可线性化的非线性回归模型
- 格式:pdf
- 大小:4.32 MB
- 文档页数:29
第四节 非线形回归模型一、 可线性化模型在非线性回归模型中,有一些模型经过适当的变量变换或函数变换就可以转化成线性回归模型,从而将非线性回归模型的参数估计问题转化成线性回归模型的参数估计,称这类模型为可线性化模型。
在计量经济分析中经常使用的可线性化模型有对数线性模型、半对数线性模型、倒数线性模型、多项式线性模型、成长曲线模型等。
1.倒数模型我们把形如:u xb b y ++=110;u x b b y ++=1110 (3.4.1) 的模型称为倒数(又称为双曲线函数)模型。
设:xx 1*=,y y 1*=,即进行变量的倒数变换,就可以将其转化成线性回归模型。
倒数变换模型有一个明显的特征:随着x 的无限扩大,y 将趋于极限值0b (或0/1b ),即有一个渐进下限或上限。
有些经济现象(如平均固定成本曲线、商品的成长曲线、恩格尔曲线、菲利普斯曲线等)恰好有类似的变动规律,因此可以由倒数变换模型进行描述。
2.对数模型模型形式:u x b b y ++=ln ln 10 (3.4.2)(该模型是将ub e Ax y 1=两边取对数,做恒等变换的另一种形式,其中A b ln 0=)。
上式lny 对参数0b 和1b 是线性的,而且变量的对数形式也是线性的。
因此,我们将以上模型称为双对数(double-log)模型或称为对数一线性(log-liner)模型。
令:x x y y ln ,ln **==代入模型将其转化为线性回归模型: u x b b y ++=*10* (3.4.3)变换后的模型不仅参数是线性的,而且通过变换后的变量间也是线性的。
模型特点:斜率1b 度量了y 关于x 的弹性:xdx y dy x d y d b //)(ln )(ln 1== (3.4.4) 它表示x 变动1%,y 变动了多少,即变动了1b %。
模型适用对象:对观测值取对数,将取对数后的观测值(lnx ,lny )描成散点图,如果近似为一条直线,则适合于对数线性模型来描述x 与y 的变量关系。
浅谈非线性回归模型的线性化广东省惠州市惠阳区崇雅中学高中部 卢瑞勤(516213)回归分析在各个领域中都有十分重要的作用,比如:在财务中可以用回归分析进行财务预测;在医疗检验中可以用回归分析进行病理预报等等。
高中新课标教材就在《必修3》和《选修2-3》中分别增加了《线性回归》和《回归分析》的内容,介绍了求线性回归方程的方法。
但在实际问题中,变量间的关系并非总是线性关系,本文结合本人的教学实践,对教材中的这两部分内容进行适当延伸,谈谈对一些可线性化的非线性回归模型的线性化问题,供各位同行在教学时参考。
一、什么是可线性化的非线性回归模型线性回归模型的基本特征是预报变量可以表示成解释变量和一个系数相乘的和,即预报变量y 可以表示成解释变量i x (i =1,2,3,……)的如下形式:0112233y a a x a x a x =++++,其中变量ix 是以其原型(而不是以ni x 或其它)的形式出现,变量y 是各变量i x 的线性函数。
而有些回归模型不具备这个特点,但是可以通过适当的代数变换转化成这种形式,我们称这类回归模型为可线性化的回归模型。
在本文中,我们只讨论只有一个解释变量可线性化的非线性回归模型的线性化。
二、非线性回归模型的线性化的基本思路非线性回归模线性化的基本思路是:由已知数据,确定解释变量和预报变量,作出散点图,根据经验,确定回归曲线的类型,然后作适当的代数变换,若变换后散点图体现较好的线性关系,即可将其化成线性形式求解,最后还原到原来的回归曲线。
如果回归曲线可用多种形式表示,可以各自将其线性化后求解,再用相关系数2R 进行拟合效果分析,2R 越大,拟合效果越好,所求的回归方程也就越精确。
三、非线性回归模型的线性化的常用方法可线性化的非线性回归模型有以下几种常见类型:(1)双曲线型,其形式为1a b y x =+,其变换为1y y '=, 1x x'=,变换后的形式为y b ax ''=+ (2)幂函数型,其形式为by ax = ,可以变形为ln ln ln y a b x =+,作变换ln y y '= ,ln x x '= ,变换后的形式为y a bx ''=+(3)指数函数型,其形式为bxy ae = ,以变形为ln ln y a bx =+,作变换ln y y '=,ln a a '= ,变换后的形式为y a bx ''=+(4)对数函数型,其形式为ln y a b x =+,作变换ln x x '=,变换后的形式为y a bx '=+ 下面以高中新课标数学教材《选修2-3》一道习题为例加以说明【例】在某地区的一段时间内观察到的不小于某震级x 的地震个数y 数据如下表,试建立回归方程表述二者之间的关系。
非线性回归预测法——高斯牛顿法(詹学朋)非线性回归预测法前面所研究的回归模型,我们假定自变量与因变量之间的关系是线性的,但社会经济现象是极其复杂的,有时各因素之间的关系不一定是线性的,而可能存在某种非线性关系,这时,就必须建立非线性回归模型。
一、非线性回归模型的概念及其分类非线性回归模型,是指用于经济预测的模型是曲线型的。
常见的非线性回归模型有下列几种: (1)双曲线模型:i ii x y εββ++=121 (3-59) (2)二次曲线模型:i i i i x x y εβββ+++=2321 (3-60)(3)对数模型:i i i x y εββ++=ln 21 (3-61)(4)三角函数模型:i i i x y εββ++=sin 21 (3-62)(5)指数模型:i x i i ab y ε+= (3-63)i i i x x i e y εβββ+++=221110 (3-64)(6)幂函数模型:i b i i ax y ε+= (3-65)(7)罗吉斯曲线:i x x i iie e y εββββ++=++1101101 (3-66)(8)修正指数增长曲线:i x i i br a y ε++= (3-67)根据非线性回归模型线性化的不同性质,上述模型一般可细分成三种类型。
第一类:直接换元型。
这类非线性回归模型通过简单的变量换元可直接化为线性回归模型,如:(3-59)、(3-60)、(3-61)、(3-62)式。
由于这类模型的因变量没有变形,所以可以直接采用最小平方法估计回归系数并进行检验和预测。
第二类:间接代换型。
这类非线性回归模型经常通过对数变形的代换间接地化为线性回归模型,如:(3-63)、(3-64)、(3-65)式。
由于这类模型在对数变形代换过程中改变了因变量的形态,使得变形后模型的最小平方估计失去了原模型的残差平方和为最小的意义,从而估计不到原模型的最佳回归系数,造成回归模型与原数列之间的较大偏差。
非线性回归模型非线性回归模型是研究量与量之间非线性关系的一种统计方法。
它利用可以描述非线性现象的数学模型,来拟合所需的结果,并反映所产生的参数的变化。
它的基本原理是通过观察变量之间的关系,以确定未知参数的数值可以拟合哪一种特定的函数。
以下是关于非线性回归模型的主要知识:一、主要原理非线性回归模型用来处理非线性关系的依赖变量和自变量之间的因果关系或效果。
它使用可以描述非线性现象的数学模型来拟合结果,并反映所产生的参数的变化。
二、类型1. 指数函数回归:利用指数函数进行拟合,以确定自变量和因变量之间关系,指数函数回归可能是最简单的非线性回归模型。
2. 对数函数回归:利用对数函数拟合,以确定自变量和因变量之间关系,它属于可泛化的非线性回归模型。
3. 偏差项回归:利用偏差项(离散变量或混合变量)构建的非线性回归模型,其中偏差项会有自身的参数,需要以正态分布估计参数。
4. 广义线性模型:利用广义线性模型拟合数据,以确定自变量和因变量之间关系,它是一类通用的非线性模型。
三、应用1. 时间序列分析:非线性回归模型可以利用时间序列数据进行拟合,得到完整的时间序列分析。
2. 数据建模:可以利用多因子回归模型全面分析多变量与因变量之间的变化趋势,以建立完整的模型,从而更好地理解数据背后的规律。
3. 预测:可以利用非线性回归模型对未知数据进行分析,从而有效预测出未来的趋势,为有效决策提供更好的依据。
四、优点1. 运用灵活:因为非线性回归模型的原理简单,实际应用却极其灵活,可以用于各种不同的数据分析。
2. 准确率高:它的准确性和稳定性都比线性回归模型高,因此可以在更多的情况下使用。
3. 结构简单:这种模型具有一种简洁实用的建模结构,并可以快速构建出模型所需的参数。
五、缺点1. 容易过拟合:由于非线性回归模型的参数容易受环境的影响,容易出现过拟合的情况。
2. 收敛慢:由于非线性回归模型很容易受参数限制,估计收敛速度往往比较慢。
第二篇回归分析与相关分析第7章可线性化的非线性回归线性模型在现实中其实是较少出现的,大量的规律都表现为非线性模型。
线性模型的价值与其说在于处理线性问题,毋宁说在于处理线性化的非线性模型,或者说近似拟合相互作用不太强烈非线性系统。
在实际工作中,我们会遇到许多简单而又实用的非线性模型,这些模型都可以通过某种数学变换转换为线性关系,从而利用最小二乘技术进行回归运算。
比较常见的有指数模型、对数模型、幂指数模型、双曲线模型、抛物线模型、正态分布模型,等等。
下面逐一举例说明。
§7.1 线性与非线性非线性是相对于线性关系而言的。
当变量数目一定的时候,线性关系只有一种,而非线性关系各式各样,千变万化。
传统的科学理论主要是基于线性理论建立起来的,非线性科学的兴起历史并不长久。
虽然非线性理论年龄尚幼,但简单的非线性关系的应用却历史悠久。
首先需要区别函数y=f(x)对自变量x的依赖关系。
对于一个变量而言,线性形式为=,bxy+a这是只有一个自变量的一次多项式表达,式中a、b为参数,表现为常数形式。
如果多项式出现大于1的幂次,就是非线性函数。
最简单的非线性函数之一是抛物线,这是一种二次多项式=2,cy++axbx式中a、b、c为参数。
一般函数为f=,yμ(x),式中μ为参量集。
我们可以从如下方面理解线性关系和非线性关系的区别。
第一,线性是简单的比例关系,而非线性则是对简单比例关系的偏离。
有位学者打了一个通俗的比方,线性就是水涨船高,多多益善;非线性就是过犹不及,物极必反。
以三次曲线为例,该曲线是对线性关系的局部偏离,科学上称之为“微扰”或者“摄动”。
第二,线性关系表明各个变量之间互不相干,独立贡献,非线性关系则意味着相互作用。
线性关系暗示各个变量可以相互叠加,对于非线性而言,暗示整体不等于部分之和。
因此,线性回归要求各个自变量彼此独立,因为最小二乘技术主要是基于线性思想发展的一种参数求解方法。
第三,线性关系意味着信号的频率成分不变,而非线性关系则暗示频率结构发生变化。