反映场地地基土层实际情况。
其次,建筑场地工程地质和水文地质情况非常复杂。
有些工程地质变化很大,虽然按规定进行了勘察,但还不能全面地反映地基土层变化情况。
如地基中存在尚未发现的暗浜、古河道、古墓、古井等。
第三,施工人员由于不按设计图纸施工或随意进行变更未按操作规程施工,甚至有的偷工减料、野蛮施工、不服从政府质量监督人员及监理单位的监督和管理。
第二章 地基与基础工程事故分析与处理第一节 地基工程质量事故分析与处理一、建(构)筑物对地基的要求1.地基承载力或稳定性问题地基承载力或稳定性问题是指地基在建(构)筑物荷载(包括静、动荷载的各种组合)作用下能否保持稳定。
若地基承载力不能满足要求,在建(构)筑物荷载作用下,地基将会产生局部或整体剪切破坏,影响建(构)筑物的安全与正常使用,甚至造成建(构)筑物的破坏。
天然地基承载力的高低主要与土的抗剪强度有关,也与基础形式、大小和埋深有关。
边坡稳定也属于这类问题。
2.沉降、水平位移及不均匀沉降问题在建(构)筑物的荷载(包括静、动荷载的各种组合)作用下,地基将产生沉降、水平位移以及不均匀沉降。
若地基变形(沉降、水平位移、不均匀沉降)超过允许值,将会影响建(构)筑物的安全与正常使用,严重的将造成建(构)筑物破坏。
其中不均匀沉降超过允许值造成的工程事故比例最高,特别在深厚软粘土地区。
天然地基变形大小主要与荷载大小和土的变形特性有关(见图2-1),也与基础型式有关。
3.渗透问题渗透问题主要分两类:一类是堤坝蓄水构筑物地基渗流量超过其允许值时,其后果是造成较大水量损失,甚至蓄水失败;另一类是地基中水力比降超过其允许值时,地基土会因潜蚀和管涌产生破坏,严重的将导致建(构)筑物破坏。
天然地基渗透问题主要与地基中水力比降和土的渗透性有关。
二、建筑工程地基事故类别及特征建筑物事故的发生,不少与地基问题有关。
而地基工程事故的主要原因是由于勘察、设计、施工不当或环境和使用情况改变而引起的。
其最终反映是产生过量的变形或不均匀变形,从而使上部结构出现裂缝,倾斜,削弱和破坏了结构的整体性、并影响到建筑物的正常使用。
严重者,地基失稳,导致建筑物倒塌。
地基事故可分为天然的地基事故和人工地基事故两大类。
无论是天然地基上事故还是人工地基上事故,按其性质都可概括为地基强度和变形两大问题。
地基变形问题引起的地基事故常发生软土、湿陷性黄土、膨胀土、季节性冻土等地区。
建筑结构地基与基础工程缺陷事故分析随着城市化不断发展,建筑行业也不断壮大。
然而,在建筑过程中,关于地基与基础工程的缺陷问题并不罕见,而这些问题往往带来严重的后果,比如倒塌、损毁等,给人类和自然环境都带来了重大的损失。
在这篇文章中,将从事故发生的原因、缺陷种类、预防措施等方面来探讨建筑结构地基与基础工程缺陷事故的原因与解决办法。
一、事故发生的原因1. 不当的设计不适当的设计是建筑结构缺陷的主要因素之一。
一个良好的设计应该考虑到建筑物的质量、耐久性和安全性等问题,但在现实中,设计师们往往会忽略这些问题,特别是在一些抢时间、赶工期的情况下。
这就导致了整个建筑物的不稳定。
当然,这些设计缺陷不是一下子就能看出来的,而是需要经过一段时间的使用才会显露出来。
2. 施工人员技术不足建筑物的建造需要各种各样的工人和技术人员,其中大多数都需要经过相关的培训和资格认证。
然而,有时建筑公司会为了节省成本雇用不合格的工人,这些工人虽然会装备使用一些高科技的工具,但他们仍然会犯一些错误。
比如,他们可能会不当地安装支撑杆,从而引起地基沉降或爆裂,或者没有使用适当的材料,从而导致结构脆弱。
3. 人为伤害人为伤害是建筑物的缺陷问题的又一个常见原因。
这样的伤害可能来自于各种各样的活动,比如在地基附近挖掘土壤或是装修建筑物时打入钉子等。
4. 环境因素建筑物的地基、基础受到地震、地裂、台风等自然环境因素的影响,也会导致建筑物出现缺陷。
地震对建筑物的破坏力度巨大,尤其是对地震带区的建筑影响会更大。
此外,如果建筑物的地下水位过高,也会导致基础出现问题。
二、缺陷种类1. 地基沉降地基沉降可能是由于基础下方的土壤支持力不够强,通常发生在新建筑物的建筑工程中,但也会出现在已存在的建筑物中。
2. 土层塌陷当地基被放置在土层上时,如果这层土壤比其他部分要软,那么就有可能塌陷。
这是因为这层土壤不能像其他土层那样有效地支撑地基。
3. 基础裂缝基础裂缝是建筑结构缺陷的常见类型。
地基基础工程事故分析与处理【摘要】在我国建设工程房屋建筑工程中,随着我国经济建设的发展,全国各地都在兴建各类工厂企业、商业大厦、宾馆饭店、多层与高层住宅等建筑工程。
然而在建筑的同时许多建筑在后期却出现质量的问题,基础工程是房屋的的根本,一旦基础出现问题将会导致墙体出现不均匀沉降严重视时楼体将会发生倒塌。
本文分析了地基基础工程事故发生的一些因素及原因,提出了相应的防止办法,同时列举了实例加以说明。
【关键词】地基基础;工程事故;地基变形;处理方法随着我国经济建设的发展,各种现代化的建筑如雨后春笋般出现,确保和提高建筑工程质量就显得尤为重要。
而在建筑物使用过程中,由于基础问题最常见的是基础的不均匀沉降从而导致建筑物倾斜、墙体和楼盖的开裂、影响使用和建筑物的耐久性、有碍观看并使人有不安全的则屡见不鲜。
在建筑结构的设计和施工过程中,基础工程是房屋建筑工程的关键,一切工程事故的发生可以说是基础工程在勘察的过程中,往往因为勘察不到位勘察未进行到持力层部位,从而设计图纸导致基础无法支撑主体结构造成工程事故。
国内外建筑工程事故调查表明多数工程事故源于地基问题,如若建筑场地地基不能满足建筑物对地基的要求,造成地基基础工程事故,地基基础工程事故发生可能是因勘测、设计、构造、制造、安装与使用等因素相互作用引起的。
而这些因素中。
某些因素引起突发事故。
另一些因素可能导致消耗性逐渐发生的事故,从安全上讲,突发事故是危险的。
所以,研究并探讨地基基础工程事故发生的原因,更具有普遍性、地方性和经验性,对每一个事故分析后得到的经验,并采取有效的防治措施,是我们值得重视的问题。
1、建筑物对地基的要求1﹒1地基承载力或稳定性问题地基承载力或稳定性问题是指地基在建(构)筑物荷载(包括静、动荷载的各种组合)作用下能否保持稳定。
若地基承载力不能满足要求,在建(构)筑物荷载作用下,地基将会产生局部或整体剪切破坏,影响建(构)筑物的安全与正常使用,甚至造成建(构)筑物的破坏。
天然地基承载力的高低主要与土的抗剪强度有关,也与基础形式、大小和埋深有关。
边坡稳定也属于这类问题。
1﹒2沉降、水平位移及不均匀沉降问题在建(构)筑物的荷载(包括静、动荷载的各种组合)作用下,地基将产生沉降、水平位移以及不均匀沉降。
若地基变形(沉降、水平位移、不均匀沉降)超过允许值,将会影响建(构)筑物的安全与正常使用,严重的将造成建(构)筑物破坏。
其中不均匀沉降超过允许值造成的工程事故比例最高,特别在深厚软粘土地区。
天然地基变形大小主要与荷载大小和土的变形特性有关,也与基础型式有关2、地基工程事故原因分析2﹒1地质勘察问题2.1.1地基勘察工作欠认真,所提供的土性指标及地基承载力不确切。
例如武昌某办公楼,设计之前仅作简易触探,而设计者又按勘察报告提出的偏高土力学指标进行设计。
结果造成该楼尚未竣工即出现很大沉降和相对沉降差,倾斜约40cm,并引起邻近已有房屋严重开裂。
又如江苏省某县一小学教学楼,平面为“Z”字形,无地质勘察资料盲目套图设计。
施工中即发展墙体开裂、楼房扭曲倾斜、地面开裂,并发展到室外地坪。
最后采用局部降低一层和加固地基方法才获解决。
2﹒1﹒2地质勘察时,钻孔间距太大,不能全面准确地反映地基的实际情况。
在丘陵、山坡地区的建筑中,由于这个原因造成的事故实例比平原地区多。
如河北省张家口宝善街住宅小区,其地基中的砂卵起伏变化较大(水平方向达0.2m/m)。
地质勘察资料没有提供这些数据。
设计时,将基础按地质勘察深度选择桩基础,由于地表下土层的厚度变化甚大,而造成某些楼的桩基础不得不变为桩墩,修改基础设计,并且给施工带来极大难度。
2﹒1﹒3地质勘察时,钻孔深度不够。
如有的工程在没有查清较深范围内地基中有无软弱层、暗浜、墓穴、孔洞等情况下,仅根据勘察资料提供的地表面或基础底面以下深度不大范围内的地基情况进行地基基础设计,因而造成明显的不均匀沉降,导致建筑物裂缝,有的甚至不能使用。
如南京某厂家属宿舍为五层砖混结构,采用不埋板式基础。
当施工到五层时,发现基础断裂。
后经补充勘探,发现宿舍西部地表杂填土1.4m以下,有一层淤泥及稻壳灰,厚2m多,高压缩性,建筑物座落在这样软硬悬殊的地基上,势必造成基础不均匀沉降而断裂。
这类事故屡见不鲜,尤应引起足够重视。
2﹒1﹒4地质勘察报告不详明、不准确。
造成地基基础设计方案的错误。
如四川某工程,根据建筑物两端钻孔提供的岩石埋藏深度在基础底面以下5m的资料,采用了5m的爆扩桩基础。
建成后,在建筑物中部产生较大沉降,墙体开裂。
经补充勘察,发现建筑物中部基岩面深达15~17m,爆扩桩悬浮在软土中,最后造成该建筑物不均匀沉降。
2﹒2设计方案及计算问题2﹒2﹒1有些工程的地质条件差、变化复杂,由于设计方案选择不合理,不能满足上部结构与荷载的要求,因而引起建筑物开裂或倾斜。
例如河北省张家口某射击娱乐中心,单层射击大厅,由中央大厅13米,两翼展览厅9米组成。
两翼展览厅与中央大厅相距4.35m,中间以通道相连。
该建筑物座落在压缩模量仅有1.45MPa的高压缩性深厚软土地区,采用三七灰土垫层人工地基方案,而施工单位由于工期短,擅自改为砂卵石垫层处理方案。
该修改方案对于深厚的软土层又有荷载差异的地基,势必带来不均匀沉降。
因此,在2年半的沉降观测中,中央大厅下沉量平均达10.5cm,造成两翼15m范围内的巨大差异沉降,使两翼展览厅外承重墙基础的局部倾斜达0.018。
而建筑地基基础设计规范(GB50007-2002)规定,在高压缩性地基上的砌体承重结构基础的局部倾斜允许值为0.003,大大超过允许值。
因而造成墙体内部产生的附加应力超过砌体弯曲抗拉强度极限,导致两翼展览厅墙面开裂。
又如厦门市某大楼为七层框架结构(局部八层),片筏基础,地基为软土,采用砂井处理方案,而未采用预压措施。
造成大楼建成后,差异沉降达16.6cm,最大倾斜达16.9‰。
地基规范规定的允许倾斜值为0.0004,超过允许值,导致电梯无法安装。
2﹒2﹒2盲目套图设计,不因地制宜;当建筑场地选定后,设计者是没有选择的余地,往往只能按具体情况采用天然地基或进行地基处理。
由于各地的工程地质条件千差万别,错综复杂,即使同一地点也不尽相同,再加上建筑物的结构型式、平面布置及使用条件也截然不同,所以很难找到一个完全相同的例子,也无法作出一套包罗万象的标准图。
因此,在考虑地基基础问题时,必须在对具体问题充分分析的基础上,正确地灵活运用土力学、地基基础与工程地质知识,以获得经济合理的方案。
如果盲目的进行地基基础设计,或者死搬硬套所谓的“标准图”,将是贻害无穷的。
例如山西省太原市某住宅楼,套用本市7909通用住宅设计图纸施工,没按实际地基条件进行地基基础设计,结果造成内外墙体开裂,影响安全,住户被迫迁出。
又如湖北光化磷肥厂熟化车间,基础没按实际地基条件设计,套用标准图设计图纸,建成后厂房柱子内倾并开裂,影响正常生产。
2﹒2﹒3设计计算错误,荷载不准确:这类事故多数因设计者不具备相应的设计水平,未取得可靠的地质资料,就盲目进行设计,设计又没有经过相应的复核审查,使错误设计计算得不到及时纠正而酿成。
有时小的设计计算疏忽,也能造成墙体开裂,尤其是软土地区更应慎重。
如蚌埠铁路局水电车间,采用砖混结构,钢筋混凝土屋面梁、板、砖壁柱,毛石条形基础。
该建筑位于水塘边。
由于疏忽了屋面梁传给砖壁柱的集中荷载,而没有将砖壁柱附近基础加宽,只采用与窗间墙基础同宽,造成纵墙下基础底面压力分布不均匀,最后导致纵墙开裂、基础顶面的钢筋混凝土圈梁及毛石条形基础出现裂缝,影响使用。
2﹒3施工问题地基基础工程施工质量的优劣,直接影响建筑物的安全和使用。
地基基础属地下隐蔽工程,更应加倍重视不留隐患。
归纳起来施工方面存在的问题有:2﹒3﹒1未按图施工或不按技术操作规程要求施工:如上海某住宅楼,底层为框架,2~6层为混合结构。
在北框架的基础梁上悬挑出一进深为3m平房,设计要求该梁底应做砖坑,保证梁底有20cm左右空隙。
施工未按图纸要求做,致使基础底面受力不均匀,造成南面基底应力增加,北面基底应力减少。
因此使建筑物南北面产生较大的差异下沉,造成建筑严重倾斜。
2﹒3﹒2工程管理不善,未按建设要求与设计施工程序办事:如洛阳市五层砖混结构宿舍,地基采用灰土桩处理。
因管理混乱,工地上没有一个技术人员自始至终进行技术把关,缺乏细致认真的技术交底和质量检查。
施工严重违反操作规程,使灰土桩质量低劣,最后不得不全部返工重做,造成很大经济损失。
2﹒4环境及使用问题2﹒4﹒1基础施工的环境效应:打桩、钻孔灌注及深基坑开挖对周围环境所引起的不良影响,是当前城市建设中反映特别突出的问题,主要是对周围已有建筑物的危害。
如张家口市宣化区某银行办公楼,在桩基施工中,因打桩振动影响,引起附近某家属宿舍墙体开裂、地面、楼板裂缝。
而钻孔灌注桩可以避免打入桩振动的不良影响,但钻孔灌注桩当穿过砂层施工时,若不能及时用泥浆护孔,则会造成孔中涌砂、塌孔,对周围已有建筑物构成威胁。
如某市一幢12层的大楼,采用贯穿砂砾石层直达基岩的钻孔灌注桩施工方案。
桩长30m,桩径700mm,全场地共73根桩,从开始施工到施工结束历时两个月。
在施工完20多根桩时,东西两侧相邻两幢3层办公楼严重开裂,邻近5层和6层两幢建筑物也受到不同程度的影响,周围地面和围墙裂缝宽达3~4cm。
当施工完50根桩时,相邻两幢3层办公楼不得不拆除,这是钻孔灌注桩在复杂地地质条件下,碰到砂层而未泥浆护孔造成的严重工程事故。
又如南京市交通银行深基坑开挖时,因支挡结构侧向位移,引起邻近某电影院基础不均匀沉降,导致墙体和柱开裂严重,最后不得不拆除重建。
2﹒4﹒2地下水位变化:由于地质、气候、水文、人类的生产活动等因素的作用,地下水位经常会有很大的变化。
这种变化对已有建筑物可能引起各种不良的后果。
特别是当地下水位在基础底面以下变化时,后果更为严重。
当地下水位在基础底面以下压缩层范围内上升时,水能浸湿和软化岩土,从而使地基的强度降低,压缩性增大,建筑物就会产生过大沉降或不均匀沉降,最终导致其倾斜或开裂。
对于结构不稳定的土,如湿陷性黄土、膨胀土等影响尤为严重。
若地下水位在基础底面以下压缩层范围内下降时,水的渗流方向与土的重力方向一致,地基中的有效应力增加,基础就会产生附加沉降。
如果地基土质不均匀,或者地下水位不是缓慢而均匀地下降,基础就会产生不均匀沉降,造成建筑物倾斜,甚至开裂和破坏。
在建筑地区,地下水位变化常与抽水、排水有关。
因为局部的抽水或排水,能使基础底面以下地下水位突然下降,从而引起建筑物地基变形。
例如浙江省某高校教学楼,建成后使用16年一直正常。
1976年由于该楼附近开挖深井,过量抽取地下水,引起地基不均匀沉降,导致墙体开裂,最大开裂处手掌能进出自如,东侧墙倾斜,危及大楼安全。