第8章 溶胶-凝胶合成技术
- 格式:ppt
- 大小:1.60 MB
- 文档页数:53
溶胶凝胶技术是一种重要的材料制备方法,它可以通过溶解或分散在溶剂中的物质,在适当条件下形成胶体,进而制备出各种类型的凝胶材料。
本文将从溶胶凝胶技术的基本原理、制备方法和应用等方面进行介绍。
一、基本原理溶胶凝胶技术是一种基于溶胶-凝胶转化过程的材料制备方法。
溶胶是指由微小颗粒或聚集体组成的胶体,具有高比表面积和高分散度,通常呈稳定的胶态状态。
凝胶是指由溶胶聚集形成的三维网络结构,其内部充满了孔隙和通道,具有良好的吸附、传质和反应活性等性能。
溶胶凝胶技术的基本原理是将物质分散在溶剂中,形成稳定的溶胶,然后通过物理或化学方法使其转化为凝胶。
具体来说,溶胶凝胶技术主要包括以下步骤:1. 溶解或分散:将需要制备的物质加入适当的溶剂中,通过加热、搅拌或超声等方法使其充分溶解或分散,形成溶胶。
2. 凝胶化:将溶胶在适当条件下进行加工处理,使其中的微粒或聚集体发生相互作用,形成三维网络结构,从而形成凝胶。
3. 脱水和固化:将凝胶进行脱水和固化处理,使其内部空隙和通道固定下来,形成稳定的凝胶材料。
二、制备方法溶胶凝胶技术可以根据不同的物质和应用需求,采用多种不同的制备方法。
根据凝胶化机理的不同,可以将其分为物理凝胶法和化学凝胶法两种类型。
1. 物理凝胶法物理凝胶法是指利用物理作用引起的凝胶化过程,如晶体生长、沉淀、共沉淀、水热法、溶剂挥发法、冷冻干燥法等。
这些方法具有简单易行、操作方便、成本低廉等优点,但凝胶化过程通常比较缓慢,需要多次反复处理才能得到稳定的凝胶材料。
2. 化学凝胶法化学凝胶法是指利用化学反应引起的凝胶化过程,如溶胶-凝胶法、水解-缩合法、聚合法等。
这些方法具有反应速度快、成品质量稳定、性能可调节等优点,但需要控制反应条件和反应物比例等方面的因素,以确保凝胶化反应的顺利进行。
三、应用溶胶凝胶技术具有广泛的应用前景,它可以制备出各种类型的凝胶材料,包括无机凝胶、有机凝胶、复合凝胶等。
这些凝胶材料在生物医学、环境治理、能源储存、电子器件等领域都有很好的应用。
溶胶凝胶法溶胶凝胶法1 溶胶,凝胶法溶胶,凝胶(Sol-Gel)技术是指金属有机或无机化合物经过溶胶,凝胶化和热处理形成氧化物或其他固体化合物的方法。
其过程:用液体化学试剂(或粉状试剂溶于溶剂)或溶胶为原料,而不是用传统的粉状物为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系,放置一定时间后转变为凝胶,经脱水处理,在溶胶或凝胶状态下成型为制品,再在略低于传统的温度下烧结。
2 溶胶凝胶法基本原理溶胶,凝胶法的主要步骤为将酯类化合物或金属醇盐溶于有机溶剂中,形成均匀的溶液,然后加入其他组分,在一定温度下反应形成凝胶,最后经干燥处理制成产品。
2.1 水解反应金属盐在水中的性质受金属离子半径,电负性,配位数等因素影响,如Si、Al 盐,它们溶解于纯水中常电离出Mn+,并溶剂化[3]。
水解反应平衡关系随溶液的酸度,相应的电荷转移量等条件的不同而不同。
有时电离析出的Mn+又可以形成氢氧桥键合。
水解反应是可逆反应,如果在反应时排除掉水和醇的共沸物,则可以阻止逆反应进行,如果溶剂的烷基不同于醇盐的烷剂,则会产生转移酯化反应,这些反应对合成多组分氧化物是非常重要的。
2.2 聚合反应硅、磷、硼以及许多金属元素,如铝、钛、铁等的醇盐或无机盐在水解的同时均会发生聚合反应,如失水、失醇、缩聚、醇氧化、氧化、氢氧桥键合等都属于聚合反应,性质上都属于取代反应或加成反应。
主要反应:,M,OH ,HO,M, ? ,M,O,M,+H2O ;,M,OR + HO,M, ? ,M,O,M,+ROH 等。
Okkerse等提出硅酸在碱性条件聚合成六配位过渡态,Swain等则提出形成稳定的五配位的过渡态,由于硅酸盐的水解和聚合作用几乎同时进行,它的总反应过程动力学将决定于3个反应速率常数,使得在最临近的尺度范围内,中心Si原子可以有15种不同的化学环境,R.A.Assink等曾描述了这15种配位方式的关系。
可见聚合后的状态是很复杂的[4-6]。
溶胶凝胶法溶胶-凝胶法是一种应用很广泛的材料合成方法。
如玻璃、无机材料粉体、陶瓷、涂料、纤维、薄膜等,特别在纳米结构材料的制备方面,是最常采用的化学合成方法之一。
溶胶-凝胶法:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶- 凝胶法的特点:通过溶液相使反应物混合,可以获得所需配比的均相多组分体系;能在低温下通过化学反应实现化合物的合成;由于反应发生从分子或离子开始,因此制备得到的前驱体材料多为纳米级,能有效降低材料的制备温度;形成的溶胶或凝胶就要一定的流动性,有利于通过喷涂、浸拉,旋涂、雾化等方法制备薄膜、纤维或沉积材料。
一般不需要过滤等工艺,反应设备简单;溶胶-凝胶法的发展历程:1846年法国化学家J.J.Ebelmen用SiCl4与乙醇混合后,发现在湿空中发生水解并形成了凝胶。
20世纪30年代W.Geffcken证实用金属醇盐的水解和凝胶化可以制备氧化物薄膜。
1971年德国H.Dislich 报道了通过金属醇盐水解制备了SiO2-B2O-Al2O3-Na2O-K2O多组分玻璃。
1975年B.E.Yoldas 和M.Yamane制得整块陶瓷材料及多孔透明氧化铝薄膜。
80年代以来,在玻璃、氧化物涂层、功能陶瓷粉料以及传统方法难以制得的复合氧化物材料得到成功应用。
溶胶- 凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
●胶体(colloid )是一种分散相粒径很小的分散体系,分散相粒子的重力可以忽略,粒子之间的相互作用主要是短程作用力。