3.3一元二次不等式(组)与简单线性规划问题
- 格式:doc
- 大小:417.00 KB
- 文档页数:13
1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
第四节二元一次不等式(组)及简单的线性规划问题1.一元二次不等式(组)表示的平面区域2.线性规划中的基本概念[小题体验]1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案:C2.(教材习题改编)不等式组⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )答案:B3.(2018·浙江名校联考)若x ,y 满足⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5,则不等式组表示的平面区域的面积为________,z =y -x 的最大值是________.解析:作出不等式组所表示的平面区域如图中阴影部分所示,易得M (5,10),N (5,-2),所以S △OMN =12×(10+2)×5=30.由z =y -x ,得y =x +z ,作出直线y =x ,平移直线y =x ,易知当直线z =y -x 经过可行域内的点M (5,10)时,目标函数z =y -x 取得最大值,且z max =10-5=5.答案:30 51.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.3.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.[小题纠偏]1.若用阴影表示不等式组⎩⎨⎧-x +y ≤0,3x -y ≤0所形成的平面区域,则该平面区域中的夹角的大小为________.答案:15°2.(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图中阴影部分所示.由z =3x +2y ,得y =-32x +z 2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z 2过点(2,0)时,z 取得最大值,z max =3×2+2×0=6. 答案:6考点一 二元一次不等式(组)表示的平面区域(基础送分型考点——自主练透)[题组练透]1.(易错题)若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析:选C 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点.2.(2019·嘉兴高三基础测试)若不等式组⎩⎪⎨⎪⎧x -y >0,3x +y <3,x +y >a 表示的平面区域为一个三角形的内部区域,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,34B.⎝⎛⎭⎫34,+∞ C.⎝⎛⎭⎫-∞,32 D.⎝⎛⎭⎫32,+∞解析:选C 如图所示,当直线x +y =a 在直线x +y =32(该直线经过直线x -y =0和直线3x +y =3的交点)的下方时,原不等式组表示的平面区域为一个三角形的内部区域,因此a <32,故选C.3.(2018·浙江名校联考)若实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≤0,2x -y ≥0,x ≤1,则点P (x +y ,x -y )形成的区域的面积为________,能覆盖此区域(含边界)的圆的最小半径为________.解析:令⎩⎪⎨⎪⎧a =x +y ,b =x -y ,得⎩⎨⎧x =a +b2,y =a -b2,则原不等式组可化为⎩⎪⎨⎪⎧3b -a +2≤0,a +3b ≥0,a +b ≤2,所以点P 形成的区域如图中阴影部分所示,易知A (2,0),B ⎝⎛⎭⎫1,-13,C (3,-1). 设点B 到AC 的距离为d ,则S △ABC =12|AC |·d =12×2×⎪⎪⎪⎪1-13-22=23.所求半径最小的圆即△ABC 的外接圆,AC ,AB 的垂直平分线分别为直线y =x -3,y =-3x +133,求得交点坐标,即圆心坐标为⎝⎛⎭⎫116,-76,所以半径为526. 答案:23 526[谨记通法]确定二元一次不等式(组)表示的平面区域的方法(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式组.若满足不等式组,则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.(2)当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.考点二 求目标函数的最值(题点多变型考点——多角探明)[锁定考向]线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透.常见的命题角度有:(1)求线性目标函数的最值;(2)求非线性目标函数的最值;(3)线性规划中的参数问题.[题点全练]角度一:求线性目标函数的最值1.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示.由图可知当直线x +y =z 过点A 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0, 得点A (5,4),∴z max =5+4=9. 答案:9角度二:求非线性目标函数的最值2.(2018·温州模拟)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -2≤0,y ≥0,则约束条件内的y 的最大值为________,目标函数y +1x +2的取值范围为________. 解析:作出约束条件所表示的可行域如图中阴影部分所示,由⎩⎪⎨⎪⎧x -y +1=0,x +y -2=0, 可知A ⎝⎛⎭⎫12,32,所以y 的最大值为32.易知y +1x +2的几何意义是可行域内的点与点(-2,-1)所在直线的斜率,(2,0)与(-2,-1)两点连线的斜率为14,所以y +1x +2的最小值为14,由图可知y +1x +2的最大值为直线x -y +1=0的斜率1,所以y +1x +2的取值范围为⎣⎡⎦⎤14,1.答案:32 ⎣⎡⎦⎤14,1 角度三:线性规划中的参数问题3.(2018·绍兴考前冲刺)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,2y -3≤0.若目标函数z=x +ay 仅在点(3,0)处取得最大值,则实数a 的取值范围为( )A .[0,2)B .(0,2)C .(-∞,2)D .(2,+∞)解析:选C 作出不等式组表示的可行域如图中阴影部分所示,当a =0时,目标函数为z =x ,此时目标函数仅在点(3,0)处取得最大值;当a <0时,y =-x a +z a ,若使z 取得最大值,则需za取得最小值,数形结合知目标函数仅在点(3,0)处取得最大值;当a >0时,y =-x a +za ,要使目标函数仅在(3,0)处取得最大值,则需-1a <-12,即0<a <2.综上,实数a 的取值范围为(-∞,2).[通法在握]1.求目标函数的最值3步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;(2)平移——将l 平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值. 2.常见的3类目标函数 (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a. [提醒] 注意转化的等价性及几何意义.[演练冲关]1.(2018·湖州五校高三模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1>0,x +y -3<0,y >0,则z =2x -y的取值范围为( )A .(-6,-1)B .(-8,-2)C .(-1,8)D .(-2,6)解析:选D 法一:作出约束条件所表示的可行域如图中阴影部分所示.作出直线y =2x ,平移该直线,可知直线z =2x -y 在点B (-1,0)处取得最小值-2,在点C (3,0)处取得最大值6,所以z =2x -y 的取值范围为(-2,6).法二:三条直线两两联立求出的交点坐标分别是(1,2),(-1,0),(3,0),分别代入z =2x -y 求值,得0,-2,6,所以z =2x -y 的取值范围为(-2,6).2.(2018·杭州七校联考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,2x -y -1≥0,ax -2y +1≤0,若z =2x +y 的最大值为8,则实数a 的值为( )A .-2B .-1C .1D .2解析:选C 将目标函数变形为y =-2x +z ,当z 取最大值时,直线的纵截距最大,易知直线x +y -5=0与2x -y -1=0的交点(2,3)不能使得目标函数取得最大值8.因为直线ax -2y +1=0恒过定点⎝⎛⎭⎫0,12,所以要使目标函数能取到最大值,需-1<a 2<2,即-2<a <4.作出不等式组所表示的可行域如图中阴影部分所示,故目标函数在B ⎝ ⎛⎭⎪⎫92+a ,5a +12+a 处取得最大值,代入目标函数得2×92+a +5a +12+a=8,解得a =1. 3.(2019·宁波高三模拟)若x ,y 满足⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5,则不等式组表示的平面区域的面积为________,z =(x +1)2+(y -1)2的最小值为________.解析:作出不等式组表示的平面区域如图中阴影部分所示,则所求平面区域的面积为12×5×[10-(-2)]=30.z =(x +1)2+(y -1)2表示可行域内的点(x ,y )与点M (-1,1)之间的距离的平方,数形结合易知,z =(x +1)2+(y -1)2的最小值为点M (-1,1)到直线2x -y =0的距离d =|2×(-1)-1|22+(-1)2=35的平方,即z min =95.答案:3095考点三 线性规划的实际应用(重点保分型考点——师生共研)[典例引领](2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产A 产品x 件,B 产品y 件,由已知可得约束条件为 ⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N.即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x∈N ,y ∈N.目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点M 时,z 取得最大值,联立⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600,解得M (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000[由题悟法]1.解线性规划应用题3步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案. 2.求解线性规划应用题的3个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、是否是非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.[即时应用]某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x ,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x -0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).一抓基础,多练小题做到眼疾手快 1.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43 D.34解析:选C 平面区域如图所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4.得A (1,1),易得B (0,4),C ⎝⎛⎭⎫0,43, |BC |=4-43=83.所以S △ABC =12×83×1=43.2.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )解析:选C (x -2y +1)(x +y -3)≤0⇔⎩⎪⎨⎪⎧ x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出图形可知选C. 3.(2019·杭州高三质检)若实数x ,y 满足不等式组⎩⎪⎨⎪⎧2x +3y -9≥0,x -2y -1≤0,设z =x +2y ,则( )A .z ≤0B .0≤z ≤5C .3≤z ≤5D .z ≥5解析:选D 作出不等式组表示的平面区域如图中阴影部分所示.作出直线x +2y =0,平移该直线,易知当直线过点A (3,1)时,z 取得最小值,z min =3+2×1=5,即z ≥5.4.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝⎛⎭⎫23,+∞ 5.(2019·温州四校联考)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y ≤2,2x -y ≤2,则可行域的面积为________,z =2x +y 的最大值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,由⎩⎪⎨⎪⎧x +y =2,2x -y =2,得⎩⎨⎧x =43,y =23,所以A ⎝⎛⎭⎫43,23,易得|BC |=4, 所以可行域的面积S =12×4×43=83.由图可知,当目标函数z =2x +y 所表示的直线过点A ⎝⎛⎭⎫43,23时,z 取得最大值,且z max=2×43+23=103.答案:83 103二保高考,全练题型做到高考达标1.(2018·金华四校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m .如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A .7B .5C .4D .3解析:选B 画出x ,y 满足的可行域如图中阴影部分所示,可得直线y =2x -1与直线x +y =m 的交点使目标函数z =x -y 取得最小值,由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,解得x =m +13,y =2m -13,代入x -y =-1,得m +13-2m -13=-1,∴m =5.选B. 2.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解析:选D 因为ax -y +1=0的直线恒过点(0,1),故看作直线绕点(0,1)旋转,不等式组表示的平面区域为如图所示阴影部分△ABC .由题意可求得A (0,1),B (1,0),C (1,a +1), ∵S △ABC =2,BC =|a +1|,BC 边上的高为AD =1, ∴S △ABC =12×|a +1|×1=2,解得a =-5或3,∵当a =-5时,可行域不是一个封闭区域, 当a =3时,满足题意,选D.3.(2017·浙江新高考研究联盟)过点P (-1,1)的光线经x 轴上点A 反射后,经过不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0所表示的平面区域内某点(记为B ),则|PA |+|AB |的取值范围是( )A .(22,5)B .[22,5]C .[2,5]D .[22,5)解析:选B 不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0所表示的平面区域如图中阴影部分所示,点P 关于x 轴的对称点为P 1(-1,-1),|PA |+|AB |=|P 1B |,过点P 1作直线x +y -2=0的垂线,则|P 1B |的最小值为|-1-1-2|2=2 2.由⎩⎪⎨⎪⎧x -2y +4=0,3x +y -9=0得B 0(2,3), 则|P 1B |的最大值为|P 1B 0|=(2+1)2+(3+1)2=5. 故22≤|PA |+|AB |≤5.4.(2018·浙江名校联考)设x ,y 满足⎩⎪⎨⎪⎧x ≥0,x +y -2≤0,ax -y -a ≤0,若z =2x +y 的最大值为72,则a的值为( )A .-72B .0C .1D .-72或1解析:选C 法一:由z =2x +y 存在最大值,可知a >-1,显然a =0不符合题意.作出不等式组所表示的平面区域,如图1或图2中阴影部分所示,作直线2x +y =0,平移该直线,易知,当平移到过直线x +y -2=0与ax -y -a =0的交点时,z 取得最大值,由⎩⎪⎨⎪⎧x +y -2=0,ax -y -a =0,得⎩⎪⎨⎪⎧x =a +2a +1,y =aa +1,把⎩⎪⎨⎪⎧x =a +2a +1,y =aa +1代入2x +y =72,得a =1.法二:由z =2x +y 存在最大值,可知a >-1,显然a =0不符合题意.作出不等式组所表示的平面区域,如图1或图2中阴影部分所示,作直线2x +y =0,平移该直线,易知,当平移到过直线x +y -2=0与ax -y -a =0的交点时,z 取得最大值72,由⎩⎪⎨⎪⎧x +y -2=0,2x +y =72,得⎩⎨⎧ x =32,y =12,把⎩⎨⎧x =32,y =12代入ax -y -a =0,得a =1.5.(2018·余杭地区部分学校测试)若函数y =f (x )的图象上的任意一点P 的坐标为(x ,y ),且满足条件|x |≥|y |,则称函数f (x )具有性质S ,那么下列函数中具有性质S 的是( )A .f (x )=e x -1B .f (x )=ln(x +1)C .f (x )=sin xD .f (x )=|x 2-1|解析:选C 作出不等式|x |≥|y |所表示的平面区域如图中阴影部分所示,若函数f (x )具有性质S ,则函数f (x )的图象必须完全分布在阴影区域①和②部分,易知f (x )=e x -1的图象分布在区域①和③部分,f (x )=ln(x +1)的图象分布在区域②和④部分,f (x )=sin x 的图象分布在区域①和②部分,f (x )=|x 2-1|的图象分布在①、②和③部分,故选C.6.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.解析:作出不等式组所表示的平面区域如图中阴影部分所示,由1≤ax +y ≤4恒成立,结合图可知,a ≥0且在A (1,0)处取得最小值,在B (2,1)处取得最大值,所以a ≥1,且2a +1≤4,故a 的取值范围是⎣⎡⎦⎤1,32.答案:⎣⎡⎦⎤1,32 7.(2018·金丽衢十二校联考)若实数x ,y 满足⎩⎪⎨⎪⎧x -y -3≤0,3x -y -9≥0,y ≤3,则y +1x +1的取值范围为________.解析:作出不等式组所表示的平面区域,如图中阴影部分所示,y +1x +1的几何意义为可行域内一点(x ,y )与点(-1,-1)连线的斜率,故由图可知,⎝ ⎛⎭⎪⎫y +1x +1min =0+13+1=14,⎝ ⎛⎭⎪⎫y +1x +1max =3+14+1=45,故y +1x +1的取值范围为⎣⎡⎦⎤14,45.答案:⎣⎡⎦⎤14,458.(2018·金华十校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -3y +6≥0,mx -y -3≤0⎝⎛⎭⎫m >13,当m =2时,z=|x +5y -6|的最大值为________;当m =________时,x ,y 满足的不等式组所表示的平面区域的面积为30.解析:作出⎩⎪⎨⎪⎧x +y -2≥0,x -3y +6≥0,2x -y -3≤0所表示的平面区域如图中阴影部分所示,易得A (3,3),B ⎝⎛⎭⎫53,13,C (0,2), 令a =x +5y -6,即y =-15x +65+15a ,显然当直线过A (3,3)时,a 取得最大值,此时a =12, 当直线过B ⎝⎛⎭⎫53,13时,a 取得最小值,此时a =-83, 又z =|a |,所以z 的最大值为12.由方程组⎩⎪⎨⎪⎧x -3y +6=0,mx -y -3=0,得A ′⎝ ⎛⎭⎪⎫153m -1,6m +33m -1,由方程组⎩⎪⎨⎪⎧x +y -2=0,mx -y -3=0,得B ′⎝ ⎛⎭⎪⎫5m +1,2m -3m +1,如图,易得D (0,-3),所以S △A ′B ′C =S △A ′CD -S △B ′CD =12×5×⎝⎛⎭⎫153m -1-5m +1=30,即9m 2+6m -8=0,所以m =23或m =-43(舍去).答案:12239.已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).如图所示.(1)写出表示区域D 的不等式组.(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ][4×(-3)-3×2-a ]<0, 即(14-a )(-18-a )<0, 解得-18<a <14.故a 的取值范围是(-18,14).10.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)取最小值-2,过C (1,0)取最大值1. 所以z 的最大值为1, 最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围为(-4,2). 三上台阶,自主选做志在冲刺名校1.(2018·浙江名校联考)设实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,y ≥0,y ≤-2x +6,则x +3y 的最大值为________;若x 2+4y 2≤a 恒成立,则实数a 的最小值为________.解析:作出不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥0,y ≤-2x +6所表示的平面区域如图1中阴影部分所示,由图1可知,当u =x +3y 过点 A (2,2)时,u =x +3y 取得最大值u max =2+3×2=8.令x =x ′,2y =y ′,则原不等式组等价于⎩⎪⎨⎪⎧12y ′≤x ′,12y ′≥0,12y ′≤-2x ′+6,即⎩⎪⎨⎪⎧2x ′-y ′≥0,y ′≥0,4x ′+y ′-12≤0,作出可行域如图2中阴影部分所示,由图2可知,x ′2+y ′2的最大值为原点到点B (2,4)的距离的平方,易得|OB |2=22+42=20,所以a 的最小值为20.答案:8 202.某工厂投资生产A 产品时,每生产一百吨需要资金200万元,需场地200 m 2,可获利润300万元;投资生产B 产品时,每生产一百吨需要资金300万元,需场地100 m 2,可获利润200万元.现某单位可使用资金1 400万元,场地900 m 2,问:应做怎样的组合投资,可使获利最大?解:先将题中的数据整理成下表,然后根据此表设未知数,列出约束条件和目标函数.则约束条件为⎩⎪⎨⎪⎧2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0,目标函数S =3x +2y .作出可行域如图阴影部分所示,将目标函数S =3x +2y 变形为y =-32x +S 2,这是斜率为-32,随S 变化而变化的一组平行直线.S2是直线在y 轴上的截距. 由图知,使3x +2y 取得最大值的(x ,y )是直线2x +y =9与2x +3y =14的交点(3.25,2.50), 此时S =3×3.25+2×2.50=14.75.∴生产A产品325吨,生产B产品250吨时,获利最大,且最大利润为1 475万元.。
3.3 二元一次不等式(组)与简单的线性规划问题材拓展1.二元一次不等式(组)表示平面区域(1)直角坐标平面内的一条直线Ax +By +C =0把整个坐标平面分成三部分,即直线两侧的点集和直线上的点集.(2)若点P 1(x 1,y 1)与P 2(x 2,y 2)在直线l :Ax +By +C =0的同侧(或异侧),则Ax 1+By 1+C 与Ax 2+By 2+C 同号(或异号).(3)二元一次不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.2.画二元一次不等式表示的平面区域常 采用“直线定界,特殊点定域”的方法(1)直线定界,即若不等式不含等号,应把直线画成虚线;含有等号,把直线画成实线. (2)特殊点定域,即在直线Ax +By +C =0的某一侧取一个特殊点(x 0,y 0)作为测试点代入不等式检验,若满足不等式,则表示的区域就是包括这个点的这一侧,否则就表示直线的另一侧.特别地,当C ≠0时,常把原点作为测试点.当C =0时,常把点(1,0)或点(0,1)作为测试点.3.补充判定二元一次不等式表示的区域 的一种方法先证一个结论已知点P (x 1,y 1)不在直线l :Ax +By +C =0 (B ≠0)上,证明: (1)P 在l 上方的充要条件是B (Ax 1+By 1+C )>0; (2)P 在l 下方的充要条件是B (Ax 1+By 1+C )<0. 证明 (1)∵B ≠0,∴直线方程化为y =-A B x -CB,∵P (x 1,y 1)在直线上方,∴对同一个横坐标x 1,直线上点的纵坐标小于y 1,即y 1>-A B x 1-CB.(*)∵B 2>0,∴两端乘以B 2,(*)等价于B 2y 1>(-Ax 1-C )B , 即B (Ax 1+By 1+C )>0.(2)同理,由点P 在l 下方,可得y 1<-A B x 1-CB,从而得B 2y 1<(-Ax 1-C )B ,移项整理为B (Ax 1+By 1+C )<0. ∵上述解答过程可逆,∴P 在l 上方⇔B (Ax 1+By 1+C )>0, P 在l 下方⇔B (Ax 1+By 1+C )<0. 从而得出下列结论:(1)B >0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0上方的平面区域(不包括直线),而Ax +By +C <0表示直线Ax +By +C =0下方的平面区域(不包括直线).(2)B <0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0下方的区域(不包括直线),而二元一次不等式Ax +By +C <0表示直线Ax +By +C =0上方的平面区域(不包括直线).(3)B =0且A >0时,Ax +C >0表示直线Ax +C =0右方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0左方的平面区域(不包括直线).(4)B =0且A <0时,Ax +C >0表示直线Ax +C =0左方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0右方的平面区域(不包括直线).法突破一、二元一次不等式组表示的平面区域方法链接:只要准确找出每个不等式所表示的平面区域,然后取出它们的重叠部分,就可以得到二元一次不等式组所表示的平面区域.例1 在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C.12 D.14 解析答案 B二、平面区域所表示的二元一次不等式(组)方法链接:由平面区域确定不等式时,我们可以选用特殊点进行判断,把特殊点代入直线方程Ax +By +C =0,根据代数式Ax +By +C 的符号写出对应的不等式,根据是否包含边界来调整符号.例2 如图所示,四条直线x +y -2=0,x -y -1=0,x +2y +2=0,3x -y +3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组____________表示.解析 (0,0)点在平面区域内,(0,0)点和平面区域在直线x +y -2=0的同侧,把(0,0)代入到x +y -2,得0+0-2<0,所以直线x +y -2=0对应的不等式为x +y -2<0,同理可得到其他三个相应的不等式为x +2y +2>0,3x -y +3>0,x -y -1<0, 则可得所求不等式组为三、和平面区域有关的非线性问题方法链接:若目标函数为线性时,目标函数的几何意义与直线的截距有关.若目标函数为形如z =y -bx -a,可考虑(a ,b )与(x ,y )两点连线的斜率.若目标函数为形如z =(x -a )2+(y -b )2,可考虑(x ,y )与(a ,b )两点距离的平方. 例3 (2009·山东济宁模拟)已知点P (x ,y )满足点Q (x ,y )在圆(x +2)2+(y +2)2=1上,则|PQ |的最大值与最小值为( )A .6,3B .6,2C .5,3D .5,2解析可行域如图阴影部分,设|PQ |=d ,则由图中圆心C (-2,-2)到直线4x +3y -1=0的距离最小,则到点A 距离最大.由得(-2,3). ∴d max =|CA |+1=5+1=6,d min =|-8-6-1|5-1=2.答案 B四、简单的线性规划问题方法链接:线性规划问题最后都能转化为求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z的最值.例4 某家具公司制作木质的书桌和椅子两种家具,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8 000个工作时;漆工平均两小时漆一把椅子,一个小时漆一张书桌,该公司每星期漆工最多有1 300个工作时,又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排生产能获得最大利润?解 依题意设每星期生产x 把椅子,y 张书桌, 那么利润p =15x +20y .其中x ,y 满足限制条件{ 4x +8y ≤x +y ≤x ≥0,x ∈N *y ≥0,y ∈N *. 即点(x ,y )的允许区域为图中阴影部分,它们的边界分别为4x +8y =8 000(即AB ),2x +y =1 300(即BC ),x =0(即OA )和y =0(即OC ).对于某一个确定的p =p 0满足p 0=15x +20y ,且点(x ,y )属于阴影部分的解x ,y 就是一个能获得p 0元利润的生产方案.对于不同的p ,p =15x +20y 表示一组斜率为-34的平行线,且p 越大,相应的直线位置越高;p 越小,相应的直线位置越低.按题意,要求p 的最大值,需把直线p =15x +20y 尽量地往上平移,又考虑到x ,y 的允许范围,当直线通过B 点时,处在这组平行线的最高位置,此时p 取最大值.由{ 4x +8y =8 00x +y =1 300,得B (200,900), 当x =200,y =900时,p 取最大值, 即p max =15×200+20×900=21 000,即生产200把椅子、900张书桌可获得最大利润21 000元.区突破1.忽略截距与目标函数值的关系而致错 例1 设E 为平面上以A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界),求z =4x -3y 的最大值与最小值.[错解]把目标函数z =4x -3y 化为y =43x -13z .根据条件画出图形如图所示,当动直线y =43x -13z 通过点C 时,z 取最大值;当动直线y =43x -13z 通过点B 时,z 取最小值.∴z min =4×(-1)-3×(-6)=14; z max =4×(-3)-3×2=-18.[点拨] 直线y =43x -13z 的截距是-13z ,当截距-13z 最大即过点C 时,目标函数值z 最小;而当截距-13z 最小即过点B 时,目标函数值z 最大.此处容易出错.[正解] 把目标函数z =4x -3y 化为y =43x -13z .当动直线y =43x -13z 通过点B 时,z 取最大值;当动直线y =43x -13z 通过点C 时,z 取最小值.∴z max =4×(-1)-3×(-6)=14; z min =4×(-3)-3×2=-18.2.最优整数解判断不准而致错 例2 设变量x ,y 满足条件求S =5x +4y 的最大值.[错解] 依约束条件画出可行域如图所示,如先不考虑x 、y 为整数的条件,则当直线5x +4y =S 过点A ⎝⎛⎭⎫95,2310时,S =5x +4y 取最大值,S max =18 15.因为x 、y 为整数,所以当直线5x +4y =t 平行移动时,从点A 起通过的可行域中的整点是C (1,2),此时S max =13.[点拨] 上述错误是把C (1,2)作为可行域内唯一整点,其实还有一个整点B (2,1),此时S =14才是最大值.[正解] 依据已知条件作出图形如图所示,因为B (2,1)也是可行域内的整点,由此得S B =2×5+1×4=14,由于14>13,故S max =14.温馨点评 求最优整数解时,要结合可行域,对所有可能的整数解逐一检验,不要漏掉解.题多解例 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有() A.5种B.6种C.7种D.8种解析方法一由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种选购方式;买3盒磁盘时,有买3片或4片软件两种选购方式;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种选购方式,故共有1+2+4=7(种)不同的选购方式.方法二先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘,再买1盒磁盘、再买两盒磁盘三类,仿方法一可知选C.方法三设购买软件x片,磁盘y盒.则,画出线性约束条件表示的平面区域,如图所示.落在阴影部分(含边界)区域的整点有(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2)共7个整点.答案 C题赏析1.(2011·浙江)设实数x,y满足不等式组{x+2y-5>0,x+y-7>0,x≥0,y≥0,且x,y为整数,则3x+4y的最小值是()A.14 B.16C.17 D.19解析作出可行域,如图中阴影部分所示,点(3,1)不在可行域内,利用网格易得点(4,1)符合条件,故3x+4y的最小值是3×4+4×1=16.答案 B2.(2009·烟台调研)若x,y满足约束条件{x+y≥x-y≥-x-y≤2,目标函数z =ax+2y仅在点(1,0)处取得最小值,则a的取值范围是()A.(-1,2) B.(-4,2) C.(-4,0] D.(-2,4)解析作出可行域如图所示,直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a <2. 答案 B赏析 本题考查线性规划的基本知识,要利用好数形结合.。