第九讲 卡方检验
- 格式:ppt
- 大小:592.00 KB
- 文档页数:87
卡方检验的基本原理卡方检验是一种常用的统计方法,用于检验两个分类变量之间是否存在相关性。
在实际应用中,我们经常需要了解不同变量之间是否存在相关性,卡方检验就是一种有效的工具。
本文将介绍卡方检验的基本原理,帮助读者更好地理解和应用这一统计方法。
一、卡方检验的概念卡方检验是由卡尔·皮尔逊于1900年提出的一种统计方法,用于检验观察频数与期望频数之间的偏差程度,进而判断两个变量之间是否存在相关性。
在卡方检验中,我们通常会得到一个卡方值,通过比较这个卡方值与临界值,来判断两个变量之间是否存在显著性差异。
二、卡方检验的基本原理1. 建立假设在进行卡方检验之前,我们首先需要建立零假设(H0)和备择假设(H1)。
零假设通常是指两个变量之间不存在相关性,备择假设则是指两个变量之间存在相关性。
在卡方检验中,我们的目标是通过观察数据来判断是支持零假设还是备择假设。
2. 计算期望频数在进行卡方检验时,我们需要计算期望频数。
期望频数是指在零假设成立的情况下,我们预期每个分类变量的频数是多少。
通过对观察频数和期望频数进行比较,可以得出两者之间的偏差情况。
3. 计算卡方值计算卡方值是卡方检验的核心步骤。
卡方值的计算公式为:χ² = Σ((观察频数-期望频数)² / 期望频数)其中,Σ表示对所有分类变量进行求和。
通过计算卡方值,我们可以得到一个反映观察频数与期望频数偏差程度的统计量。
4. 确定显著性水平在进行卡方检验时,我们需要设定显著性水平(α),通常取0.05或0.01。
显著性水平表示我们所能接受的偶然性概率,即在零假设成立的情况下,观察到当前结果的概率。
5. 比较卡方值与临界值最后一步是比较计算得到的卡方值与临界值。
临界值可以查阅卡方分布表得到,根据自由度和显著性水平确定。
如果计算得到的卡方值大于临界值,则可以拒绝零假设,认为两个变量之间存在相关性;反之,则接受零假设,认为两个变量之间不存在相关性。
统计学中的卡方检验原理卡方检验是统计学中常用的一种假设检验方法,用于判断观察值与期望值之间的差异是否具有统计学意义。
它的原理和步骤如下:一、问题描述与假设建立在进行卡方检验前,首先需要明确研究的问题,并建立相应的假设。
以一个实例来说明,假设我们想研究男女之间是否存在不同的喜欢的颜色偏好。
我们将男女作为两个分类变量,颜色(如红、黄、蓝)作为一个分类变量,我们想知道男女对这些颜色有无统计学上的差异。
这个问题的原假设(H0)是:男女对颜色的喜好没有差异。
对立假设(H1)是:男女对颜色的喜好存在差异。
二、计算卡方值计算卡方值需要先构建列联表,列联表是将观察值按照不同的组合进行汇总,形成一个二维表格。
以男女喜欢的颜色偏好为例,假设我们调查了100位男性和100位女性,得到了以下的统计数据:红色黄色蓝色男性 30 40 30女性 50 30 20由上表可知,我们可以计算出男性对于红色的期望值:男性对红色的期望频数 = (男性总数/总样本数) * 红色总频数 =(100/200) * (30 + 50) = 80/200 = 40同理,我们可以计算出男性对黄色和蓝色的期望频数,以及女性对各个颜色的期望频数。
计算期望频数后,我们可以根据以下公式计算每一个单元格的卡方值:卡方值= (∑(观察频数 - 期望频数)^2 / 期望频数)将计算得到的每个单元格的卡方值相加,即可得到总的卡方值。
三、确定自由度和临界值卡方检验中,自由度的计算公式为:自由度 = (行数 - 1) * (列数 - 1)。
在本例中,自由度为 (2-1) * (3-1) = 2。
在确定自由度后,可以查找卡方分布表,根据所设定的显著性水平(如0.05)确定相应的临界值。
以自由度为2和显著性水平为0.05为例,在卡方分布表中查找,可得临界值为5.99。
四、判断与推断将计算得到的卡方值与临界值进行比较。
如果计算得到的卡方值大于临界值,则可以拒绝原假设,即说明观察值与期望值之间的差异是具有统计学意义的,反之,则接受原假设。
卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。
它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。
该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。
计算这种偏离程度的基本思路如下。
(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。
(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。
因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。
(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。
考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。
进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。
卡方检验的步骤
一、卡方检验的步骤
1. 根据实际需要,对假设H0下的观测数据进行定义。
2. 计算总样本数量,根据假设H0的总体分布特征确定计算卡方统计量的观测值,把观测值和期望值的差值平方以及期望值的比例相乘,把每一行的和加起来,这就是卡方统计量。
3. 计算卡方的自由度(df),卡方的自由度是由样本的维度决定的,一般来说,每个变量的类别数减一,就等于卡方分布的自由度。
4. 根据卡方分布表查询拒绝域,根据自由度和规定的显著性水平查询拒绝域的值,来判断此次卡方检验的结果。
5. 如果拒绝域的值低于卡方统计量,则拒绝假设H0,即认为两个总体之间有显著差异;如果拒绝域的值高于卡方统计量,则不拒绝假设H0,即认为两个总体之间无显著差异。
- 1 -。
卡方检验及其应用一、卡方检验概述:卡方检验主要应用于计数数据的分析,对于总体的分布不作任何假设,因此它属于非参数检验法中的一种。
它由统计学家皮尔逊推导。
理论证明,实际观察次数(f o )与理论次数(f e ),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为:)(n f f f ee 2202~)(χχ∑-= 这是卡方检验的原始公式,其中当f e 越大,近似效果越好。
显然f o 与f e 相差越大,卡方值就越大;f o 与f e 相差越小,卡方值就越小;因此它能够用来表示f o 与f e 相差的程度。
根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。
一般用卡方检验方法进行统计检验时,要求样本容量不宜太小,理论次数≥5,否则需要进行校正。
如果个别单元格的理论次数小于5,处理方法有以下四种:1、单元格合并法;2、增加样本数;3、去除样本法;4、使用校正公式。
当某一期望次数小于5时,应该利用校正公式计算卡方值。
公式为:∑--=ee f f f 202)5.0(χ二、卡方检验的统计原理:• 卡方检验所检测的是样本观察次数﹙或百分比﹚与理论或总体次数﹙或百分比﹚的差异性。
• 理论或总体的分布状况,可用统计的期望值(理论值)来体现。
• 卡方的统计原理,是取观察值与期望值相比较。
卡方值越大,代表统计量与理论值的差异越大,一旦卡方值大于某一个临界值,即可获得显著的统计结论。
三、卡方检验的主要应用: 1、独立性检验独立性检验主要用于两个或两个以上因素多项分类的计数资料分析,也就是研究两类变量之间的关联性和依存性问题。
如果两变量无关联即相互独立,说明对于其中一个变量而言,另一变量多项分类次数上的变化是在无差范围之内;如果两变量有关联即不独立,说明二者之间有交互作用存在。
独立性检验一般采用列联表的形式记录观察数据, 列联表是由两个以上的变量进行交叉分类的频数分布表,是用于提供基本调查结果的最常用形式,可以清楚地表示定类变量之间是否相互关联。