新人教版初中数学八年级上册《第十四章整式的乘法与因式分解:14.3因式分解》优质课导学案_0
- 格式:doc
- 大小:130.50 KB
- 文档页数:7
第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式: a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+2·4x·3+ 32.解:(1)16x2+ 24x +9= (4x)2 + 2·4x·3 + 32= (4x + 3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+ 4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是( )(出示课件15)A . 11 B. 9 C. –11 D. –9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2 ;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解: (1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b) ·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a –4b+5=0,求2a 2+4b –3的值.(出示课件23) 师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a –4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b –2)2=0∴ 2a 2+4b –3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2–6a +9C .x 2+5yD .x 2–5y2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy(x –y)–x 3B .–x(x –2y)21020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩C.x(4xy–4y2–x2) D.–x(–4xy+4y2+x2)3.若m=2n+1,则m2–4mn+4n2的值是________.4.若关于x的多项式x2–8x+m2是完全平方式,则m的值为_________ .5. 把下列多项式因式分解.(1)x2–12x+36; (2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;6. 计算:(1) 38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327. 分解因式:(1)4x2+4x+1;(2)1x2–2x+3.3小聪和小明的解答过程如下:小聪: 小明:他们做对了吗?若错误,请你帮忙纠正过来.8. (1)已知a–b=3,求a(a–2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.参考答案:1.B2.B3.14. ±45. 解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6. 解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17. 解: (1)原式=(2x)2+2•2x•1+1=(2x+1)2(2)原式=13(x2–6x+9)=13(x–3)28. 解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2. 当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
第十四章整式的乘法和因式分解14.3 因式分解第一课时14.3.1 提公因式法1 教学目标1.1 知识与技能:[1]理解因式分解的概念,知道因式分解和整式的乘法是方向相反的变形。
[2]理解公因式的概念,会根据“三定法”确定公因式。
[3]掌握因式分解中的提公因式法。
1.2过程与方法:[1]通过对比整式乘法,理解因式分解的概念,发展学生的逆向思维能力。
[2]通过类比数的结合律,抽象出因式分解中的提公因式方法。
1.3 情感态度与价值观:[1]在数学运算中培养学生细致严谨的精神素养。
[2]让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
2 教学重点/难点/易考点2.1 教学重点[1]因式分解的概念及提公因式法。
2.2 教学难点[1]正确找出多项式各项的公因式[2]正确认识分解因式与整式乘法的区别和联系。
3 专家建议学生刚刚学习过有关幂的运算,因此在教学设计中可以多适当安排一些有关幂的、应用提公因式法的分解因式题目。
此外,因式分解属于新概念,它和学生以往的运算认知是相反的,教师在教学过程中应该耐心面对学生的错误,并多举出实例使学生区别整式乘法和因式分解。
4 教学方法观察思考——概念介绍——补充讲解——练习提高5 教学用具多媒体。
6 教学过程6.1 引入新课【师】同学们好。
这节课开始,我们先来思考一个问题,630能被哪些数整除?【生】把630分解质因数,可以得到:630=2×32×5×7。
【师】这个问题大家小学就知道了对吧,但现在我们在学习整式的乘法,所以我们可以想一下,一个数可以写成若干个因数乘积的形式,整式能不能这样做呢?这就是这节课我们要学习的内容。
【板书】第十四章整式的乘法和因式分解14.3 因式分解14.3.1 提公因式法6.2 新知介绍[1]因式分解的概念【师】大家看投影(给出114页探究),首先我们来完成这样的一个任务:把下列多项式写成整式的乘积的形式。
根据整式的乘法,你能得到答案么?【生】(完成题目,给出答案)。
精品 Word 可修改 欢迎下载 14.3 因式分解14.3.1 提公因式法1.明确提公因式法分解因式与单项式乘多项式的关系.2.能正确找出多项式的公因式,熟练用提公因式法分解简单的多项式.重点:能正确找出多项式的公因式.难点:熟练用提公因式法分解简单的多项式.一、自学指导自学1:自学课本P114页“探究”,理解因式分解与整式乘法之间的区别与联系,完成下列填空.(5分钟)把下列多项式写成整式的积的形式:x 2+x =x(x +1);x 2-1=(x +1)(x -1);ma +mb +mc =m(a +b +c).总结归纳:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解(或分解因式).因式分解与整式乘法的关系:多项式因式分解整式乘法整式的乘法.总结归纳:整式的乘法与因式分解是两种互逆的变形,整式乘法的结果是和,因式分解的结果是积.自学2:自学课本P114-115“例1和例2”,掌握利用提公因式法分解因式.(5分钟)多项式2x 2+6x 3中各项的公因式2x 2;多项式x(a -3)+y(a -3)2中各项的公因式是a-3.总结归纳:一个多项式中各项都含有的因式叫做这个多项式各项的公因式.公因式的确定方法:对于数字取各项系数的最大公约数;对于字母(含字母的多项式),取各项都含有的字母(含字母的多项式),相同的字母(含字母的多项式)的指数,取次数的最低的.提取公因式:把一个多项式分解成两个因式积的形式,其中的一个因式是各项的公因式,另一个因式是多项式除以这个公因式的商.点拨精讲:在将多项式分解因式的时候首先提取公因式,分解要彻底.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(3分钟)1.课本P115页练习题1.2.下列各式从左到右的变形属于因式分解的是(D )A .a 2+1=a(a +1a)B .(x +1)(x -1)=x 2-1C .a 2+a -5=(a -2)(a +3)+1D .x 2y +xy 2=xy(x +y)小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 分解因式:(1)(x +2y)2-x -2y ;精品 Word 可修改 欢迎下载 (2)5x(x -3y)3-15y(3y -x)3.解:(1)(x +2y)2-x -2y =(x +2y)2-(x +2y)=(x +2y)(x +2y -1);(2)5x(x -3y)3-15y(3y -x)3=5x(x -3y)3+15y(x -3y)3=5(x -3y)3(x +3y).点拨精讲:遇到第1题的多项式可以利用交换律重新组合后再找公因式,第2小题先将(x -3y)3和(3y -x)3化成同底数幂,变形时注意符号.探究2 已知2x -y =13,xy =2,求2x 4y 3-x 3y 4 的值.解:∵2x 4y 3-x 3y 4=x 3y 3(2x -y),当2x -y =13,xy =2时,∴原式=x 3y 3(2x -y)=23×13=83. 学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.课本P115页练习题2,3.2.计算:(1)m(3-m)+2(m -3);(2)a(a -b -c)+b(c -a +b)+(b +c -a).解:(1)m(3-m)+2(m -3)=-m(m -3)+2(m -3)=(m -3)(2-m);(2)a(a -b -c)+b(c -a +b)+(b +c -a)=a(a -b -c)-b(a -b -c)-(a -b -c)=(a-b -c)(a -b -c)=(a -b -c)2.3.计算:(1)(-2)201+(-2)202;(2)ab +a +b +1.解:(1)(-2)201+(-2)202=(-2)201×(1-2)=-(-2)201=2201;(2)ab +a +b +1=a(b +1)+(b +1)=(b +1)(a +1).(3分钟)1.提公因式法分解因式,关键在于找公因式.2.提公因式法分解因式的步骤是:先排列;找出公因式并写出来作为一个因式;另一个因式为原式与公因式的商(某一项是公因式时,提公因式后为1或-1,不能遗漏).3.因为因式分解是恒等变形,所以,把分解的结果乘出来看是否得到原式,就可以辨别分解的正确与错误.4.因式分解的结果应该是整式的积.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)1、在最软入的时候,你会想起谁。
人教版八年级数学上册
《因式分解》复习课教学设计
[设计思想]
以《初中数学新课程标准》为依据,注重发展每个学生的优势,激励每个学生学习的主动性和积极性,重视发展学生的兴趣和潜能,力求实现面对有差异的学生,实施有差异的教育,促进每个学生最优发展。
[教材分析]
《分解因式》是人民教育出版社义务教育课程实验教科书八年级数学上册第十四章的教学内容。
因式分解是进行代数式恒等变形的重要手段之一,它是在学习整式四则运算的基础上进行的,它不仅对多项式的求值、简便运算等有直接的应用,也为以后学习分式、解方程(组)、二次函数奠定基础,因此学好分解因式对于代数知识的后续学习,具有相当重要的意义。
[学情分析]
本章学习虽已结束,但由于分解因式的概念比较抽象,知识点乱、杂、多,且与整式运算关系密切,所以学生在学习过程中存在很多问题,如:分解不彻底、符号处理错误、方法选择不当、幂的运算的逆用不会等。
尤其是后进的学生更是无从下手。
所以教学时教师要用足够的耐心与信心,对各个层次的学生进行合理深入的引导,使学生在轻松的氛围中弥补自己知识漏洞,提高学习数学的积极性、主动性。
[三维目标]
知识目标
A层:进一步理解分解因式的意义,会进行简单的分解因式
B层:能灵活选择分解因式的方法,明确每一步的算理,并能分解正确。
能力目标
发展学生的思考能力、语言表达能力和推理问题的能力,深化逆向思维能力。
情感目标
培养学生自信心、合作能力、竞争意识以及勇于探索的精神。
[重点]
A层:会进行简单的分解因式。
B层:灵活选择方法。
[难点]
A层:因式分解的思考分析方法。
B层:正确的分解因式。
【教学用具的准备】电子白板
[教学过程]
第一部分:要点、考点聚焦
一、什么叫分解因式?与整式乘法有什么关系?
把一个多项式化成几个整式的积的形式,叫做多项式的分解因式。
也叫做因式分解。
二、我们所学的分解因式的方法有哪几种?
1.提取公因式法
2. 运用公式法(平方差公式,完全平方公式)
3.十字相乘法(常数项分解法)
4.分组分解法
1、提公因式法:
(1)如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式。
这种分解因式的方法叫做提公因式法。
(2)例题:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2② p(y-x)-q(x-y)
③ (x-y)2-y(y-x)2
(3)提取公因式的要诀:
找准公因式,一次要提净。
系数大公约,字母全都有,且为低次幂。
全家都搬走,留1把家守;
提负要变号,变形看奇偶
2、运用公运
(1)用公式法主要使用的公式有如下几个式法:
① a2-b2=(a+b)(a-b) [ 平方差公式 ]
② a2 +2ab+ b2=(a+b)2[ 完全平方公式 ] a2-2ab+ b2=(a-b)2[ 完全平方公式 ] (2)例题:把下列各式分解因式
①x2-4y2 ② 9x2-6x+1
(3)公式分解因式的方法:(见课件)
3、十字相乘法
(1)公式:x2+(a+b)x+ab=(x+a)(x+b)
(2)例题:把下列各式分解因式
(3)十字相乘法分解因式的秘诀:
分解二次三项式,尝试十字相乘法。
分解二次常数项,交叉相乘做加法
叉乘和是一次项,十字相乘分解它
4、分组分解法:
(1)分组的原则:分组后要能使因式分解继续下去
1、2+2式分组
2、1+3式分组
(2)例题:把下列各式分解因式
① 3x+x2-y2-3y ② x2-2x-4y2+1
(3)分组分解法秘诀
超过三项要分组,四分二二或三一;
何时分二二,何时分三一,
若有三项是平方,一般分三一,
二二提取公因式,三一分组套公式。
第二部分:因式分解的步骤
一、因式分解的步骤
一提取:对任意多项式分解因式,都必须首先考虑提取公因式
二套:对于二项式,考虑应用平方差公式分解。
对于三项式,考虑应用完全平方公式或十字相乘法分解。
三分:再考虑分组分解法
四查:检查:特别看看多项式因式是否分解彻底。
首先提取公因式,然后考虑用公式。
二、注意事项
三、看微课:按步骤分解因式
第三部分:课堂练习与例题
.
第四部分:课堂小结及作业一、课堂小结
二、布置作业。