机电一体化模块化控制系统
- 格式:doc
- 大小:1.11 MB
- 文档页数:18
机电一体化系统设计方法及其发展【摘要】机电一体化系统设计方法是将机械、电子、控制系统等多个学科领域相互融合,从而实现系统的高效化、智能化。
本文首先介绍了机电一体化系统设计方法的概述,描述了其涉及的主要内容和特点。
接着分析了机电一体化系统设计方法的发展历程,阐述了其在工程领域中的重要性和应用前景。
然后对比分析了传统的机电分离式系统与机电一体化系统的优劣,强调了机电一体化系统的优势与创新性。
随后探讨了机电一体化系统设计方法的关键技术,包括传感器技术、控制算法等方面的内容。
阐述了机电一体化系统设计方法在工程实践中的应用案例,并展望了未来发展的趋势和挑战。
通过本文的研究,可以帮助读者更好地了解和应用机电一体化系统设计方法,促进相关领域的深入发展。
【关键词】机电一体化系统、设计方法、发展历程、对比分析、关键技术、工程实践、未来发展趋势、总结与展望1. 引言1.1 研究背景机电一体化系统设计方法是以机械、电气和计算机等多学科知识为基础,通过综合运用现代工程技术和方法,实现机械系统、电气系统和控制系统的有机结合,以实现更高效、更精准的系统设计和控制。
随着科学技术的不断发展和工业生产的不断进步,机电一体化系统设计方法逐渐受到人们的重视和关注。
其在提高生产效率、降低生产成本、改善生产环境等方面具有重要的意义和价值。
在过去,传统的机械系统、电气系统和控制系统往往是相对独立地设计和运行的,缺乏有效的协调和整合,导致系统性能不佳、效率低下等问题。
而机电一体化系统设计方法的提出,正是为了解决这些问题,将机械、电气和控制等多个领域的知识和技术有机融合在一起,实现系统的一体化设计和运行,从而更好地满足人们对系统性能和效率的需求。
研究机电一体化系统设计方法具有重要的现实意义和理论价值,可以为工程领域的发展和创新提供重要的支撑和指导。
通过深入研究和探讨机电一体化系统设计方法,可以不断拓展系统设计的思路和方法,推动工程技术的进步和发展。
机电一体化发展趋势一、背景介绍机电一体化是指将机械和电气技术有机结合,通过电子技术、传感技术、控制技术等手段,实现机械设备的自动化、智能化和网络化。
随着科技的不断进步和工业化的发展,机电一体化的应用范围不断扩大,成为推动工业现代化的重要手段之一。
本文将从技术、市场和政策三个方面分析机电一体化的发展趋势。
二、技术趋势1. 智能化:随着人工智能和大数据技术的快速发展,机电一体化设备将越来越智能化。
通过搭载智能传感器和控制系统,设备能够实时感知和分析生产环境,自动调整工作参数,提高生产效率和产品质量。
2. 网络化:物联网技术的应用将进一步推动机电一体化设备的网络化发展。
设备之间可以实现无线通信和远程监控,实现生产过程的实时监测和远程控制,提高生产效率和管理水平。
3. 模块化:机电一体化设备的模块化设计将成为未来的发展趋势。
模块化设计可以实现设备的快速组装和更换,提高设备的灵活性和适应性,降低生产成本和维护成本。
4. 绿色化:环保意识的提高将推动机电一体化设备的绿色化发展。
通过采用节能技术和环保材料,减少能源消耗和环境污染,实现可持续发展。
三、市场趋势1. 自动化需求增加:随着劳动力成本的上升和劳动力供应的减少,企业对自动化设备的需求将不断增加。
机电一体化设备可以实现生产过程的自动化和智能化,提高生产效率和降低生产成本,因此市场需求将持续扩大。
2. 行业应用拓展:机电一体化技术在制造业、能源行业、交通运输等领域的应用已经取得了显著成效,未来还将拓展到更多行业。
例如,在医疗领域,机电一体化设备可以实现手术机器人的精确操作,提高手术成功率和患者安全性。
3. 个性化定制需求增加:消费者对个性化产品的需求不断增加,这将推动机电一体化设备向个性化定制方向发展。
通过灵活的模块化设计和智能化控制系统,可以实现产品的个性化定制,提高产品的市场竞争力。
四、政策趋势1. 政府支持:政府将加大对机电一体化技术的支持力度,通过财政补贴、税收优惠等措施,鼓励企业进行技术创新和设备升级。
机电一体化概论第一章机电一体化概述2•机电一体化的发展趋势:智能化,模块化,网络化,微型化,绿色化,系统化.3•机电一体化的基本含义:机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进徽电子技术,并将机核装置与电子设备以及相关软件有机结合而构成的系统总称。
5•机电一体化的相关技术:机械技术、传感检测技术、信息处理技术、自动控制技术、伺服驱动技术、系统总体技术。
6.机电一体化系统的基本要素及其功能:8•机电一体化一词最早于1971年出现在日本。
它是取机械学的前半部和电子学的后半部拼合而成,但是,机电一体化并非机械技术和电子技术的简单叠加,而是有着自身体系的新型学科。
第二章机电一体化的相关技术L机电一体化系统中的机械系统:传动部分、导向机构、执行机构、轴系、机座或机架。
2.机电一体化中机械系统的基本要求:高精度、小惯量、大刚度、快速响应性、良好的稳定性。
9•传感器的定义:传感器是一种能感受规定的被测量,并按照一定的规律转换成可用的输出信号的器件或装置。
13•常见的接近开关及其应用:电涡式接近开关(金属)、电容式接近开关(导体和非导体)、霍尔接近开关(磁性物件)、光电开关:透射型,反射型(统计产量,检测包装,精确定位等)。
16.在控制系统中根据系统信号相对于时间的连续性,通常分为连续时间系统和离散时间系统(连续系统和离散系统)。
18•计算机控制系统的类型及计算机担当的角色:操作指导控制系统(助手)、宜接数字控制系统(DDC,决策者,操作者)、监督计算机控制系统(SCC, 操作指导系统与DDC系统的综合与发展,决策人)、分级控制系统、集散控制系统(DCS)、工厂自动化(FA)系统。
25•接口的分类(1)根据接口的变换和调整功能特征:零接口、被动接口、主动接口、智能接口。
(2)根据接口的输入\输出功能的性质:信息接口、机械接口、物理接口、环境接口。
(3)按照所联系的子系统不同:人机接口、机电接口。
机电一体化简介工程学院机械设计摘要:本文主要阐述的是关于机电一体化的基本内容。
机电一体化又称机械电子学,英语称为Mechatronics,它是由英文机械学Mechanics的前半部分与电子学Electronics的后半部分组合而成。
机电一体化系统由机械系统(机构)、信息处理系统(计算机)、动力系统(动力源)、传感检测系统(传感器)、执行元件系统(如电动机)五个子系统组成,具有以下三大“目的功能”,其系统内部必须具备五种内部功能。
机电一体化的发展经历了三个阶段,我国起步较晚,与先进国家相比仍有相当差距。
未来机电一体化将更智能化、模块化、绿色化、网络化、微型化、系统化方向发展。
关键词:机电一体化机械电子模块系统智能一、机电一体化的定义机电一体化技术是将机械技术、电工电子技术、微电子技术、信息、技术、传感器技术、接口技术、信号变换技术等多种技术进行有机地结合,并综合应用到实际中去的综合技术。
是现代化的自动生产设备几乎可以说都是机电一体化的设备。
中国机电设计迈入PLM全新阶段,正挑战着了前所未有的,不可预测的难题,一个个久战沙场经久不衰精兵良将正褪去了昨日英雄的光环,唯有CAMEL VIEW 能够胜任军统三国,光复旧业的重任,此时数系科技与德国iXtronics GmbH公司携手共同开拓机电设计领域的新篇章,CAMEL VIEW 作为机电一体化设计系统,从产品的概念设计到产品性能的测试、验证、通过都是一体化的,流程化的、规范化的,在满足用户设计的前提下,数值实验的仿真与结果的验证无不精确化,支持复杂环境下,多工况,多耦合场设计。
研究将电子器件的信息处理和控制功能附加或融合在机械装置中的一种复合化技术。
俗称机电一体化。
机械电子学 (mechatronics)是由机械学(mechanics)和电子学(electronics)两个词结合而成的新词。
其全称为机械电子工程学,英语为mechanical and electronical engineering。
机电一体化系统在智能制造中的应用与发展智能制造是21世纪制造业的发展趋势,其核心是通过信息技术与传统制造技术的深度融合,实现制造过程的智能化和自动化。
在智能制造中,机电一体化系统扮演着重要的角色。
本文将探讨机电一体化系统在智能制造中的应用与发展,并分析其带来的益处和挑战。
一、机电一体化系统的定义与特点机电一体化系统是指将机械、电气、传感器、控制与信息技术相结合,形成一个整体的系统。
通过机电一体化系统,不仅可以实现机械结构的运动控制,还能够进行信号采集、数据处理、通信与控制等功能。
其主要特点包括智能化、高效率、高精度和高可靠性。
二、机电一体化系统在智能制造中的应用1. 生产线自动化:机电一体化系统可以应用于生产线自动化控制,实现产品的快速生产。
通过与传感器和控制系统的连接,可实现对生产过程的实时监测和调整,提高生产效率和质量。
2. 机器人技术:机电一体化系统在机器人技术中的应用越来越广泛。
机器人的运动控制、力传感器、视觉系统等都离不开机电一体化系统的支持。
通过机电一体化系统的应用,机器人可以实现复杂任务的自动化完成,提升生产效率和安全性。
3. 智能交通:机电一体化系统在智能交通领域的应用也日益增多。
例如,智能交通信号灯系统可以通过机电一体化系统进行精确的控制,根据交通流量和道路状况进行智能的信号调度,提高交通效率和安全性。
4. 智能家居:机电一体化系统在智能家居中的应用有助于实现家居设备的远程监控和控制。
通过连接各种传感器和执行器,居民可以通过智能手机或其他终端对家居设备进行远程操控,提高居住的舒适度和便利性。
三、机电一体化系统在智能制造中的发展趋势1. 智能化:随着人工智能和物联网技术的发展,机电一体化系统将更加智能化。
未来的机电一体化系统将具备学习和决策能力,能够根据环境变化和用户需求做出相应的调整和优化。
2. 高度集成:机电一体化系统将趋向于更高的集成度。
不同的机电组件将更紧密地结合在一起,形成更为简洁、高效的系统架构,降低系统成本和维护难度。
1引言1.1课题简介本次毕业设计课题为“模块化生产控制系统设计”。
其主要任务就是通过分析研究学校实验工作台系统,结合所学知识以及先进控制技术,对模块化生产线控制系统进行研究。
1.2 工业模块化系统发展现状工业模块系统是一种以机电一体化为基础的自动化系统,其中控制的部分现今在我国大都是采用的是PLC控制。
PLC是由摸仿原继电器控制原理发展起来的,二十世纪七十年代的PLC只有开关量逻辑控制,首先应用的是汽车制造行业。
它以存储执行逻辑运算、顺序控制、定时、计数和运算等操作的指令;并通过数字输入和输出操作,来控制各类机械或生产过程。
用户编制的控制程序表达了生产过程的工艺要求,并事先存入PLC的用户程序存储器中。
运行时按存储程序的内容逐条执行,以完成工艺流程要求的操作。
PLC的CPU内有指示程序步存储地址的程序计数器,在程序运行过程中,每执行一步该计数器自动加1,程序从起始步(步序号为零)起依次执行到最终步(通常为END 指令),然后再返回起始步循环运算。
PLC每完成一次循环操作所需的时间称为一个扫描周期。
不同型号的PLC,循环扫描周期在1微秒到几十微秒之间。
PLC用梯形图编程,在解算逻辑方面,表现出快速的优点,在微秒量级,解算1K逻辑程序不到1毫秒。
它把所有的输入都当成开关量来处理,16位(也有32位的)为一个模拟量。
大型PLC使用另外一个CPU来完成模拟量的运算。
把计算结果送给PLC的控制器。
最终达到控制的目的。
工业模块与智能系统是六十年代以来在信号处理、人工智能、控制论、计算机技术等学科基础上发展起来的新型学科。
该学科以各种传感器为信息源,以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,探索对各种媒体信息进行处理、分类、理解并在此基础上构造具有某些智能特性的系统或装置的方法、途径与实现,以提高系统性能。
工业模块与智能系统是一门理论与实际紧密结合,具有广泛应用价值的控制科学与工程的重要学科分支。
机电的一体化系统设计机电一体化系统设计是指将机械、电子、电气、自动化等技术相结合的一种综合性设计。
它通过将机械结构、电气设备、传感器、执行器和控制系统等有机地结合在一起来实现系统的功能。
一体化设计能够提高系统的整体性能和运行效率。
因为机械、电子和自动化等不同专业领域的知识被集成在一起,可以更好地协同工作,提升系统的综合效益。
在机电一体化系统设计中,首先需要进行系统分析和需求分析,明确系统的功能和性能要求。
然后进行系统设计,包括机械结构设计、电气设计、自动化控制设计等方面。
机械结构设计是机电一体化系统设计的重要组成部分。
在设计机械结构时,需要考虑系统的稳定性、刚度和强度等因素。
同时还需要考虑材料的选择和加工工艺的优化,以提高系统的可靠性和寿命。
电气设计是机电一体化系统设计的另一个重要方面。
在电气设计时,需要选择适当的电气设备和元件,并设计电路图和布线图。
同时还需要进行电气参数计算和控制系统设计,以实现对整个系统的控制和监测。
此外,还需要考虑系统的电磁兼容性和安全性等因素。
自动化控制设计是机电一体化系统设计中的关键一环。
通过使用传感器和执行器,可以实现对系统的自动化控制。
在自动化控制设计中,需要选择合适的传感器和执行器,并进行控制算法的设计和优化。
同时还需要进行系统的建模和仿真,以验证设计的正确性和可行性。
在机电一体化系统设计中,还需要考虑系统的可拓展性和模块化设计。
通过模块化设计,可以将整个系统划分为若干个独立的子系统,每个子系统都具有独立的功能和自主控制。
这样可以提高系统的灵活性和可维护性,同时也方便对系统进行拓展和更新。
此外,在机电一体化系统设计中还需要考虑系统的能效和环保性。
通过优化设计和选择节能设备和材料,可以提高系统的能源利用效率和减少对环境的影响。
综上所述,机电一体化系统设计是一项复杂而综合的工作。
它需要综合运用机械、电子、自动化等多个学科的知识,进行系统的分析、设计和优化。
只有通过科学的设计和综合考虑各个方面的因素,才能确保机电一体化系统具有良好的性能和可靠性。
对机电一体化的分析和认识
机电一体化是指在一个系统中,集成了机械、电气和计算机控制技术,形成了一个完整的整体,实现相互协调和互动的一种综合技术体系。
相比传统的机械和电气技术,机电一体化可以提高设备的自动化、精度、可靠性和效率。
机电一体化的发展处于一个快速增长的阶段,它已经在汽车、飞机、机床等诸多领域获得了成功的应用。
在工业自动化领域,机电一体化能够实现自动化生产线、智能制造、工业机器人等高级应用。
在家居、医疗、农业等领域,机电一体化的应用也在不断拓展。
机电一体化的主要特点包括:
1. 可编程性:机电一体化系统可以通过编程实现自主控制,提高了设备的灵活性和可调性。
2. 模块化和集成化:机电一体化系统采用模块化设计,使得组装和维护更加简单,也实现了机械、电气和计算机技术的有机集成。
3. 多功能性:机电一体化系统具有多功能性,可以同时实现多个功能,如加工、检测、传输等。
4. 精度和高速性:机电一体化系统采用精密的传感器和执行器,实现了高精度和高速操作。
5. 可靠性:机电一体化系统采用了先进的监测和保护措施,使得系统的可靠性大大提高。
机电一体化将机械、电气和计算机技术有机地结合在一起,为现代工业的发展带来了巨大的机遇和挑战。
机电一体化将是未来工业的热门技术之一,它将继续推动制造业向高效、智能和绿色领域迈进。
机电一体化的发展大体分三个阶段:20世纪60年代以前为第一阶段,这样阶段称为初级阶段。
20世纪70至80年代为第二阶段,这一阶段可称为蓬勃发展阶段。
20世纪90年代后期为第三阶段,这一阶段是机电一体化技术开始向智能化方向迈进,机电一体化进入深入发展时期。
1、机电一体化的发展方向:智能化、模块化、网络化、微型化、绿色化、系统化2、机电一体化的含义是机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术并将机械装置与电子设备以及相关软件有机结合而构成的系统总称。
3、机电一体化有两大分支,它们是生产过程的机电一体化和机电产品的机电一体化。
4、机电一体化的相关技术有机械技术、传感检测技术、信息处理技术、自动控制技术、伺服驱动技术和系统总体技术。
5、机电一体化系统应包括以下几个基本要素:机械本体、动力部分、检测部分、执行机构、控制器(包括驱动单元、控制及信息处理单元)各要素之间通过接口相联系。
6、机械技术:7、机电一体化系统中的机械系统主要包括以下五大部分:传动机构、导向机构、执行机构、轴系、机座或机架。
8、机电一体化系统中的机械系统的基本要求是:高精度、小惯量、大刚度、快速响应性、良好的稳定性。
9、传感检测技术:10、传感器是一种能感受规定的被测量,并按照一定的规律转换成可用的输出信号的器件或装置。
传感器通常由敏感元件、传感元件机测量转换电路三部分组成。
11、按传感器的物理量分类:可分为位移、力、速度、加速度、温度、流量、气体成分、流速、12、按传感器工作原理分类:可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等13、按传感器输出信号的性质分类:可分为输出量为开关量的开关型传感器、输出为模拟型传感器和输出为脉冲或代码的数字型传感器。
14、传感器的发展趋势:集成化、多功能化、智能化15、计算机控制系统的组成:由硬件和软件两部分组成。
16、计算机控制系统的类型有:操作指导控制系统、直接数字控制系统、监督计算机控制系统、分级控制系统、集散控制系统、工厂自动化系统。
简述机电一体化系统(或产品)的设计类型机电一体化系统是指将机械、电子、控制等多个领域的技术、部
件与系统互相组合、集成在一起,形成一个功能完善、效率高、可靠
性好的系统或产品。
机电一体化系统的设计类型主要包括以下几种:
1. 集成式设计:将不同领域的技术、部件与系统互相集成在一起,以达到整体性能的优化。
这种设计类型的优点在于能够满足各种复杂
的工程需求,减少工具与设备的使用,可以大大减少设备的维护成本。
2. 模块化设计:将机电一体化系统划分成多个模块,每个模块都
包含特定的功能,模块之间可以灵活地组合,以适应不同的应用场景。
这种设计类型的优点在于可重用性高,模块化设计可以大大缩短产品
研发时间,降低生产成本。
3. 统一控制设计:将机械、电子、控制等领域的技术整合到一起,实现针对多种工况下的统一控制,协同运作,以达到最佳的性能表现。
这种设计类型的优点在于可以提高整体工作效率,保障系统的可靠性
和稳定性。
4. 软件定义设计:对于机电一体化系统而言,软件是一个至关重
要的部分。
在软件定义设计中,利用软件对系统进行调整和升级,实
现更快、更稳定和更高效的性能,达到最佳性价比。
这种设计类型的
优点在于可以提高系统的灵活性和可扩展性,适用于各个行业领域的
不同应用场景。
现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,导致了工程领域的技术革命与改造。
在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。
机电一体化概要机电一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。
机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。
但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。
由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。
因此,“机电一体化”涵盖“技术”和“产品”两个方面。
只是,机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术以及其它新技术的简单组合、拼凑。
这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。
机械工程技术有纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体力。
但是发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还能赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制自动诊断与保护等。
即机电一体化产品不仅是人的手与肢体的延伸,还是人的感官与头脑的眼神,具有智能化的特征是机电一体化与机械电气化在功能上的本质区别机电一体化技术发展“机电一体化”这个词是日本安川电机公司在上世纪60年代末作商业注册时最先创用的。
机电一体化中的自动控制系统设计摘要:基于时代的高发展要求和信息技术的快速进步,现阶段的机电一体化控制集成技术已发展成为具有综合价值的创新技术。
该技术在各种机电工程结构中的实际应用还需要通过多种专业技术的相互作用和协调来进一步实现。
关键词:自动控制;机电一体化;优化功能模块在机电一体化和美学一体化的设计理念指导下,机械产品设计被赋予了智能化、绿色化、人性化产品的新特征,这无疑对推动信息社会产品系列化建设的创新和可持续发展起到了更大的作用。
1机电控制系统与自动控制技术1.1机电控制系统机电控制系统主要用于使用计算机对其生产工作程序等执行的一定数量的程序设置操作。
以微机技术平台为载体,使机械设备能够根据设计建立的生产操作流程,自动形成一整套稳定的连续生产活动。
由于现代中国在机电过程控制系统开发技术领域也充分融合和应用了大量成熟优秀的西方技术电气自动化应用技术,自动网络通信技术等。
因此,由于其生产具有高度自动化控制系统的特点,特别是机电控制系统与通信技术的完美有效结合,不仅可以有效地实现对企业整个生产管理过程细节的实时、全面的自动监控,同时也意味着它可以全面实现对生产各个细节过程的动态、全面的实时控制,避免企业生产经营中可能存在的各种问题。
机电控制系统设备的安全应用和集成开发技术不仅可以全面有效地提高工作环境的效率,而且可以全面提高企业系统的经济效益规模。
目前,国内外智能机电控制系统产品的实际应用形式主要表现在以下两种形式,一种是以自动维护智能遥控系统为主,另一种是具有智能人机交互的遥控系统。
1.2自动控制技术从现代自动设备控制自动化技术的原理来看,其主要优点是在完全依赖其他自动控制设备技术和智能控制器技术的基础上,可以根据设定和计划的设备生产和操作程序直接进行全自动生产,并且在自动化设备生产控制的整个过程中基本上不需要额外的人力和协助。
目前,应用先进设备自动生产线控制技术的关键仍然是协调各生产线设备的控制。
机电一体化系统复习资料概念部分1、机电一体化系统基本要素机电一体化系统一般包括七个基本结构要素:机械本体、动力部分、传感检测部分、执行部分、驱动部分、控制部分及信息处理单元。
2、机电一体化系统各元素功能3、执行机构含义、种类机械本体含机械传动装置和机械结构装置——人的身体,骨骼(数控的工作台,丝杆等)机械系统内涵:起传递功率,支承连接、执行功能。
机械系统种类和作用1、传动机构:机电一体化系统中传动机构的主要功能是传递转矩和转速,实际上它是一种转矩、转速变换器。
机械传动部件对伺服系统的伺服特性有很大影响,特别是其传动类型、传动方式、传动刚性以及传动的可靠性对系统的精度、稳定性和快速响应性有重大影响。
2、导向机构:其作用是支承和限制运动部件按给定的运动要求和规定的运动方向运动。
该机构应能保证安全准确。
3、执行机构:用来完成操作任务,执行机构根据操作指令的要求在动力源的带动下完成预定的操作,一般要求它具有较高的灵敏度、精确度、良好的重复性和可靠性等。
动力单元1、按照机电一体化系统的控制要求,为系统提供能量和动力以保证系统正常运行。
2、机电一体化的显著特征之一,是用尽可能小的动力输入获得尽可能大的功能输出。
传感控制单元1、自动检测——人的五官、皮肤(感应同步器,光栅)。
2、对系统运行过程中所需要的本身和外界环境的各种参数及状态进行检测,并转换成可识别信号,传输到控制信息处理单元,经过分析、处理产生相应的控制信息。
执行和驱动单元1、驱动单元:是在控制信息作用下,驱动各种执行机构完成各种动作和功能。
2、机电一体化技术一方面要求驱动单元具有高频率和快速响应等特性,同时又要求其对水、油、温度、尘埃等外部环境的适应性和可靠性;另一方面由于受几何上动作范围狭窄等限制,还需考虑维修方便,并且尽可能实行标准化、系列化、通用化。
3、常见执行和驱动单元:机械、电磁、电液执行机构和步进电机、交直流伺服电机驱动系统。
控制与信息处理单元机电一体化系统的核心单元,其功能是将来自各传感器的检测信息和外部输入命令进行集中、存储、分析、加工,根据信息处理结果,按照一定的程序发出相应的控制信号,通过输出接口送往执行机构,控制整个系统有目的地运行,并达到预期的性能。
机电一体化控制系统的可靠性分析机电一体化控制系统是将机械系统和电气系统完美地结合起来的一种系统,具有高效、稳定、精准等特点,广泛应用于工业自动化、机器人控制、航空航天和军事设备等领域。
然而,机电一体化控制系统的可靠性问题一直是研究者们关注的重点,因为它直接影响到系统的稳定性和长期使用效果,因此本文将从系统的可靠性方面进行分析。
一、硬件可靠性机电一体化控制系统的硬件包括机械部分和电气部分两个方面,机械部分主要包括机械结构、执行器等,电气部分则包括传感器、电机、控制器等,这些硬件的可靠性对整个系统的正常运行至关重要。
因此,在系统设计阶段,需要考虑每个硬件的寿命、故障概率、失效模式等参数,以及选用适合的材料和组件,从而提高硬件的可靠性。
同时,对于机械部分来说,还需要考虑其安全性,如在设计传动链时需要考虑传动比、扭矩等参数,在设计结构时需要考虑强度、振动等因素,以确保机械部分能够在长期使用过程中稳定可靠地工作。
机电一体化控制系统中的软件包括控制算法、通讯协议、操作系统等,软件的可靠性对整个系统的稳定性非常重要。
因此,在软件开发阶段,需要遵守规范的软件开发流程,并采用一些软件工程的方法和技术,如模块化设计、代码重构、单元测试、代码审查等,从而减少软件的缺陷和出现bug的概率。
此外,还需要对软件进行充分测试和验证,以保证其正确性和稳定性。
三、故障诊断和维护机电一体化控制系统中,硬件和软件都有可能出现故障,因此需要设计相应的故障检测、诊断和修复机制。
在系统设计中,应该考虑到一些常见的故障,比如传感器故障、电机故障、通讯故障等,为每种故障设计相应的诊断和修复方法。
此外,在系统运行中还需要实现故障的记录和分析,以便对系统进行维护和改进。
四、环境适应性机电一体化控制系统需要适应不同的环境条件,比如温度、湿度、压力、杂音等因素,这些因素都会对系统的可靠性产生影响,因此在系统设计中需要考虑到这些因素。
在实际应用中,需要对系统进行严格的环境适应性测试,以确保系统能够在各种环境条件下稳定可靠地工作。
机电一体化中的自动控制系统设计摘要:基于时代的发展与科技的进步,现阶段机电控制技术已经发展成一项综合性的技术,该技术在机械电气工程中的应用需要多项技术交叉作用来实现[1]。
尤其是在机电一体化设计构想下,为机械产品赋予了智能化、绿色化、人性化的特征,这对于社会的建设和发展产生了巨大的助推作用。
但是,不同类型的产品在设计的过程中需要采用不同的方法及工艺,所以这就需要结合具体情况来应用机电一体化思想来确保产品的顺利生产,推动社会经济的发展。
关键词:机电一体化;自动控制1 机电控制系统与自动控制技术机电控制系统。
机电控制系统是以计算机技术为载体通过对生产程序进行一定的设置来实现对机械装备的远程控制,从而按照使得机械设备按照生产流程形成一整套的生产动作[2]。
因为机电控制系统中融入了大量的技术手段,如电力技术、互联网技术、网络通信技术等[3]。
所以其具有自动化的特点,尤其是机电控制系统与通信技术的结合,既可以实现对整个生产过程的全面监控,还能够实现对细节的全面调控,避免生产中存在问题。
机电控制系统的安全与发展不仅可以全面提升工作效率,还能够全面提升企业的经济效益,目前对于机电控制系统的应用主要表现为两种,其一为保持型的远程控制系统,其二为人机互动型控制系统。
自动控制技术。
从自动控制技术来看,其主要是在依赖控制装置与控制器的基础上按照设定好的生产程序进行自动化生产,在整个生产过程中不需要人力协助,目前的自动控制技术应用关键在于对多种设备的协调[4]。
而自动控制系统则是指通过对控制装置进行部分操作来使得设备按照一定程序自动运行,其是在自动控制技术的基础上发展起来,通过对机械设备、电气等方面的系统进行协调来完成预定的工作任务,所以其在机电控制系统中占有重要的地位。
2 机电一体化设计(1)设计构想。
目前,我国已经跻身于制造大国行列,尤其是在市场经济发展与产业结构调整的背景下,人们对于机电一体化产品设计的呼声越来越高。
WUHAN TEXTILE UNIVERSITY《机电一体化模块化控制系统》课程设计名:机电一体化模块化控制系统指导老师:张智明班级:机械11201班姓名:程志超学号:1202281102供料单元的结构与控制一、供料单元功能供料单元可作为起始单元,在整个系统中,起着向系统中的其它单元提供原料的作用。
它的具体功能是:按照需要将放置在料仓中的待加工工件(原料)自动地取出,并将其传送到下个工作单元。
二、供料单元的结构组成供料单元的结构组成如上图所示。
其主要结构组成为:工件推出与支撑,漏斗,阀组,端子排组件,PLC,急停按钮和启动/停止按钮,走线槽、底板等。
2.1 工件推出与支撑及漏斗部分该部分如图所示。
用于储存工件原料,并在需要时将料仓中最下层的工件推出到物料台上。
它主要由大工件装料管、推料气缸、顶料气缸、磁感应接近开关、漫射式光电传感器组成。
该部分的工作原理是:工件垂直叠放在料仓中,推料缸处于料仓的底层并且其活塞杆可从料仓的底部通过。
当活塞杆在退回位置时,它与最下层工件处于同一水平位置,而夹紧气缸则与次下层工件处于同一水平位置。
在需要将工件推出到物料台上时,首先使夹紧气缸的活塞杆推出,压住次下层工件;然后使推料气缸活塞杆推出,从而把最下层工件推到物料台上。
在推料气缸返回并从料仓底部抽出后,再使夹紧气缸返回,松开次下层工件。
这样,料仓中的工件在重力的作用下,就自动向下移动一个工件,为下一次推出工件做好准备。
为了使气缸的动作平稳可靠,气缸的作用气口都安装了限出型气缸截流阀。
气缸截流阀的作用是调节气缸的动作速度。
截流阀上带有气管的快速接头,只要将合适外径的气管往快速接头上一插就可以将管连接好了,使用时十分方便。
A 气缸两端分别有缩回限位和伸出限位两个极限位置,这两个极限位置都分别装有一个磁感应接近开关,如下图所示。
磁感应接近开关的基本工作原理是:当磁性物质接近传感器时,传感器便会动作,并输出传感器信号。
若在气缸的活塞(或活塞杆)上安装上磁性物质,在气缸缸筒外面的两端位置各安装一个磁感应式接近开关,就可以用这两个传感器分别标识气缸运动的两个极限位置。
当气缸的活塞杆运动到哪一端时,哪一端的磁感应式接近开关就动作并发出电信号。
在PLC的自动控制中,可以利用该信号判断推料及顶料缸的运动状态或所处的位置,以确定工件是否被推出或气缸是否返回。
在传感器上设置有LED显示用于显示传感器的信号状态,供调试时使用。
传感器动作时,输出信号“1”,LED亮;传感器不动作时,输出信号“0”,LED不亮。
传感器(也叫做磁性开关)的安装位置可以调整,调整方法是松开磁性开关的紧定螺栓,让磁性开关顺着气缸滑动,到达指定位置后,再旋紧紧定螺栓。
磁性开关有蓝色和棕色2根引出线,使用时蓝色引出线应连接到PLC输入公共端,棕色引出线应连接到PLC输入端子。
磁性开关的内部电路如图3-6虚线框内所示,为了防止实训时错误接线损坏磁性开关,YL-335A上所有磁性开关的棕色引出线都串联了电阻和二极管支路。
因此,使用时若引出线极性接反,该磁性开关不能正常工作。
磁性开关内部电路在底座和装料管第4层工件位置,分别安装一个漫射式光电开关。
漫射式光电接近开关是利用光照射到被测物体上后反射回来的光线而工作的,由于物体反射的光线为漫射光,故称为漫射式光电接近开关。
它的光发射器与光接收器处于同一侧位置,且为一体化结构。
在工作时,光发射器始终发射检测光,若接近开关前方一定距离内没有物体,则没有光被反射到接收器,接近开关处于常态而不动作;反之若接近开关的前方一定距离内出现物体,只要反射回来的光强度足够,则接收器接收到足够的漫射光就会使接近开关动作而改变输出的状态。
图3-7为漫射式光电接近开关的工作原理示意图。
漫射式接近开关的工作原理由此可见,若该部分机构内没有工件,则处于底层和第4层位置的两个漫射式光电接近开关均处于常态;若仅在底层起有3个工件,则底层处光电接近开关动作而第4层处光电接近开关常态,表明工件已经快用完了。
这样,料仓中有无储料或储料是否足够,就可用这两个光电接近开关的信号状态反映出来。
在控制程序中,就可以利用该信号状态来判断底座和装料管中储料的情况,为实现自动控制奠定了硬件基础。
供料单元中,用来检测工件不足或工件有无的漫射式光电接近开关选用OMRON公司的E3Z-L型放大器内置型光电开关(细小光束型)。
该光电开关的外形和顶端面上的调节旋钮和显示灯如图3-8所示。
图3-9给出该光电开关的内部电路原理框图。
E3Z-L光电开关电路原理图被推料缸推出的工件将落到物料台上。
物料台面开有小孔,物料台下面设有一个园柱形漫射式光电接近开关,工作时向上发出光线,从而透过小孔检测是否有工件存在,以便向系统提供本单元物料台有无工件的信号。
在输送单元的控制程序中,就可以利用该信号状态来判断是否需要驱动机械手装置来抓取此工件。
该光电开关选用OTS41型。
2.2电磁阀组阀组,就是将多个阀与消声器、汇流板等集中在一起构成的一组控制阀的集成,而每个阀的功能是彼此独立的。
供料单元的阀组只使用两个由二位五通的带手控开关的单电控电磁阀,两个阀集中安装在汇流板上,汇流板中两个排气口末端均连接了消声器,消声器的作用是减少压缩空气在向大气排放时的噪声。
阀组的结构如图3-10所示。
本单元的两个阀分别对顶料气缸和推料气缸进行控制,以改变各自的动作状态。
本单元所采用的电磁阀,带手动换向、加锁钮,有锁定(LOCK)和开启(PUSH)2个位置。
用小螺丝刀把加锁钮旋到在LOCK位置时,手控开关向下凹进去,不能进行手控操作。
只有在PUSH位置,可用工具向下按,信号为“1”,等同于该侧的电磁信号为“1”;常态时,手控开关的信号为“0”。
在进行设备调试时,可以使用手控开关对阀进行控制,从而实现对相应气路的控制,以改变推料缸等执行机构的控制,达到调试的目的。
2.3 转运模块它的功能是吸取工件,并将工件传送到下一个工作单元。
转运模块主要由旋转气缸、摆臂、真空吸盘、真空压力检测传感器、真空吸盘方向保持装置等组成。
旋转气缸是摆臂的驱动装置,其转轴的最大转角为180°,转角可以根据需要进行调整。
在转动气缸的两个极限位置上各装有一个磁感应式的接近开关,利用接近开关的信号状态来标识两个极限位置。
真空吸盘用于抓取工件。
吸盘内腔的负压(真空)是靠真空发生器产生的。
真空检测传感器,它是具有开关量输出的真空压力检测装置,当进气口的气压小于一定的负压(真空)值时,传感器动作,输出开关量 1,同时 LED 点亮,否则,输出信号 0,LED 熄灭。
真空吸盘方向保持装置,它的作用是:使真空吸盘在摆臂转动的过程中始终保持垂直向下的姿态,以使被运送的工件在运送过程中不致翻转。
它的工作原理是:旋转气缸固定在支架上,输出轴从固定齿轮的轴孔中穿过,并可自由转动,摆臂则固定在旋转气缸的转轴上;摆臂的另一端安装有一个可以自由转动带有齿轮的吸嘴,吸嘴的齿轮与旋转气缸输出轴外围的固定齿轮通过一个同步带相连。
当旋转气缸驱动摆臂转动时,摆臂与固定齿轮之间形成相对运动,导致同步带的运动,通过同步带带动了吸嘴的转动;固定齿轮与活动齿轮的传动比为 1:1,这样摆臂转动的角度等于吸嘴转动的角度,因此,保证了吸嘴在摆臂转动的过程中始终保持方向不变。
2.4电磁阀组阀组,就是将多个阀集中在一起构成的一组阀,而每个阀的功能是彼此独立的。
供料单元的阀组只使用两个由二位五通的带手控开关的单电控电磁阀,两个阀集中安装在汇流板上,汇流板中两个排气口末端均连接了消声器,消声器的作用是减少压缩空气在向大气排放时的噪声。
本单元的两个阀分别对顶料气缸和推料气缸的气路进行控制,以改变各自的动作状态。
本单元所采用的电磁阀,带手动换向、加锁钮,有锁定(LOCK)和开启(PUSH)2个位置。
用小螺丝刀把加锁钮旋到在LOCK位置时,手控开关向下凹进去,不能进行手控操作。
只有在PUSH位置,可用工具向下按,信号为“1”,等同于该侧的电磁信号为“1”;常态时,手控开关的信号为“0”。
三、气动控制回路3.1气动控制原理供料单元气动控制回路工作原理图该工作单元的执行机构是气动控制系统,其方向控制阀的控制方式为电磁控制或手动控制。
各执行机构的逻辑控制功能是通过 PLC 控制实现的。
在供料单元的气动控制原理图中,1A 为旋转缸;1B1 和 1B2 为磁感应式接近开关;2A为真空发生器;2B1 为真空压力检测传感器; 3A 为双作用推料气缸;3B1、3B2 为磁感应式接近开关;1Y1、1Y2 为控制旋转气缸的电磁阀的两个控制信号; 2Y1、2Y2 为控制真空发生器的电磁阀的两个电磁控制信号;3Y1 为控制推料缸的电磁阀的电磁控制信号。
3.2 电气接口地址系统中的每个部件上的输入、输出信号与 PLC 之间的通讯电路联接是通过I/O 接线端口实现的。
各接口地址已经固定。
各单元中的需要与 PLC 进行通讯联接的线路(包括各个传感器的线路、各个电磁阀的控制线路及电源线路)都已事先联接到了各自的 I/O 接线端口上,在与 PLC 联接时,只需使用一根专用电缆即可实现快速连接。
四、供料单元的PLC控制及编程4.1 供料单元的PLC工作任务本章节只考虑供料单元作为独立设备运行时的情况,单元工作的主令信号和工作状态显示信号来自PLC旁边的按钮/指示灯模块。
并且,按钮/指示灯模块上的工作方式选择开关SA应置于“单站方式”位置。
具体的控制要求为:①设备上电和气源接通后,若工作单元的两个气缸均处于缩回位置,且料仓内有足够的待加工工件,则“正常工作”指示灯HL1常亮,表示设备准备好。
否则,该指示灯以1Hz 频率闪烁。
②若设备准备好,按下启动按钮,工作单元启动,“设备运行”指示灯HL2常亮。
启动后,若出料台上没有工件,则应把工件推到出料台上。
出料台上的工件被人工取出后,若没有停止信号,则进行下一次推出工件操作。
③若在运行中按下停止按钮,则在完成本工作周期任务后,各工作单元停止工作,HL2指示灯熄灭。
④若在运行中料仓内工件不足,则工作单元继续工作,但“正常工作”指示灯HL1以1Hz的频率闪烁,“设备运行”指示灯HL2保持常亮。
若料仓内没有工件,则HL1指示灯和HL2指示灯均以2Hz频率闪烁。
工作站在完成本周期任务后停止。
除非向料仓补充足够的工件,工作站不能再启动。
4.2 PLC的I/O 接线本单元中,传感器信号占用7个输入点,留出1个点提供给启/停按钮作本地主令信号,则所需的PLC I/O点数为8点输入/2点输出。
选用西门子S7-222主单元,共8点输入和6点继电器输出,供料单元的I/O接线原理图如附录图一所示。
供料单元PLC的I/O接线是采用双层接线端子排连接的,端子排集中连接本工作单元所有电磁阀、传感器等器件的电气连接线、PLC的I/O端口及直流电源。