非线性回归模型的线性化.ppt
- 格式:ppt
- 大小:1.22 MB
- 文档页数:18
计量经济学第四章非线性回归模型的线性化(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章 非线性回归模型的线性化以上介绍了线性回归模型。
但有时候变量之间的关系是非线性的。
例如 y t = 0 +11βt x + u ty t =0 tx e 1α+ u t上述非线性回归模型是无法用最小二乘法估计参数的。
可采用非线性方法进行估计。
估计过程非常复杂和困难,在20世纪40年代之前几乎不可能实现。
计算机的出现大大方便了非线性回归模型的估计。
专用软件使这种计算变得非常容易。
但本章不是介绍这类模型的估计。
另外还有一类非线性回归模型。
其形式是非线性的,但可以通过适当的变换,转化为线性模型,然后利用线性回归模型的估计与检验方法进行处理。
称此类模型为可线性化的非线性模型。
下面介绍几种典型的可以线性化的非线性模型。
可线性化的模型⑴ 指数函数模型 y t = tt u bx ae+b >0 和b <0两种情形的图形分别见图和。
显然x t 和y t 的关系是非线性的。
对上式等号两侧同取自然对数,得Lny t = Lna + b x t + u t令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t 变量y t * 和x t 已变换成为线性关系。
其中u t 表示随机误差项。
010203040501234XY 1图 y t =tt u bx ae+, (b > 0) 图 y t =tt u bx ae+, (b < 0)⑵ 对数函数模型y t = a + b Ln x t + u tb >0和b <0两种情形的图形分别见图和。
x t 和y t 的关系是非线性的。
令x t * = Lnx t , 则y t = a + b x t * + u t变量y t 和x t * 已变换成为线性关系。