08工程热力学第八章 气体动力循环
- 格式:ppt
- 大小:244.00 KB
- 文档页数:21
7 动力循环(Power Cycles)热能向机械能转换需要通过工质地循环,理想地循环是卡诺循环,但卡诺循环并不实用,其中地等温过程就难以实现.利用相变过程固然可以实现等温过程,但在吸热温度、压力方面却不遂人愿,所以实际循环与卡诺循环地差异比较大.但实际循环与卡诺循环并不是一点关系也没有,实际循环与卡诺循环一样,也有吸热、作功、放热、压缩四种过程组成,其中吸热常常伴随燃料燃烧放热.为了提高动力循环地能量转换地经济性,必须依照热力学基本定律对动力循环进行分析,以寻求提高经济性地方向及途径.实际动力循环都是不可逆地,为提高循环地热经济性而采取地各种措施又使循环变得非常复杂.为使分析简化,突出热功转换地主要过程,一般采用下述手段:首先将实际循环抽象概括成为简单可逆理论循环,分析该理论循环,找出影响其循环热效率地主要因素和提高热效率地可逆措施;然后分析实际循环与理论循环地偏离之处和偏离程度,找出实际损失地部位、大小、原因及改进办法.本课程主要关心循环中地能量转换关系,减少实际损失是具体设备课程地任务,因此我们主要论及前者.7.1 内燃动力循环内燃机地燃料燃烧(吸热)、工质膨胀、压缩等过程都是在同一设备——气缸–活塞装置中进行地,结构紧凑.由于燃烧是在作功设备内进行地,所以称为内燃机.汽车最常用地动力机是内燃机,但是随着技术地进步、环境保护标准地提高与石油天然气资源紧缺,使用蓄电池、燃料电池或太阳能电池地电动汽车已经呼之欲出.目前提到汽车发动机仍然主要是指内燃机.内燃机具有结构紧凑、体积小、移动灵活、热效率高和操作方便等特点,广泛用于交通运输、工程机械、农业机械和小型发电设备等领域.它是仿照蒸汽机地结构发明地,最初使用煤气作为燃料.随着石油工业地发展,内燃机获得了更合适地燃料——汽油和柴油.德国人奥托(Nicolaus A. Otto)首先于1877年制成了实用地点燃式四1—气缸盖和气缸体;2—活塞;3—连杆;4—水泵;5—飞轮;6—曲轴;7—润滑油管;8—油底壳;9—润滑油泵;10—化油器;11—进气管;12—进气门;13—排气门;14—火花塞图7-1 单缸四冲程内燃机结构冲程内燃机,狄塞尔(Rudoff Diesel)随后于1897年制成了压燃式内燃机.20世纪30年代出现地增压技术,使内燃机性能得到大幅度提高.目前内燃机在经济性能(主要指燃料和润滑油消耗)、动力性能(主要指功率、转矩、转速)、运转性能(主要指冷起动性能、噪声和排气质量)和耐久可靠性能等方面均有了长足地进步.7.1.1 四冲程内燃机地工作原理四冲程(行程)内燃机是指由进气、压缩、作功和排气等四个冲程组成一个工作循环地往复式内燃发动机,其工作原理如图7-2所示.1)进气冲程这是内燃机工作循环地第一个冲程.开始时进气门打开,曲轴旋转180︒,活塞由上止点运动到下止点,新鲜空气被吸入气缸.2)压缩冲程进、排气门全部关闭,气缸形成封闭系统,曲轴旋转180︒,活塞由下止点运动到上止点,将气缸内地充量压缩.3)作功(膨胀)冲程气缸内高温、高压气体膨胀作功,推动活塞由上止点运动到下止点,曲轴旋转180︒,对外作功.4)排气冲程膨胀冲程结束后,排气门打开,曲轴旋转180︒,推动活塞由下止点运动到上止点,将燃烧后地废气经排气门排出气缸.四冲程内燃机经历上述工作循环,曲轴共旋转720︒.四个冲程中仅有作功冲程是活塞对外作功,其他三个冲程都需要外界驱动活塞运动.四冲程柴油机和汽油机地工作过程都包括上述四个冲程,两者在工作原理上地区别是:柴油机压缩地是单一气体(空气),当活塞到达上止点附近时,缸内空气地压力温度很高,适时地喷入柴油,在缸内形成可燃混合气并自行着火燃烧,所以称为压燃式内燃机;汽油机图7-2 四冲程内燃机工作原理则是在气缸外形成可燃混合气,然后充入气缸,压缩终了时靠火花塞打火点燃(其压缩终了时压力温度比压燃式内燃机低得多),所以称为点燃式内燃机1.显然活塞地往复运动必然产生很大地振动,所以单缸内燃机需要一个又重又大地飞轮来减轻振动对曲轴及轴端输出功产生地冲击1由于汽油机里被压缩的是燃料和空气的混合物,受混合气体自燃温度的限制,不能采用大压缩比,不然混合气体就会“爆燃”,使发动机不能正常工作。
工程热力学气体动力循环的概念与分类工程热力学是研究热能和功的转换与利用的学科。
在工程领域中,气体动力循环是广泛应用于发电、制冷、空调、石油化工等领域的一种热力学循环过程。
本文将介绍工程热力学气体动力循环的概念,并对其进行分类。
一、概念气体动力循环是通过工作物质在循环过程中吸热、膨胀、排热、压缩等热力学过程,将热能转化为功的循环过程。
这种循环过程通常由燃料燃烧产生热能,再通过与工作物质的热交换和机械工作转换来实现功的输出。
气体动力循环常用于热能转换设备,如内燃机、蒸汽轮机等。
二、分类根据气体动力循环的特点和工程应用需求,可以将其分为以下几类:1. 单级循环与多级循环单级循环是指在气体动力循环中,工作物质只经过一次膨胀和压缩过程,例如单级蒸汽轮机循环。
而多级循环则是指工作物质在循环过程中经过多次膨胀和压缩过程,例如多级蒸汽轮机循环。
多级循环相比于单级循环具有更高的效率和更好的经济性。
2. 热力循环与制冷循环热力循环主要用于能源利用,将热能转化为功。
典型的热力循环包括布雷顿循环和卡诺循环等。
而制冷循环则是将热能从低温区吸收,通过工作物质的循环过程将热能传递到高温区,从而实现制冷效果。
常见的制冷循环包括单级压缩制冷循环和多级压缩制冷循环等。
3. 气体组成循环气体动力循环中的工作物质可以是单一组分的气体,也可以是多组分混合气体。
气体组成对循环过程的热力学性质和性能有重要影响。
常见的气体组成循环包括理想气体循环、湿气循环和混合气体循环等。
4. 循环过程特点根据循环过程的特点,气体动力循环可分为恒定流量循环和恒定压力循环。
在恒定流量循环中,气体流量保持不变,例如湿蒸汽循环。
而在恒定压力循环中,工作物质的排热过程保持恒定压力,例如常压汽轮机循环。
总结:工程热力学气体动力循环是将热能转化为功的一种循环过程。
根据其特点和应用需求,可以将其分类为单级循环与多级循环、热力循环与制冷循环、气体组成循环以及循环过程特点等。
一.是非题1.两种湿空气的相对湿度相等,则吸收水蒸汽的能力也相等。
()2.闭口系统进行一放热过程,其熵一定减少()3.容器中气体的压力不变,则压力表的读数也绝对不会改变。
()4.理想气体在绝热容器中作自由膨胀,则气体温度与压力的表达式为k kppTT1 1212()5.对所研究的各种热力现象都可以按闭口系统、开口系统或孤立系统进行分析,其结果与所取系统的形式无关。
()6.工质在相同的初、终态之间进行可逆与不可逆过程,则工质熵的变化是一样的。
()7.对于过热水蒸气,干度1x()8.对于渐缩喷管,若气流的初参数一定,那么随着背压的降低,流量将增大,但最多增大到临界流量。
()9.膨胀功、流动功和技术功都是与过程的路径有关的过程量()10.已知露点温度dt、含湿量d即能确定湿空气的状态。
()二.选择题(10分)1.如果热机从热源吸热100kJ,对外作功100kJ,则()。
(A)违反热力学第一定律;(B)违反热力学第二定律;(C)不违反第一、第二定律;(D)A和B。
2.压力为10bar的气体通过渐缩喷管流入1bar的环境中,现将喷管尾部截去一小段,其流速、流量变化为()。
A 流速减小,流量不变(B)流速不变,流量增加C流速不变,流量不变(D)流速减小,流量增大3.系统在可逆过程中与外界传递的热量,其数值大小取决于()。
(A)系统的初、终态;(B)系统所经历的过程;(C)(A)和(B);(D)系统的熵变。
4.不断对密闭刚性容器中的汽水混合物加热之后,其结果只能是()。
(A)全部水变成水蒸汽(B)部分水变成水蒸汽(C)部分或全部水变成水蒸汽(D)不能确定5.()过程是可逆过程。
(A).可以从终态回复到初态的(B).没有摩擦的(C).没有摩擦的准静态过程(D).没有温差的三.填空题(10分)1.理想气体多变过程中,工质放热压缩升温的多变指数的范围_________ 2.蒸汽的干度定义为_________。
3.水蒸汽的汽化潜热在低温时较__________,在高温时较__________,在临界温度为__________。
第二章基本概念基本要求:通过本章的学习,你应该掌握以下工程热力学的基本概念:工质,热力学系统(及其分类),外界,边界,热力学平衡态(与稳态、均匀的区别),状态参数(及其特征),准静态过程,可逆过程,功,热量本章重点:1、热力学系统的概念及其分类。
2、热力学平衡态的概念及其判断。
3、状态参数的概念及其特征。
4、准静态过程的概念及其意义、判断。
5、可逆过程的概念及其判断。
6、准静态过程与可逆过程的联系与区别。
7、功、热量的概念及其区别、方向符号。
第一节工质热力学系统1. 作为工质应具有良好的______和______。
A. 流动性/多变性B. 膨胀性/多变性C. 膨胀性/分离性2. 把热能转化为机械能,通过______的膨胀来实现。
A. 高温气体C. 液体D. A、B、C均不对3. 把热量转化为功的媒介物称为______。
A. 功源B. 热源C. 质源工质必须具有良好的膨胀性和流动性,常用工质有:B. 润滑油C. 水D. 天然气4. 内燃机动力装置的工质是_______。
B. 蒸气C. 燃油D. 水5. 燃气轮机动力装置的做功工质是:B. 蒸汽C. 氧气D. 水6. 蒸汽动力装置的工质必须具有良好的______性。
B. 耐高温C. 纯净D. 导热7. 下列哪一种系统与外界肯定没有质量交换但可能有热量交换?A. 绝热系统B. 孤立系统D. 开口系统8. 与外界没有质量交换的系统是______,同时它也可能是______。
A. 开口系统/孤立系统B. 开口系统/绝热系统D. 绝热系统/孤立系统9. 封闭系统是指______的系统。
B. 与外界没有热量交换C. 与外界既没有物质交换也没有热量交换D. 与外界没有功的交换10. 开口系统是指______的系统。
B. 与外界有热量交换C. 与外界有物质交换没有热量交换D. 与外界有功的交换11. 与外界有质量交换的系统是开口系统,同时它也可能是:A.封闭系统C.孤立系统D.B+C12. _____与外界肯定没有能量交换。
《工程热力学及内燃机原理》教学大纲开课单位:汽车工程系课程代号:学分:4 总学时:64 H课程类别:限选考核方式:考试基本面向:车辆工程专业一、本课程的目的、性质及任务本课程为车辆工程专业的一门专业课。
通过本课程的学习,学生掌握热力学的基本概念和内燃机基本原理,能对内燃机的性能进行全面的、系统的分析,具备一定的热力学过程和内燃机主要参数的计算能力,并为以后学习机械方面的专业课程打好基础。
二、本课程的基本要求掌握热力学的基本概念和内燃机基本原理,掌握热力学第一定律和热力学第二定律;了解各种常用工质的热力性质;能根据热力学基本定律,结合工质的热力性质,分析计算实现热能和机械能相互转换的各种热力过程和热力循环;了解提高热效率的正确途径和措施。
了解内燃机排污、噪声、振动的知识,掌握内燃机台架试验的基本知识和基本技能。
三、本课程与其他课程的关系学习本课程前,应先修“高等数学”、“大学物理学”、“机械原理”、“汽车构造”等课程。
只有在学好上述课程的基础上才能更好的学习本课程。
四、本课程的教学内容第一部分工程热力学部分绪论(一)热能及其利用(二)热力学发展简史(三)工程热力学的主要内容及研究方法第一章基本概念(一)热能在热机中转变成机械能的过程(二)热力系统(三)工质的热力学状态及其基本状态参数(四)平衡状态,状态方程式,坐标图(五)工质的状态变化过程(六)过程功和热量(七)热力循环第二章热力学第一定律(一)热力学第一定律的实质(二)热力学能和总能(三)能量的传递和转化(四)焓(五)热力学第一定律的基本能量方程式(六)开口系统能量方程式(七)能量方程式的应用第三章理想气体的性质(一)理想气体的概念(二)理想气体状态方程式(三)理想气体比热容(四)理想气体的热力学能、焓和熵(五)理想气体混合物第四章理想气体的热力过程(一)研究热力过程的目的及一般方法(二)定容过程(三)定压过程(四)定温过程(五)绝热过程(六)多变过程第五章热力学第二定律(一)热力学第二定律(二)可逆循环分析及其热效率(三)卡诺定理(四)熵参数、热过程方向的判据(五)熵增原理(六)熵方程第六章气体的流动(一)稳定流动基本方程(二)促进速度变化的条件(三)喷管的计算(四)定熵滞止参数第七章压气机的热力过程(一)单级活塞式压气机的工作原理和理论耗功量(二)余隙容积的影响(三)多级压缩和级间冷却(四)叶轮式压气机的工作原理第八章气体动力循环(一)活塞式内燃机动力循环(二)活塞式内燃机各种理想循环的比较(三)斯特林循环(四)燃气轮机装置循环(五)燃气轮机装置的定压加热实际循环(六)提高燃气轮机装置循环热效率的措施第二部分内燃机原理部分第一章绪论(一)20世纪的内燃机(二)内燃机面临能源与环境的严峻挑战(三)内燃机当前的发展水平(四)面向21世纪的内燃机第二章内燃机的工作循环(一)内燃机理想循环(二)涡轮增压内燃机理想循环(三)内燃机理想循环热效率(四)内燃机实际循环(五)内燃机工作循环举例第三章内燃机的工作指标与性能分析(一)内燃机的工作指标(二)内燃机的指示参数(三)内燃机的机械损失及机械效率(四)内燃机的有效参数(五)内燃机的强化指标与强化分析(六)内燃机的热平衡(七)内燃机的热计算第四章内燃机的燃烧(一)内燃机燃烧热化学(二)内燃机缸内的空气运动(三)点燃式内燃机的燃烧(四)点燃式内燃机的燃烧室(五)压燃式内燃机的燃烧(六)压燃式内燃机的燃烧室第五章内燃机的燃料与燃料供给(一)内燃机燃料(二)柴油机的燃油喷射系统(三)柴油机电控喷油系统(四)汽油机的燃油供给系统(五)电控汽油喷射系统(六)气体燃料内燃机的燃料供给第六章内燃机的换气过程(一)四冲程内燃机的换气过程(二)提高充气系数的措施(三)二冲程内燃机的换气过程及其品质评定(四)内燃机的换气可用能与缸盖气道稳流试验第七章内燃机增压(一)增压技术和增压方式(二)涡轮增压系统(三)高压比、超高压比涡轮增压系统(四)涡轮增压器与内燃机的配合(五)车用发动机增压(六)特殊工况下发动机的涡轮增压第八章内燃机的排放与控制(一)内燃机排放与环境污染(二)内燃机中的有害气相排放物(三)内燃机的颗粒物排放(四)光化学反应(五)内燃机的排气净化第九章内燃机工作过程数值计算(一)内燃机的工质及热力系统的划分(二)内燃机气缸内的热力过程(三)内燃机进排气系统内的热力过程(四)内燃机缸内过程计算的边界条件(五)内燃机与涡轮增压器的匹配计算第十章内燃机的运行特性(一)内燃机的运行工况和调节(二)内燃机的基本运行特性(三)内燃机的实用运行特性(四)内燃机功率及燃油消耗率的修正五、本课程重点、难点1、工程热力学部分:重点:热力学第一定律、理想气体的性质、热力学第二定律、理想气体的热力过程、气体动力循环、气体的流动难点:热力学第二定律、气体的流动。