空间插值克里金内插法半方差计算规则分布点
- 格式:ppt
- 大小:1.23 MB
- 文档页数:74
空间插值方法汇总Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h 处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y 的协方差被定义为:区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
一般来说,它是一个依赖于空间点x 和向量h 的函数。
前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。
即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。
(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。
即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。
从而空间统计学应用而生。
➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。
常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。
严格来说趋势面分析并不是在一种空间数据插值法。
它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。
精度以最小二乘法进行验证。
克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。
克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。
克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。
以下介绍普通克里金插值的原理。
包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。
判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。
()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。
max min γγ-越大,空间相关性越强。
如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。
在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。
然后会通过这些离散点拟合成连续的半变异函数。
拟合函数的形式有球状、指数、高斯等。
在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。
普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。
空间插值方法1.反距离权重插值:通过与样本点距离大小赋予权重,距离近的样本点被赋予较大的权重,受该样本点的影响越大,同时可以限制插值点的个数、范围,通过幂值来决定样本点对插值点的影响程度,灵活性大,准确性高,但不太适用规则排列的插值点2.克里金插值:克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。
它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。
使用克里金插值需确定半变异函数的类型、步长、步数。
对于这种方法,原始的输入点可能会发生变化。
在数据点多时,结果更加可靠。
该插值方法对规则排列、较密集的点插值较适用,而离散的插值点则需进行多次调试才可达到较为理想的效果3.自然邻域插值:原理是构建voronoi多边形,也就是泰森多边形。
首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。
该方法不是通过数据模型来进行插值,不需要设置多于的参数,简便但不灵活,不适合离散点进行插值,因为会形成不规则插值边界,但插值结果相对符合实际数值、准确,适合规则排列、较密集的点插值。
4.样条函数插值:这种方法使用样条函数来对空间点进行插值,它有两个基本条件:1.表面必须完全通过样本点2.表面的二阶曲率是最小的。
插值主要受插值类型(Regularized 或Tension)和weight值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;适合那些空间连续变化且光滑的表面的生成。
该方法虽可生成平滑的插值结果,但其结果会在原有样点值进行数值延伸,产生于实际不符的结果,不建议一般插值使用。
克里金插值算法原理克里金插值算法是一种常用的地统计学方法,用于估计未知位置的属性值。
它基于空间自相关性的假设,通过已知点的属性值来推断未知点的属性值。
克里金插值算法的原理可以简单概括为以下几个步骤。
1. 数据收集和预处理在进行克里金插值之前,首先需要收集一定数量的已知点数据。
这些数据应该包含位置信息和对应的属性值。
收集到的数据应该经过预处理,包括数据清洗、异常值处理和数据转换等步骤,以确保数据的准确性和可靠性。
2. 空间自相关性分析克里金插值算法的核心思想是基于空间自相关性。
通过分析已知点之间的空间关系,可以确定属性值在空间上的变异性。
常用的方法是计算半方差函数,该函数描述了不同点对之间的属性值差异。
半方差函数的图像可以反映出属性值的空间相关性,从而确定合适的插值模型。
3. 插值模型的建立根据半方差函数的图像,可以选择合适的插值模型。
常用的插值模型包括球型模型、指数模型和高斯模型等。
选择合适的插值模型需要考虑数据的空间特征和变异性。
插值模型的建立可以通过拟合半方差函数来实现,拟合的结果可以用于后续的插值计算。
4. 插值计算在插值计算阶段,需要根据已知点的属性值和位置信息,以及插值模型的参数,推断未知点的属性值。
克里金插值算法通过对已知点进行加权平均来估计未知点的属性值。
加权平均的权重由插值模型和已知点与未知点之间的距离决定。
距离越近的已知点权重越大,距离越远的已知点权重越小。
5. 结果验证和误差分析插值计算完成后,需要对结果进行验证和误差分析。
可以通过交叉验证等方法来评估插值结果的准确性和可靠性。
误差分析可以帮助我们了解插值误差的分布情况,从而对插值结果进行修正和优化。
克里金插值算法的原理基于空间自相关性的假设,通过已知点的属性值来推断未知点的属性值。
它在地统计学、地质学、环境科学等领域有着广泛的应用。
通过合理选择插值模型和进行结果验证,克里金插值算法可以提供准确可靠的空间插值结果,为决策提供科学依据。
空间内插方法比较一、本文概述空间内插方法是一种在地理信息系统(GIS)和遥感技术中广泛使用的技术,用于根据已知的数据点推测未知区域的值。
这种方法在环境科学、气象学、城市规划、资源管理等众多领域都有着重要的应用。
本文旨在探讨和比较几种常见的空间内插方法,包括反距离权重法(IDW)、克里金插值法(Kriging)、自然邻点插值法(Natural Neighbors)以及多项式插值法等。
我们将首先简要介绍这些空间内插方法的基本原理和实施步骤,然后通过一个具体的案例或数据集来比较它们的性能。
我们将评估插值结果的精度、平滑度以及在不同应用场景下的适用性。
我们还将讨论这些方法的优缺点,以便读者能够根据自己的需求选择合适的空间内插方法。
通过本文的阅读,读者将对空间内插方法有更加深入的理解,能够掌握其基本原理和实施步骤,了解不同方法之间的差异和优缺点,并能够在实践中选择合适的空间内插方法。
二、空间内插方法概述空间内插是一种重要的地理信息系统(GIS)技术,用于估算在已知数据点之间或之外的未知地理位置的值。
它是通过分析和理解空间数据的分布模式,使用数学算法来预测和模拟这些模式在空间上的变化。
这种技术广泛应用于各种领域,包括环境科学、气象学、地质学、城市规划等。
空间内插方法大致可以分为两类:确定性方法和统计性方法。
确定性方法,如反距离权重法(IDW)、样条函数法(Spline)等,主要基于空间数据的物理特性和已知点之间的空间关系进行插值。
这类方法通常假设空间数据具有某种连续性和平滑性,通过最小化插值误差或最大化平滑度来得到预测值。
统计性方法,如克里金插值(Kriging)、协方差法等,则更多地依赖于对空间数据分布模式的统计分析和理解。
这类方法认为空间数据不仅具有空间相关性,而且可能存在某种潜在的随机性。
因此,它们通过构建和拟合空间统计模型,如变异函数或协方差函数,来估算未知位置的值。
每种空间内插方法都有其独特的优缺点和适用范围。