克里金插值法的详细介绍。kriging。
- 格式:doc
- 大小:41.50 KB
- 文档页数:4
克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。
具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。
克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。
克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。
在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。
克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。
除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。
总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。
在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。
克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。
克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。
克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。
以下介绍普通克里金插值的原理。
包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。
判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。
()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。
max min γγ-越大,空间相关性越强。
如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。
在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。
然后会通过这些离散点拟合成连续的半变异函数。
拟合函数的形式有球状、指数、高斯等。
在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。
普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。
kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。
在充分考虑观测资料之间的相互关系后,对每一个观测资料赋予一定的权重系数,加权平均得到估计值。
这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方差,其计算公式为:h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。
2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。
半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。
利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状模型、指数模型、圆形模型。
----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。
3.用拟合的模型计算出三个参数。
例如球状模型中nugget为c0,range为a,sill为c。
4.利用拟合的模型估算未知点的属性值,方程为:,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的已知点的数目。
假如用三个点来估算,则有这样权重就可以求出,然后估算未知点。
(上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书)下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。
do ii=1,nxif(tgrid(ii,1)==0.)thendo i=1,dsite(ii)!首先寻找距离最近的五个已知点位置do j=1,nhif(d(mm(ii),j).ne.0.or.j==1)thenhmie(j)=d(mm(ii),j)-dgrid(i)elsehmie(j)=9999end ifhmid(j)=abs(hmie(j))end dodo j=1,nhdo k=j,nhif(hmid(j)<hmid(k))thenelsem1=hmid(j)hmid(j)=hmid(k)hmid(k)=m1end ifend doend dodo j=1,5do k=1,nhif(abs(hmie(k))==hmid(j))thenlocat(j)=kend ifend doend dodo j=1,4do k=j+1,5if(locat(j)==locat(k))thendo i3=1,nhif(abs(hmie(i3))==abs(hmie(locat(j))).and.i3.ne.locat(j))thenlocat(j)=i3exitend ifenddoendifenddoenddo!然后求各点间距离,并求半方差do j=1,5do k=1,5hij(j,k)=abs(d(mm(ii),locat(j))-d(mm(ii),locat(k)))/1000.end doend dodo j=1,5hio(j)=sqrt(hmid(j)**2+(abs(latgrid(ii)-lonlat(mm(ii),2))*llat)**2 $ +(abs(longrid(ii)-lonlat(mm(ii),1))*(1.112e5* $ cos(0.017*(latgrid(ii)+lonlat(mm(ii),2))/2)))**2)/1000.end dodo j=1,5do k=1,5if(hij(j,k).eq.0.)thenrleft(j,k)=0.elserleft(j,k)=sill*(1.5*hij(j,k)/range-0.5*hij(j,k)**3/range**3)end ifif(hio(j).eq.0.)thenrrig(1,j)=0.elserrig(1,j)=sill*(1.5*hio(j)/range-0.5*hio(j)**3/range**3)end ifend doend dorrig(1,6)=1.rleft(6,6)=0.do j=1,5rleft(6,j)=1.rleft(j,6)=1.end dotry=rleftcall brinv(rleft,nnn,lll,is,js)ty1=matmul(try,rleft)!求权重wq=matmul(rrig,rleft)!插值所有格点上t,sdo j=1,5tgrid(ii,i)=tgrid(ii,i)+wq(1,j)*t(mm(ii),locat(j)) sgrid(ii,i)=sgrid(ii,i)+wq(1,j)*s(mm(ii),locat(j))end doenddoendifenddo。
克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。
克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。
该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。
它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。
但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。
克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。
常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。
块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。
按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。
在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。
python克里金插值法Python克里金插值法克里金插值法(Kriging)是一种用于空间插值的统计方法,常用于地质学、地球物理学、环境科学等领域。
它通过样本点的空间分布信息,推断未知点的值,并生成一幅连续的表面。
一、克里金插值法的原理克里金插值法的核心思想是通过已知点之间的空间相关性来估计未知点的值。
该方法基于两个假设:1)空间上相近的点具有相似的值;2)相邻点之间的差异可以通过某种函数来描述。
插值的第一步是计算已知点之间的空间相关性。
通常使用半方差函数(semivariogram)来量化相邻点之间的差异。
半方差函数表示了不同距离下的样本点间的差异,可以通过实际数据的半方差函数图来选择合适的函数模型。
插值的第二步是确定权重。
克里金插值法假设未知点的值是已知点的线性组合,权重由已知点之间的空间相关性决定。
一般来说,距离已知点越近且权重越大,距离已知点越远且权重越小。
插值的第三步是计算未知点的值。
根据已知点的值和权重,使用线性插值的方法来估计未知点的值。
这样,就可以生成一幅连续的表面,反映了未知点的分布情况。
二、克里金插值法的应用克里金插值法在地质学、地球物理学、环境科学等领域有广泛的应用。
以下是一些典型的应用案例:1. 地下水位插值地下水位的空间分布对于水资源管理和环境保护至关重要。
通过收集已知点的地下水位数据,可以利用克里金插值法推断未知点的地下水位值,从而绘制出地下水位的分布图。
2. 污染物扩散模拟污染物扩散对于环境风险评估和污染治理具有重要意义。
通过收集已知点的污染物浓度数据,可以利用克里金插值法推断未知点的污染物浓度值,从而模拟污染物的扩散情况。
3. 地震震级插值地震震级是评估地震强度的重要指标。
通过收集已知点的地震震级数据,可以利用克里金插值法推断未知点的地震震级值,从而绘制出地震震级的分布图。
4. 土壤质量评估土壤质量是农业生产和生态环境保护的关键因素。
通过收集已知点的土壤质量数据,可以利用克里金插值法推断未知点的土壤质量值,从而评估土壤质量的空间分布。
克里金插值克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。
克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。
该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。
它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。
但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。
克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。
常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。
块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。
按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。
在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。
克里金插值方法克里金插值方法(Kriging Interpolation)是一种常用的空间插值技术,用于预测未知位置的属性值。
它是由南非地质学家克里金(Danie G. Krige)在20世纪60年代提出的。
克里金插值方法通过对已知点周围的样本点进行空间插值,推断出未知点的属性值,从而实现对空间数据的预测。
克里金插值方法的基本思想是建立一个局部的空间模型,考虑样本点之间的空间相关性,并利用这种相关性来预测未知点的属性值。
它的核心思想是将空间数据看作是一个随机场,通过对随机场的统计分析来确定未知点的属性值。
克里金插值方法的具体步骤如下:1. 数据收集:首先需要收集一定数量的已知点数据,这些数据应该包含未知点的属性值以及其空间坐标。
2. 变异函数拟合:根据已知点的属性值和空间坐标,建立变异函数模型。
变异函数描述了样本点之间的空间相关性,可以采用不同的函数形式进行拟合,如指数函数、高斯函数等。
3. 半变异函数计算:通过对已知点之间的差异进行半变异函数计算,确定样本点之间的空间相关性。
4. 克里金权重计算:根据已知点的属性值、空间坐标和半变异函数,计算未知点与已知点之间的空间权重。
5. 属性值预测:利用已知点的属性值和克里金权重,对未知点进行属性值预测。
预测值可以根据不同的权重计算方法得到,如简单克里金、普通克里金、泛克里金等。
6. 模型验证:对预测结果进行验证,可以使用交叉验证等方法评估预测的准确性。
克里金插值方法在地质学、环境科学、农业、地理信息系统等领域广泛应用。
它可以用于地下水位、气象数据、土壤污染等空间数据的插值预测。
克里金插值方法不仅可以提供对未知点的预测值,还能估计预测误差,并提供空间数据的空间分布图。
尽管克里金插值方法具有很多优点,但也存在一些限制。
首先,克里金插值方法假设样本点之间的空间相关性是平稳的,即在整个研究区域内具有一致性。
然而,在实际应用中,样本点之间的空间相关性可能会随着距离的增加而变化。
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。
Kriging插值法克⾥⾦法是通过⼀组具有 z 值的分散点⽣成估计表⾯的⾼级地统计过程。
与插值⼯具集中的其他插值⽅法不同,选择⽤于⽣成输出表⾯的最佳估算⽅法之前,有效使⽤⼯具涉及 z 值表⽰的现象的空间⾏为的交互研究。
什么是克⾥⾦法?IDW(反距离加权法)和样条函数法插值⼯具被称为确定性插值⽅法,因为这些⽅法直接基于周围的测量值或确定⽣成表⾯的平滑度的指定数学公式。
第⼆类插值⽅法由地统计⽅法(如克⾥⾦法)组成,该⽅法基于包含⾃相关(即,测量点之间的统计关系)的统计模型。
因此,地统计⽅法不仅具有产⽣预测表⾯的功能,⽽且能够对预测的确定性或准确性提供某种度量。
克⾥⾦法假定采样点之间的距离或⽅向可以反映可⽤于说明表⾯变化的空间相关性。
克⾥⾦法⼯具可将数学函数与指定数量的点或指定半径内的所有点进⾏拟合以确定每个位置的输出值。
克⾥⾦法是⼀个多步过程;它包括数据的探索性统计分析、变异函数建模和创建表⾯,还包括研究⽅差表⾯。
当您了解数据中存在空间相关距离或⽅向偏差后,便会认为克⾥⾦法是最适合的⽅法。
该⽅法通常⽤在⼟壤科学和地质中。
克⾥⾦法公式由于克⾥⾦法可对周围的测量值进⾏加权以得出未测量位置的预测,因此它与反距离权重法类似。
这两种插值器的常⽤公式均由数据的加权总和组成:其中:Z(s i) = 第i个位置处的测量值λi = 第i个位置处的测量值的未知权重s0 = 预测位置N = 测量值数在反距离权重法中,权重λi仅取决于预测位置的距离。
但是,使⽤克⾥⾦⽅法时,权重不仅取决于测量点之间的距离、预测位置,还取决于基于测量点的整体空间排列。
要在权重中使⽤空间排列,必须量化空间⾃相关。
因此,在普通克⾥⾦法中,权重λi取决于测量点、预测位置的距离和预测位置周围的测量值之间空间关系的拟合模型。
以下部分将讨论如何使⽤常⽤克⾥⾦法公式创建预测表⾯地图和预测准确性地图。
使⽤克⾥⾦法创建预测表⾯地图要使⽤克⾥⾦法插值⽅法进⾏预测,有两个任务是必需的:找到依存规则。
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域对区域化变量进行无偏最优估计的一种方法,是地统计学的主要容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G . Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n,2,1)(,(),(11niijjiniijxxCxxCλμλ,(3)式中,C(x i,x j)是Z(x i)和Z(x j)的协方差函数。
kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。
在充分考虑观测资料之间的相互关系后,对每一个观测资料赋
予一定的权重系数,加权平均得到估计值。
这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方差,
其计算公式为:
h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。
2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。
半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。
利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状
模型、指数模型、圆形模型。
----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。
3.用拟合的模型计算出三个参数。
例如球状模型中nugget为c0,range为a,sill为c。
4.利用拟合的模型估算未知点的属性值,方程为:
,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的
已知点的数目。
假如用三个点来估算,则有
这样权重就可以求出,然后估算未知点。
(上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书)
下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。
do ii=1,nx
if(tgrid(ii,1)==0.)then
do i=1,dsite(ii)
!首先寻找距离最近的五个已知点位置
do j=1,nh
if(d(mm(ii),j).ne.0.or.j==1)then
hmie(j)=d(mm(ii),j)-dgrid(i)
else
hmie(j)=9999
end if
hmid(j)=abs(hmie(j))
end do
do j=1,nh
do k=j,nh
if(hmid(j)<hmid(k))then
else
m1=hmid(j)
hmid(j)=hmid(k)
hmid(k)=m1
end if
end do
end do
do j=1,5
do k=1,nh
if(abs(hmie(k))==hmid(j))then
locat(j)=k
end if
end do
end do
do j=1,4
do k=j+1,5
if(locat(j)==locat(k))then
do i3=1,nh
if(abs(hmie(i3))==abs(hmie(locat(j))).and.i3.ne.locat(j))then
locat(j)=i3
exit
end if
enddo
endif
enddo
enddo
!然后求各点间距离,并求半方差
do j=1,5
do k=1,5
hij(j,k)=abs(d(mm(ii),locat(j))-d(mm(ii),locat(k)))/1000.
end do
end do
do j=1,5
hio(j)=sqrt(hmid(j)**2+(abs(latgrid(ii)-lonlat(mm(ii),2))*llat)**2 $ +(abs(longrid(ii)-lonlat(mm(ii),1))*(1.112e5* $ cos(0.017*(latgrid(ii)+lonlat(mm(ii),2))/2)))**2)/1000.
end do
do j=1,5
do k=1,5
if(hij(j,k).eq.0.)then
rleft(j,k)=0.
else
rleft(j,k)=sill*(1.5*hij(j,k)/range-0.5*hij(j,k)**3/range**3)
end if
if(hio(j).eq.0.)then
rrig(1,j)=0.
else
rrig(1,j)=sill*(1.5*hio(j)/range-0.5*hio(j)**3/range**3)
end if
end do
end do
rrig(1,6)=1.
rleft(6,6)=0.
do j=1,5
rleft(6,j)=1.
rleft(j,6)=1.
end do
try=rleft
call brinv(rleft,nnn,lll,is,js)
ty1=matmul(try,rleft)
!求权重
wq=matmul(rrig,rleft)
!插值所有格点上t,s
do j=1,5
tgrid(ii,i)=tgrid(ii,i)+wq(1,j)*t(mm(ii),locat(j)) sgrid(ii,i)=sgrid(ii,i)+wq(1,j)*s(mm(ii),locat(j))
end do
enddo
endif
enddo。