第1章 溶胶 凝胶合成
- 格式:ppt
- 大小:3.78 MB
- 文档页数:40
材料合成与制备期末复习题第零章绪论1.材料合成:材料合成是指促使原子或分子构成材料的化学或物理过程;2.材料制备:材料制备是指研究如何控制原子与分子使其构成有用的材料,但材料制备还包括在更为宏观的尺度上控制材料的结构,使其具备所需的性能和使用效能。
3.材料合成与制备的最终目标是:制造高性能、高质量的新材料以满足各种构件、物品或仪器等物件的日益发展的需求。
4.材料合成与制备的发展方向:材料的高性能化、复合化、功能化、低维化、低成本化、绿色化;5.影响热力学过程自发进行方向的因素:(1)能量因素;(2)系统的混乱度因素; 6.隔离系统总是自发的向着熵值增加的方向进行。
7.论述反应速率的影响因素:(1)浓度对反应速率的影响:对于可逆反应,增加反应物浓度可以使平衡向产物方向移动,因此,提高反应物浓度是提高产率的一个办法,但如果反应物成本很高,将反应物之一在生成后立即分离出去或转移到另一相中去,也是提高反应产率的一个很好的办法。
对于有气相的反应,如果反应前后气体物质的反应计量数不等,则增加压力会有利于反应向气体计量数小的方向进行。
另外,对于多个反应同时进行的反应,则应按主反应的情况来控制反应物的配比;(2)温度对反应速率的影响:对于一个可逆反应,正反应吸热,则逆反应就放热;如果正反应放热,则逆反应就吸热,升高温度有利于反应向吸热方向进行,不利于放热反应;对于放热反应,用冷水浴或冰浴使其降温的办法有利于反应的进行,但影响反应速率。
实际生产中,要综合考虑单位实际内的产量和转化率同时进行;(3)溶剂等对反应速率的影响:溶剂在反应中的作用:一是提供反应的场所,二是发生溶剂化效应。
溶剂最重要的物理效应即溶剂化作用,化学效应主要有溶剂分子的催化作用和容积分子作为反应物或产物参与了化学反应。
若溶剂分子与反应物生成不稳定的溶剂化物,可使反应的活化能降低,加快反应速率;若生成稳定的溶剂化物,则使反应活化能升高,降低反应速率;若生成物与溶剂分子生成溶剂化物,不论它是否稳定,都会使反应速率加快。
溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。
一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。
胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。
凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。
分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。
溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。
在溶液中前驱物进行水解、缩合反应,形成凝胶。
传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。
但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。
因此在很多领域中应用较多的是络合溶胶-凝胶法。
该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。
溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O →M(OH2)z+n + L z-M(OH2)z+n→M(OH)(OH)(z-1)+n-1 + H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH →M-O-M + H2OM-OH + M-OH →M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。
第一章1、1 溶胶凝胶1、什么是溶胶——凝胶?答:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
2、基本原理(了解)3、设备:磁力搅拌器、电力搅拌器4、优点:该方法制备块体材料具有纯度高、材料成分易控制、成分多元化、均匀性好、材料形状多样化、且可在较低的温度下进性合成并致密化等5、工艺过程:自己看6、工艺参数:自己看2、1水热与溶剂热合成1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境。
2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。
3、优点:a、在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或水中氧的污染;b、非水溶剂的采用使得溶剂热法可选择原料范围大大扩大;c、由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水热合成更高的气压,从而有利于产物的结晶;d、由于较低的反应温度,反应物中结构单元可以保留到产物中,且不受破坏。
同时,有机溶剂官能团和反应物或产物作用,生成某些新型在催化和储能方面有潜在应用的材料4、生产设备:高压釜是进行高温高压水热与溶剂热合成的基本设备;(分类自己看),高压容器一般用特种不锈钢制成,5、合成工艺:选择反应物核反应介质——确定物料配方——优化配料顺序——装釜、封釜——确定反应温度、压力、时间等试验条件——冷却、开釜——液、固分离——物相分析6、水热与溶剂热合成存在的问题:1、无法观察晶体生长和材料合成的过程,不直观。
2、设备要求高耐高温高压的钢材,耐腐蚀的内衬、技术难度大温压控制严格、成本高。
溶胶-凝胶成膜原理与分析原理1溶胶-凝胶技术的概述溶胶-凝胶工艺是通过溶胶-凝胶转变过程制备玻璃、陶瓷以及其它一些无机材料或复合材料的一种工艺。
一般的说,易水解的金属化合物,如氯化物、硝酸盐、金属醇盐等都适用于溶胶-凝胶工艺。
关于溶胶-凝胶法的定义范围有两种不同的看法,有人认为溶胶-凝胶过程包括液体溶液、硅胶、金属酸、金属氯化物等胶体悬浮液和金属醇盐溶液中所有的凝胶生长过程。
定义的关键是过程中有凝胶生成,而不强调凝胶生成的过程中是否形成了溶胶。
而一些人则认为溶胶-凝胶技术应体现出溶胶的性质,溶胶-凝胶技术指的是采用金属氧化物等的溶液制备胶态溶液,在加入稳定剂和调节剂的条件下控制凝胶过程。
溶胶-凝胶技术还包括凝胶的干燥和煅烧过程。
现在一般的看法倾向于前者的观点,认为 Sol-gel技术的特点在于凝胶的形成,而不在于是否经过了溶胶(sol)的过程。
1.1 溶胶-凝胶技术的发展过程采用溶胶-凝胶技术制备薄膜的历史相当悠久。
1939 年 W.Geffcken 和E.Berger 首次采用溶胶-凝胶浸渍法涂覆玻璃板,制备了改变玻璃光学反射性质的涂层,并取得了专利,在专利文献中首次提出溶胶-凝胶浸渍涂层工艺。
1959年德国特种玻璃股份公司采用溶胶凝胶浸渍涂层工艺开始批量生产汽车后视镜。
1962 年 H.Schroeder 在广泛研究光学涂层的基础上,发展了氧化物的薄膜物理。
随后 Dislich 和Leven等分别阐述了应用sol-gel 技术制备多组份氧化物的化学原理。
1969 年 Schott 玻璃公司以金属醇盐为原料,采用浸渍涂覆工艺生产出遮阳TiO2 涂层,应用于建筑物装潢用太阳能反射玻璃。
同年美国 Oak-Ridge 国家实验室(ORNL)应用 sol-gel 技术在无机溶液体系内制备出球状铀-钍核燃料,不仅使sol-gel 原料的成本大为降低,而且拓宽了 sol-gel 法的应用范围,使溶胶-凝胶法与实际工业过程联系更为密切,标志着溶胶-凝胶技术制备特性材料的真正开始。
溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。
一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。
胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。
凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。
分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。
溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。
在溶液中前驱物进行水解、缩合反应,形成凝胶。
传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。
但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。
因此在很多领域中应用较多的是络合溶胶-凝胶法。
该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。
溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O → M(OH2)z+n+ L z-M(OH2)z+n→ M(OH)(OH)(z-1)+n-1+ H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH → M-O-M + H2OM-OH + M-OH → M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。
溶胶-凝胶法溶胶-凝胶法(Sol-Gel法,简称S-G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶-凝胶法由于其前驱物及其反映条件的不同可以分为以下几种制备方法。
l、金属醇盐水解法该方法的基本过程是将醇盐溶于有机溶剂,然后在搅拌的同时缓慢加入蒸馏水的醇溶液,控制一定的pH值,经反应一定时间即可得到溶胶。
溶胶的化学均匀程度一方面受到前驱液中各醇盐混合水平的影响,这与醇盐之间的化学反应情况密切相关;另一方面,每种醇盐对水的活性也有很大的差异。
当金属醇盐之间不发生反应时,各种金属醇盐对水的活性起决定作用,反应活性的不同导致溶胶不均匀。
添加有机络合剂是克服这些问题切实可行的办法,常用的络合剂有羧酸或β-二酮等添加剂。
2、强制水解法该方法的基本过程是将将所要制备的金属氯化物加到氯化氢的水溶液中,将其加热到沸腾反应一段时间即得到对应的溶胶。
这种方法在制备氧化物在氧化物阳极材料的制备中也得到了较为广泛的应用。
3.金属醇盐氨解法4、原位聚合法及聚合螫合法这种方法的作用机理是有机单体聚合形成不断生长的刚性有机聚合网络,包围稳定的金属螫合物,从而减弱各种不同离子的差异性,减少各金属在高温分解中的偏析溶胶-凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。
⑴Sol-Gel法的基本原理及特点S01-Gel法的基本反应步骤如下:1)溶剂化:金属阳离子M z+吸引水分子形成溶剂单元M(H2O)nx+,为保持其配位数,具有强烈释放H+的趋势。
M(H2O)nx+→M(H2O)n-1(OH)(x-1)+H+2)水解反应:非电离式分子前驱物,如金属醇盐M(OR)n与水反应。
溶胶-凝胶法合成磷酸铁锂材料的方法
一、试剂准备:
1、磷酸三铝:将≥98%纯度的磷酸三铝和溶剂(乙醇或甲醇)以20:10的比例混合溶解,待备用;
2、锂离子溶液:将≥98%纯度的锂离子溶液(LiCl)和溶剂(乙醇或
甲醇)以20:10的比例混合溶解,待备用;
3、水性金属氧化物:将≥99.5%纯度的水性金属氧化物(例如Fe2O3)和溶剂(水)混合溶解,待备用;
4、磷酸铁溶液:将上述溶解后的磷酸三铝和水性金属氧化物以1:1的
比例混合,并适当加热,待其完全反应;
二、溶胶-凝胶法合成磷酸铁锂材料:
1、先将磷酸铁溶液和锂离子溶液以1:1.5的比例均匀混合在一起;
2、用磷酸铁溶液以1:1.5的比例混合锂离子溶液时,加入一定量的三
乙氧基苯胺(TEPA)作为混合剂,使其完全混合均匀;
3、在充分的混合的情况下,溶胶和凝胶完全分解,形成磷酸铁锂材料;
4、继续加热,使磷酸铁锂材料完全熔融,然后冷却到室温,得到最终
的磷酸铁锂材料。
溶胶-凝胶法合成石英的配方及制备过程一、引言石英是一种常见的硅酸盐矿物,具有优异的物理、化学和光学性能。
在许多领域,如光学、电子、陶瓷和玻璃制造中,石英都具有广泛的应用。
通过溶胶-凝胶法合成石英是一种常见的方法,该方法具有合成温度低、粒径小且分布均匀等优点。
本文将详细介绍溶胶-凝胶法合成石英的配方及制备过程。
二、溶胶-凝胶法合成石英的配方硅源硅源是溶胶-凝胶法合成石英的主要原料之一。
常用的硅源包括硅酸钠、硅酸四乙酯、四氯化硅等。
这些硅源都可以与水或其他溶剂反应生成硅溶胶,再通过凝胶化过程得到石英。
溶剂溶剂在溶胶-凝胶法中起到重要的作用。
常用的溶剂包括水、乙醇、丙酮等。
这些溶剂可以与硅源发生反应,促进溶胶的形成。
同时,溶剂还可以控制凝胶化的过程,进而影响石英的粒径和形貌。
催化剂催化剂在溶胶-凝胶法中可以促进硅源的水解和缩聚反应,缩短凝胶化时间,提高产物的纯度和结晶度。
常用的催化剂包括酸、碱等。
其他添加剂为了改善溶胶的稳定性、调节凝胶化过程以及提高产物的性能,还可以添加一些其他添加剂,如表面活性剂、分散剂等。
三、溶胶-凝胶法合成石英的制备过程配料根据所需的配方比例,将硅源、溶剂、催化剂和其他添加剂混合在一起,搅拌均匀。
水解和缩聚反应将混合物在一定温度下进行水解和缩聚反应,生成硅溶胶。
这个过程中需要控制反应温度和时间,以确保硅溶胶的质量和稳定性。
凝胶化过程将生成的硅溶胶在一定温度下进行凝胶化处理,得到硅凝胶。
这个过程中需要控制温度和时间,以获得理想的硅凝胶结构和性能。
干燥和烧结将硅凝胶进行干燥处理,去除其中的溶剂和其他添加剂。
然后进行烧结处理,使硅凝胶中的硅原子重新排列形成石英晶体。
这个过程中需要控制烧结温度和时间,以获得理想的石英结构和性能。
粉碎和筛分将烧结后的石英进行粉碎处理,得到一定粒度的石英粉。
然后进行筛分处理,得到不同粒度的石英产品。
四、结论溶胶-凝胶法是一种有效的合成石英的方法。
通过合理的配方设计和制备过程控制,可以获得具有优异性能的石英产品。
•溶胶-凝胶合成法是在20世纪60年代中期作为制备玻璃、陶瓷材料的一种工艺发展起来的、在低温或温和条件下合成无机化合物和无机材料的重要方法。
•溶胶是指微粒尺寸介于1~100nm之间的固体质点分散于介质中所形成的多相体系;•凝胶则是溶胶通过凝胶化作用(gelation)转变而成的、含有亚微米孔和聚合链的相互连接的坚实的网络,是一种无流动性的半刚性(semi-rigid)的固相体系。
①通过溶液混合,易获得需要的均相多组分体系;②可大幅降低制备温度,在较温和的条件下合成出陶瓷、玻璃、纳米复合材料等功能材料;③可制备高纯或超纯物质,且可避免在高温下对反应容器的污染等问题;④溶胶或凝胶的流变性质有利于通过某种技术如喷射、旋涂、浸拉、浸渍等制备各种膜、纤维或沉积材料。
①原料(金属醇盐)价格昂贵,醇的回收使技术和设备投资增加,且有机物危害健康,工业化生产有一定难度。
②整个溶胶-凝胶过程通常需几天或几周的时间,时间较长。
③凝胶中存在大量微孔,干燥过程中会逸出许多气体和有机物,干燥收缩大。
溶胶-凝胶的孔径、粘度、密度、成型形状、化学组成、比表面积、亲水性、导电性和机械强度等。
这些性质皆可以通过适当的实验条件加以控制。
布朗运动抵消了重力作用,使溶胶体系具有动力学稳定性。
胶粒之间存在引力,也存在静电斥力,二者的相对大小决定了溶胶颗粒间的距离,当斥力大于引力时,溶胶稳定;反之,当引力大于斥力时,溶胶颗粒间容易聚合,体系发生聚沉。
因此溶胶是一种热力学不稳定体系。
溶胶-凝胶的基本工艺过程是:反应物由分子态→聚合体→溶胶→凝胶→晶态(或非晶态)。
传统胶体型无机聚合物型配合物型常用的溶剂:水、醇,如乙醇、乙二醇、正丙醇、异丙醇、正丁醇等。
前驱体氯氧化物(MOCl n-2)等草酸盐等金属无机盐硝酸盐氯化物金属有机盐金属醇盐醋酸盐单金属醇盐(如La(OC 3H 7)3等)双金属醇盐(如(C 3H 7O)2Zr[Al(OC 3H 7)4]2等中心化学问题是反应物分子(或离子)在水(或醇)溶液中进行水解(或醇解)和聚合,即由分子态-聚合体-溶胶-凝胶-晶态(或非晶态)的过程。
溶胶-凝胶法制备纳米二氧化钛实验目的1. 溶胶-凝胶法合成纳米级半导体材料TiO22. 复习及综合应用无机化学的水解反应理论,物理化学的胶体理论3. 了解纳米粒性和物性4. 通过实验,进一步加深对基础理论的理解和掌握,做到有目的合成,提高实验思维与实验技能实验原理纳米粉体是指颗粒粒径介于1〜100 nm之间的粒子。
由于颗粒尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。
纳米TiO2具有许多独特的性质。
比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分散性好等。
基于上述特点,纳米TiO2具有广阔的应用前景。
利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 口)高得多;禾I」用其透明性和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光敏性,可开发一种TiO2 感光材料。
如何开发、应用纳米TiO2,已成为各国材料学领域的重要研究课题。
目前合成纳米二氧化钛粉体的方法主要有液相法和气相法。
由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂[1〜3],因此,本实验采用溶胶-凝胶法来制备纳米二氧化钛光催化剂。
制备溶胶所用的原料为钛酸四丁脂(Ti(O-C4H9)4)、水、无水乙醇(C2H5OH)以及冰醋酸。
反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰醋酸可调节体系的酸度防止钛离子水解过速。
使Ti(O-C4H9)4在C2H5OH中水解生成Ti(OH)4, 脱水后即可获得TiO2。
在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以获得金红石型和锐钛型二氧化钛。
钛酸四丁脂在酸性条件下,在乙醇介质中水解反应是分步进行的,总水解反应表示为下式,水解产物为含钛离子溶胶。