第12章动量矩定理
- 格式:ppt
- 大小:1.12 MB
- 文档页数:32
12-1、图示三角形薄板,质量为m ,a 、h 已知,求薄板对z 轴的转动惯量z J 。
12-2、如图所示,质量为m 的偏心轮在水平面上作平面运动。
轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为A J ;C ,A ,B 三点在同一铅直线上。
1)当轮子只滚不滑时,若A v 已知,求轮子的动量和对地面上B 点的动量矩。
2)当轮子又滚又滑时,若A v ,ω已知,求轮子的动量和对地面上B 点的动量矩。
题12-2图12-3、如图所示,求下列两种情况的动量矩O L :(a) 质量为m ,半径为R 的均质薄圆盘绕水平轴O (垂直纸面)转动的角速度为ω; (b) 质量为m ,长为l 的均质细直杆绕O 轴转动的角速度为ω。
12-4、如图:(a )所示刚体由均质圆环与直秆焊接而成,两者质量均为m ,求绕O 轴的转动惯量;(b )所示均质圆盘质量为1m ,绳子无重且不可伸长.与圆盘之间无相对滑动,物块A 、B 质量均为2m ,求系统对O 轴的动量矩。
(a )(b12-5、某质点对于某定点O 的动量矩矢量表达式为:226(86)(4)t t t =++--O L i j k ,式中为t 时间,i, j, k 分别为x 、y 、z 轴向的单位矢量,求此质点上作用力对O 点的力矩的大小。
12-6、均质杆AB ,长L ;质量m ,在已知力A F ,B F (A B F F ≠)作用下,在铅垂面内作平面运动,若对端点B ,中点C 的转动惯量分别为B J ,C J ,求图示瞬时杆AB 的角加速度。
12-7、两根质量均为8kg的均质细杆固连成T字形,可绕通过O点的水平轴转动,当OAω=。
求该瞬时轴承O处的约束反力。
处于水平位置时,T形杆具有角速度4rad/s12-8、均质圆轮A质量为1m,半径为1r,以角速度ω绕杆OA的A端转动,此时将轮放置在m的另一均质圆轮B上,其半径为2r,如图所示。
轮B原为静止,但可绕其中心轴质量为2自由转动。
第十二章动量矩定理§12—1质点和质点系的动量矩一、质点的动量矩质点Q的动量对于点0的矩,定义为质点对于点0的动量矩M O mv = r mvM z mv 二2 0Q AM O mv [二M z mv动量矩的单位:kgm2/s、质点系的动量矩nL o 二為M o m i V ii』nL z八M z m i v iM O (mv)(r mv ) dtdtdr dtmv rmvdt绕定轴转动刚体对其转轴的动量矩等于刚体对转轴的转动惯量与转动角 速度的乘积n n n2L z 八 M z mM八 m i y 订i =mmyy ynJ z 八 m"2id :§12— 2动量矩定理、质点的动量矩定理M O mv =v mv r F dt-J—M O mv 二 M O F dt质点的动量矩定理:质点对某定点的动量矩对时间的一阶导数,等于作 用力对同一点的矩。
直角坐标投影式为d厂 一Mx(mv)= Mx(F ) dt pl 2 My(mv)=My(F ) dt plL 2M z (mv)= M z (F ) dtL z=J z :特殊情形:当质点受有心力F的作用时,如图11-4所示,力矩M°(F)=O,则质点对固定点0的动量矩M o(mv)=恒矢量,质点的动量矩守恒。
例如行星绕着恒星转,受恒星的引力作用,引力对恒星的矩M°(F)=O,行星的动量矩M o (m v )=恒矢量,此恒矢量的方向是不变的,因此行星作平面曲线运动;此恒矢量的大小是不变的,即mvh=恒量,行星的速度v与恒星到速度矢量的距离h成反比。
(1)从而由式(1)得单摆运动微分方程为护阶0(2)解式(2) 得单摆的运动规律为9 =cp o Sin( 3n t +8)其中,3-g称为单摆的角频率,单摆的周期为例1如图所示单摆,由质量为m的小球和绳索构成。
单摆悬吊于点0,绳长摆在铅垂平面内绕点0作微振幅摆动,设摆与铅垂线的夹角为「为逆时针时正,如图所示。