预测控制
- 格式:doc
- 大小:60.50 KB
- 文档页数:7
描述解释预测控制描述解释预测控制可用于检测、诊断、预报。
其中,预测控制系统模型可由: 1.线性二次型预测控制; 2.线性二次非预测控制;3.线性二次非线性预测控制; 4.线性二次线性预测控制; 5.非线性三次非预测控制; 6.多输入多输出(MIMO)描述解释预测控制。
预测控制系统模型构成的描述方法有: 1.状态空间描述; 2.传递函数描述; 3.结构图描述; 4.状态变量描述; 5.模块化描述等等。
描述解释预测控制就是根据已经取得的输入数据,估计输出变量(被控量)未来值的过程。
它具有以下特点: 1.预先控制,也称前馈控制,它可以把误差控制在给定范围之内,使被控对象在尽可能短的时间内达到所希望的性能指标。
在这里,输出量是一个纯粹的变量,而不含其他因素,如随动量等。
所以说预先控制是根据已知的偏差来调整控制器的增益,从而消除偏差,使控制系统始终稳定在一个设定的范围之内。
如果将某一外部扰动消除掉后,系统的输出还能保持在这个范围之内,那么这种控制就叫作“自动”。
在实际应用中,大多数的预先控制系统是这种情况,故预先控制又叫自动控制。
因此我们把用自动控制方式组成的控制系统叫做自动控制系统。
自动控制系统是预先控制的典型应用,但并不限于此。
预先控制也适用于过程参数不能直接观测或无法准确预计的场合,如弹性力学中的稳定性研究,不随时间变化的物理量的研究,采样控制理论中用的分析和综合等。
2.预测控制。
它是根据系统历史数据资料,估算系统的未来数学模型,并根据该数学模型来控制被控对象,以提高系统的性能指标的一种方法。
它只能对可能出现的偏差进行估计,所以它是一种被动控制方式。
它只能用于事先对系统没有任何了解,或者完全不了解,甚至在运行过程中突然发生的故障情况下,才能及时采取措施进行控制,使系统正常运行,防止发生故障,甚至故障还没有产生时就采取措施,把损失减少到最低限度。
例如:核电厂一旦发生爆炸,会产生大量放射性物质,使环境遭受破坏,造成人员伤亡。
预测控制实验报告摘要:本文报告了一项关于预测控制的实验研究,旨在对预测控制的原理和应用进行探讨。
实验通过建立数学模型,并运用预测控制算法对目标系统进行控制。
实验结果表明,预测控制在提高系统稳定性和响应速度方面具有显著的优势。
1. 引言预测控制是一种基于动态模型的控制策略,其可以通过对目标系统的未来特性进行预测来优化控制输入信号,以实现系统的稳定性和性能要求。
预测控制在工业生产中已被广泛应用,对于复杂系统的控制具有重要意义。
2. 实验设计在本实验中,我们首先设计了一个目标系统,即一个简单的加速度系统,用以模拟实际工业生产中的控制系统。
然后,通过使用预测控制算法对该系统进行控制。
2.1 目标系统建模我们使用了一个二阶传递函数模型来描述目标系统,该模型表示了系统的加速度响应特性。
通过测量系统的输入-输出数据,并运用系统辨识技术,我们得到了目标系统的模型参数。
2.2 预测控制算法选择在本实验中,我们选择了基于模型的预测控制算法(MPC),该算法利用目标系统的模型进行控制。
MPC算法通过不断预测系统的未来状态和性能,并通过优化过程来选择最优的控制信号。
我们基于目标系统的模型参数和性能要求,设置了MPC算法的相关参数。
2.3 实验过程在实验中,我们将目标系统的模型参数输入到MPC算法中,并根据目标系统的状态实时更新预测,并生成最优控制信号。
通过不断迭代和优化,我们最终实现了目标系统的控制。
3. 实验结果与分析我们对预测控制算法的性能进行了详细评估和分析。
实验结果表明,通过预测控制算法对目标系统进行控制,系统的稳定性得到了显著提高。
与传统的PID控制相比,预测控制算法在系统响应速度和抗干扰性能上取得了明显的优势。
4. 实验总结本实验通过对预测控制原理和应用的研究,验证了预测控制在系统控制方面的优势。
预测控制算法可以准确地预测未来的系统状态和性能,并通过优化控制信号实现对系统的稳定性和性能的优化。
本实验的结果对于工业生产中的控制系统设计和优化具有重要的指导意义。
1.1 引言预测控制是一种基于模型的先进控制技术,它不是某一种统一理论的产物,而是源于工业实践,最大限度地结合了工业实际地要求,并且在实际中取得了许多成功应用的一类新型的计算机控制算法。
由于它采用的是多步测试、滚动优化和反馈校正等控制策略,因而控制效果好,适用于控制不易建立精确数字模型且比较复杂的工业生产过程,所以它一出现就受到国内外工程界的重视,并已在石油、化工、电力、冶金、机械等工业部门的控制系统得到了成功的应用。
工业生产的过程是复杂的,我们建立起来的模型也是不完善的。
就是理论非常复杂的现代控制理论,其控制的效果也往往不尽人意,甚至在某些方面还不及传统的PID控制。
70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想的观念,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。
这样的背景下,预测控制的一种,也就是模型算法控制(MAC -Model Algorithmic Control)首先在法国的工业控制中得到应用。
同时,计算机技术的发展也为算法的实现提供了物质基础。
现在比较流行的算法包括有:模型算法控制(MAC)、动态矩阵控制(DMC )、广义预测控制(GPC)、广义预测极点(GPP)控制、内模控制(IMC)、推理控制(IC)等等。
随着现代计算机技术的不断发展,人们希望有一个方便使用的软件包来代替复杂的理论分析和数学运算,而Matlab、C、C++等语言很好的满足了我们的要求。
1.2 预测控制的存在问题及发展前景70年代以来,人们从工业过程的特点出发,寻找对模型精度要求不高,而同样能实现高质量控制性能的方法,以克服理论与应用之间的不协调。
预测控制就是在这种背景下发展起来的一种新型控制算法。
它最初由Richalet和Cutler等人提出了建立在脉冲响应基础上的模型预测启发控制(Model Predictive Heuristic Control,简称“MPHC”),或称模型算法控制(Model Algorithmic Control,简称“MAC”);Cutler等人提出了建立在阶跃响应基础上的动态矩阵控制(Dynamic Matrix Control,简称“DMC”),是以被控系统的输出时域响应(单位阶跃响应或单位冲激响应)为模型,控制律基于系统输出预测,控制系统性能有较强的鲁棒性,并且方法原理直观简单、易于计算机实现。
预测控制的基本原理
预测控制的基本原理是通过对过去的数据进行分析和建模,从而预测未来的状态或行为,并根据这些预测结果采取相应的控制策略来达到期望的目标。
具体步骤包括:
1. 数据收集:收集历史数据,并进行必要的预处理,例如去除异常值或噪声。
2. 建模:基于收集到的数据,建立数学模型来描述系统的演化规律。
可以使用统计模型、机器学习模型或基于物理原理的数学模型等。
3. 预测:利用建立的模型,对未来的状态进行预测。
可以使用时间序列分析、回归分析、神经网络等方法进行预测。
4. 目标设定:确定期望的目标或性能指标,例如最小化误差、最大化效益等。
5. 控制决策:根据预测结果和目标设定,制定相应的控制策略。
可以使用经典的控制算法,如PID控制器,也可以使用优化算法、模糊控制等。
6. 执行控制:根据控制策略,实施相应的控制动作,将系统引导到期望的状态或行为。
7. 监测调整:监测实际的系统响应,并根据反馈信息进行调整和优化,以进一步提高控制性能。
预测控制的基本原理是基于对系统行为的分析和预测,并通过控制策略来引导系统的运行。
通过不断的预测和调整,可以逐步优化系统的性能,适应变化的环境和需求。
预测控制的基本原理预测控制是一种控制方法,旨在根据当前系统状态和过去的行为数据,预测未来的系统行为,并采取相应的控制策略以优化系统性能。
预测控制的基本原理包括模型建立、预测、优化和执行等步骤。
首先,预测控制的第一步是建立系统的数学模型。
模型可以是基于物理原理的物理模型,也可以是基于实验数据的经验模型或黑盒模型。
在预测控制中,我们需要将系统状态和输入量映射到输出量上,以描述系统的动态行为。
其次,预测控制的第二步是使用建立好的模型来进行预测。
通过观测系统的当前状态和过去的行为数据,我们可以利用模型预测系统未来的行为。
常用的预测方法包括基于回归分析的线性预测、基于时间序列的ARMA模型、基于神经网络的非线性预测等。
预测结果可以是系统的未来状态、输出或性能指标。
第三步是优化控制策略。
在预测控制中,我们可以使用优化算法,如最优控制、模型预测控制等,以根据预测的系统行为优化控制策略。
优化目标可以是最小化误差、最大化系统性能或满足约束条件等。
通过优化控制策略,我们可以使系统在未来的行为中达到期望的状态或性能。
最后,执行控制策略是预测控制的最后一步。
根据优化得到的控制策略,我们可以将其转化为具体的控制指令,并应用于实际控制系统中。
执行控制策略的方式取决于具体的系统,可能是调整参数、改变输入量、控制开关或阀门等。
通过执行控制策略,我们可以实现对系统的实时控制和调整,使系统在未来的行为中接近预测的结果。
预测控制作为一种先进的控制方法,在许多领域都得到了广泛的应用。
例如,在工业生产中,预测控制可以用于优化生产过程,提高生产效率和产品质量。
在交通系统中,预测控制可以用于交通流量的预测和调度,减少交通拥堵和排放。
在能源管理中,预测控制可以用于优化能源的使用,降低能源消耗和碳排放。
在自动驾驶和机器人领域,预测控制可以用于判断和预测环境中的障碍物,实现安全和高效的运动。
总结来说,预测控制是一种基于系统模型和预测方法的控制方法,通过预测系统未来的行为,优化控制策略并执行控制指令,以达到系统性能的优化。
预测控制的原理方法及应用1. 概述预测控制是一种基于模型的控制方法,通过使用系统动态模型对未来的系统行为进行预测,进而生成最优的控制策略。
预测控制广泛应用于各种工业自动化和控制系统中,包括机械控制、化工过程控制、交通流量控制等。
2. 预测模型的建立在预测控制中,首先需要建立系统的预测模型,以描述系统的行为。
根据系统的具体特征,可以选择不同的预测模型,包括线性模型、非线性模型和时变模型等。
预测模型的建立通常需要通过系统的历史数据进行参数估计,以获得最佳的模型效果。
3. 预测优化算法为了生成最优的控制策略,预测控制采用了各种优化算法。
其中,最常用的是模型预测控制(MPC)算法,它通过迭代优化的方式,逐步调整控制策略,以使系统的输出与期望输出尽可能接近。
MPC算法可以通过数学优化方法来求解,如线性规划、二次规划等。
此外,还有一些其他的优化算法可以用于预测控制,如遗传算法、粒子群优化算法等。
4. 预测控制的应用预测控制在各种领域都有广泛的应用,下面将介绍几个典型的应用领域。
4.1 机械控制在机械控制中,预测控制被广泛应用于运动轨迹控制、力控制等方面。
通过建立机械系统的预测模型,可以实现对机械系统的高精度控制,并提高系统的稳定性和性能。
4.2 化工过程控制化工过程控制是预测控制的另一个重要应用领域。
通过预测模型对化工过程进行建模,可以实现对反应过程、传输过程等的预测和控制。
预测控制可以提高化工过程的安全性和效率,并减少能源消耗。
4.3 交通流量控制交通流量控制是城市交通管理中的重要问题。
预测控制可以借助历史交通数据建立交通流量的预测模型,并根据预测结果进行交通信号控制。
通过优化交通信号的时序和配时,可以有效减少交通拥堵和排队长度,提高交通流量的运行效率。
5. 预测控制的优势和挑战预测控制相较于传统的控制方法具有一些显著的优势,但也面临一些挑战。
5.1 优势•预测控制可以通过建立系统动态模型,更准确地预测系统的未来行为,从而生成更优的控制策略。
预测控制经典书籍预测控制是一种控制理论和方法,它在许多工程和科学领域中都有广泛的应用。
关于预测控制的经典书籍有很多,以下是一些被广泛认可的经典著作:1. "Predictive Control for Linear and Hybrid Systems",作者,Alberto Bemporad 和 Manfred Morari。
这本书详细介绍了线性和混合系统的预测控制理论和方法,包括基本概念、算法和应用。
2. "Predictive Control with Constraints",作者,Jan Maciejowski。
这本书深入探讨了带有约束条件的预测控制问题,涵盖了理论、算法和实际应用,对于控制工程师和研究人员来说是一本非常有价值的参考书。
3. "Predictive Control: An Introduction",作者,Finn Haugen。
这本书是一本介绍性的著作,适合初学者阅读,它详细解释了预测控制的基本概念、原理和应用,是学习预测控制的良好起点。
4. "Predictive Control in Process Engineering: From the Basics to the Applications",作者,Andrey P. Naumenko 和Leonid M. Fridman。
这本书着重介绍了预测控制在过程工程中的应用,涵盖了从基础知识到实际应用的内容,对于从事过程控制工程的专业人士来说是一本不可多得的参考书。
这些经典书籍涵盖了预测控制的基本理论、算法和实际应用,对于想深入了解预测控制的人士来说都是非常有价值的参考资料。
阅读这些书籍可以帮助读者建立扎实的预测控制理论基础,掌握预测控制的关键概念和技术,从而在工程实践中取得更好的应用效果。
g11=poly2tfd(12.8,[16.7,1],0,1);%POL Y2TFD Create transfer functions in 3 row representation将通用的传递函数模型转换为MPC传递函数模型% g = poly2tfd(num,den,delt,delay)% POL Y2TFD creates a MPC toolbox transfer function in following format:%g为对象MPC传递函数模型% g = [ b0 b1 b2 ... ] (numerator coefficients)% | a0 a1 a2 ... | (denominator coefficients)% [ delt delay 0 ... ] (only first 2 elements used in this row)%% Inputs:% num : Coefficients of the transfer function numerator.% den : Coefficients of the transfer function denominator.% delt : Sampling time. Can be 0 (for continuous-time system)% or > 0 (for discrete-time system). Default is 0.% delay : Pure time delay (dead time). Can be >= 0.% If omitted or empty, set to zero.% For discrete-time systems, enter as PERIODS of pure% delay (an integer). Otherwise enter in time units.g21=poly2tfd(6.6,[10.9,1],0,7);g12=poly2tfd(-18.9,[21.0,1],0,3);g22=poly2tfd(-19.4,[14.4,1],0,3);delt=3;ny=2;tfinal=90;model=tfd2step(tfinal,delt,ny,g11,g21,g12,g22)%对于这个例子,N=90/3=30figure(3)plot(model)%TFD2STEP Determines the step response model of a transfer function model.传递函数模型转换成阶跃响应模型% plant = tfd2step(tfinal, delt2, nout, g1)% plant = tfd2step(tfinal, delt2, nout, g1, ..., g25)% The transfer function model can be continuous or discrete.%% Inputs:% tfinal: truncation time for step response model.% delt2: desired sampling interval for step response model.% nout: output stability indicator. For stable systems, this% argument is set equal to number of outputs, ny.% For systems with one or more integrating outputs,% this argument is a column vector of length ny with% nout(i)=0 indicating an integrating output and% nout(i)=1 indicating a stable output.% g1, g2,...: SISO transfer function described above ordered% to be read in columnwise (by input). The number of % transfer functions required is ny*nu. (nu=number of % inputs). Limited to ny*nu <= 25.%% Output:% plant: step response coefficient matrix in MPC step format. plant=model;P=6;M=2;ywt=[];uwt=[1 1];Kmpc=mpccon(model,ywt,uwt,M,P)%ywt,uwt : 相当于Q,R%MPCCON Calculate MPC controller gains for unconstrained case.% Kmpc = mpccon(model,ywt,uwt,M,P)% MPCCON uses a step-response model of the process.% Inputs:% model : Step response coefficient matrix of model.% ywt,uwt : matrices of constant or time-varying weights.相当于Q,R% If the trajectory is too short, they are kept constant% for the remaining time steps.% M : number of input moves and blocking specification. If% M contains only one element it is the input horizon% length. If M contains more than one element% then each element specifies blocking intervals.% P : output (prediction) horizon length. P = Inf indicates the% infinite horizon.%% Output:% Kmpc : Controller gain matrixtend=30;r=[0 1];[y,u]=mpcsim(plant,model,Kmpc,tend,r);%plan为开环对象的实际阶跃响应模型%model为辨识得到的开环阶跃响应模型%Kmpc相当于D阵%Tend仿真的结束时间.%R输出设定值和参考轨迹%r=[r1(1) r2(1)...rny(1);r1(2) r2(2)....rny(2);... r1(N) r2(N) ...rny(N)]%y:控制输出%u:控制变量%ym:模型预测输出%MPCSIM Simulation of the unconstrained Model Predictive Controller.% [y,u,ym] = mpcsim(plant, model, Kmpc, tend, r,usat, tfilter,% dplant, dmodel, dstep)% REQUIRED INPUTS:% plant(model): the step response coefficient matrix of the plant (model)% generated by the function tfd2step% Kmpc: the constant control law matrix computed by the function mpccon% (closed-loop simulations).For open-loop simulation, controller=[].% tend: final time of simulation.% r: for the closed-loop simulation, it is a constant or time-varying% reference trajectory. For the open-loop simulation, it is the% trajectory of the manipulated variable u.% OPTIONAL INPUTS:% usat: the matrix of manipulated variable constraints.It is a constant% or time-varying trajectory of the lower limits (Ulow), upper limits% (Uhigh) and rate of change limits (DelU) on the manipulated % variables. Default=[].% tfilter: time constants for noise filter and unmeasured disturbance lags.% Default is no filtering and step disturbance.% dplant: step response coefficient matrix for the disturbance effect on the% plant output generated by the function tfd2step. If distplant is% provided, dstep is also required. Default = [].% dmodel: step response coefficient matrix for the measured disturbance% effect on the model output generated by the function tfd2step.% If distmodel is provided, dstep is also required. Default=[].% dstep: matrix of disturbances to the plant. For output step disturbances% it is a constant or time-varying trajectory of disturbance values% For disturbances through step response models,it is a constant or% time-varying trajectory of disturbance model inputs.Default=[].% OUTPUT ARGUMENTS: y (system response), u (manipulated variable) and% ym (model response)plotall(y,u,delt)figure(2)plot(y,'*')南通大学毕业设计(论文)任务书题目锅炉液位系统的DMC-PID控制学生姓名朱养兵学院电气工程学院专业自动化班级自051学号0512012010起讫日期2009.2 -2009.6指导教师李俊红职称讲师发任务书日期2009 年2 月18 日●MATLAB 软件●JX-300X组态监控软件●浙大中控DCS●上海齐鑫公司过程控制对象●PC机。