2.3相反数
- 格式:ppt
- 大小:521.00 KB
- 文档页数:19
2.7 有理数的减法【基本目标】1.经历探索有理数减法法则的过程,理解并掌握有理数减法法则;2.会正确进行有理数减法运算;3.体验把减法转化为加法的转化思想.【教学重点】有理数减法法则和运算.【教学难点】有理数减法法则的推导.一、情境导入,激发兴趣1.世界上最高的山峰珠穆朗玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为—154米,两处的高度相差多少呢?试试看,计算的算式应该是__________________.能算出来吗,画草图试试.【教学说明】让学生结合图象,得出结论.2.甲数是-8,乙数是-3,甲数比乙数多多少?计算的算式应该是__________________.结果是多少呢?【教学说明】先让学生列出算式,然后让学生猜想结果,引起学生探究的兴趣.二、合作探究,探索新知1.怎样计算(-8)-(-3)?请你在小组内一起探究、交流.要计算(-8)-(-3)=?,实际上也就是要求:?+(-3)=-8,所以这个数(差)应该是_____.也就是(-8)-(-3)=-5.再看看,(-8)+(+3)=_____.所以3-(-2) _____3+2!由上你有什么发现?请写出来____________________.【教学说明】一步步引导学生思考,计算得出结果,观察其中蕴含的规律,总结运算的法则.2.换两个式子计算一下,看看上面的结论还成立吗?-1-(-3)=_____,-1+3=_____,所以-1-(-3)_____-1+3.0-(-3)=_____,0+3=_____ ,所以0-(-3)_____0+3.【教学说明】用不同的算式进行计算,进一步强化对规律的理解,使学生掌握的更熟练.3.归纳总结:有理数的减法法则:减去一个数,等于加上这个数的相反数.【教学说明】让学生及时归纳总结,形成方法.三、示例讲解,掌握新知例计算:(1)(-32)-(+5);(2)7.3-(-6.8);(3)(-2)-(-25);(4)12-21 .解:(注意:两处必须同时改变符号.)(3)(-2)-(-25)=(-2)+25=23 .(4)12-21 = 12+(-21)= -9 .【教学说明】教师重点讲解(1),强调减号变加号,减数变相反数,学生仿照完成其余计算,进一步熟悉法则的应用.四、练习反馈,巩固提高1.下列括号内各应填什么数?(1)(+2)-(-3)=(-2)+( );(2)0-(-4)= 0 +( );(3)(-6)- 3 =(-6)+( );(4)1-(+39) = 1 +( ) .2.计算下列各题:典型引路:(-6)-(+4)=(-6)+(-4)=-10(1)9-(-5)=(2)(-3)-1=(3)0-8=(4)(- 5)-0=总结步骤:(1)_______________________________________.(2)___________________________________________________.3.下列运算中正确的是()B.(-2.6)+(-4)=2.6+4=6.64.计算:(1) (-3)-(-7);(2) (-10)-3;(3)(-2.5)-1.5;(4)0-12;(5) (-11)-0;(6)318-124.【教学说明】学生独立完成,达到熟练应用法则进行计算的目的,教师针对出现的问题及时进行强调.【答案】1.(1)3 (2)4 (3)-3 (4)-392.(1)9+5=14 (2)(-3)+(-1)=-4 (3)0+(-8)=-8(4)(-5)-0=-5 (5)减号变加号(6)减数变相反数3.D4.(1)4 (2)-13 (3)-4 (4)-12(5)-11 (6)- 7 8五、师生互动,课堂小结1.有理数的减法法则:减去一个数,等于加上这个数的相反数.2.在运用有理数减法法则的时候,要注意什么?【教学说明】教师要重点强调进行有理数的减法运算时减法变成加法,减数变为相反数,然后再按照加法的法则进行计算.完成本课时对应的练习.本节课的教学,运用的加法与减法互为逆运算这一思维方式,推导出有理数减法的法则,然后运用法则将有理数的减法运算转化为加法运算.在转化的过程中,一定要强调减法变为加法,减数变为它的相反数.《第1章基本的几何图形》一.选择题1.下列立体图形中,面数相同的是()①正方体;②圆柱;③四棱柱;④圆锥.A.①②B.①③C.②③D.③④2.用圆规画圆的过程中,把圆规的两脚分开,定好两脚间的距离是3cm,则该圆的直径是()cm.A.1.5B.3C.4.5D.63.如图,长方形的长为3cm、宽为2cm,分别以该长方形的长、宽所在直线为轴,将其旋转1周,形成甲、乙两个圆柱,其体积分别记作V甲、V乙,侧面积分别记作S甲、S乙,则下列说法正确的是()A.V甲<V乙,S甲=S乙B.V甲>V乙,S甲>S乙C.V甲=V乙,S甲=S乙D.V甲>V乙,S甲<S乙4.如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短5.如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=BC C.CD=AB﹣BD D.CD=AD﹣BC 6.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对7.下列展开图,能折叠成正方体的有()个.A.6B.5C.4D.78.如图是一个长方体包装盒,则它的表面能展开成的平面图形是()A.B.C.D.9.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线10.小红量得一座古代建筑中的大圆柱某个横截面的周长是3.14m,这个横截面的半径是()米.(π取3.14)A.3.14B.2C.1D.二.填空题11.图中共有线段条.12.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.13.如图是一个立体图形的平面展开图,则这个立体图形是.14.如图,已知线段AC=7cm,AD=2cm,C为线段DB的中点,则线段AB=cm.15.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.16.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.17.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.18.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.19.如图,阴影部分的面积为cm2.(π取3.14)20.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“守”字一面的相对面上的字是.三.解答题21.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)22.两个圆柱体容器如图所示,容器1的半径是4cm,高是20cm;容器2的半径是6cm,高是8cm,我们先在容器2中倒满水,然后将里面的水全部倒入容器1中,问:倒完以后,容器1中的水面离容器口有多少厘米?23.小明学习了“面动成体”之后,他用一个边长为6cm、8cm和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算出几何体的体积.(锥体体积=底面积×高)24.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.25.我们知道,三棱柱的上、下底面都是三角形,那么正三棱柱的上、下底面都是等边三角形.如图,大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱.(1)请写出截面的形状;(2)请直接写出四边形DECB的周长.26.过平面上四点中的任意两点作直线,甲说有一条,乙说有四条,丙说有六条,丁说他们说的都不对,应该是一条、四条或六条,谁说的对?请画图来说明你的看法.27.如图已知点C为AB上一点,AC=18cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.参考答案与试题解析一.选择题1.解:①正方体六个面;②圆柱三个面;③四棱柱六个面;④圆锥两个面,面数相同的是①③,故选:B.2.解:∵把圆规的两脚分开,定好两脚间的距离是3cm,∴该圆的直径是6cm,故选:D.3.解:由题可得,V甲=π•22×3=12π,V乙=π•32×2=18π,∵12π<18π,∴V甲<V乙;∵S甲=2π×2×3=12π,S乙=2π×3×2=12π,∴S甲=S乙,故选:A.4.解:从A到B有①,②,③三条路线,最短的路线是①,其理由是:两点之间,线段最短,故选:D.5.解:∵C是线段AB的中点,∴AC=BC=AB,A、CD=BC﹣BD=AC﹣BD,故本选项正确;B、D不一定是BC的中点,故CD=BC不一定成立;C、CD=AD﹣AC=AD﹣BC,故本选项正确;D、CD=BC﹣BD=AB﹣BD,故本选项正确.故选:B.6.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.7.解:根据正方体展开图的特征可得,①③④⑤⑥可以折叠成正方体,而⑧折叠成三棱柱,故选:B.8.解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;C、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:A.9.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.10.解:设这个横截面的半径是r米,根据题意,得2×3.14r=3.14,解得r=,故选:D.二.填空题11.解:由图得,图中的线段有:AB,BC,CD,DE,AC,BD,CE,BE,AD,AE一共10条.故答案为:10.12.解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.13.解:根据展开图可知,这个几何体两个底面是三角形,三个侧面是长方形的,因此这个几何体是三棱柱,故答案为:三棱柱.14.解:∵AC=7cm,AD=2cm,∴CD=AC﹣AD=5cm,∵C为线段DB的中点,∴BC=CD=5cm,∴AB=AC+BC=7+5=12(cm),答:线段AB=12cm,故答案为:12.15.解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM﹣PB=4﹣3=1cm.故答案为1.16.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.17.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.18.解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.19.解:S阴影=S圆形﹣S正方形=π×()2﹣×2×2=π﹣2≈1.14(cm2),故答案为:1.14.20.解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“守”字一面的相对面上的字是“善”.故答案为:善.三.解答题21.解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这的包装盒需花费1.8元钱.22.解:设倒完以后,第一个容器中的水面离容器口有x cm,则:π×42×(20﹣x)=π×62×8,解得:x=2,答:第一个容器中的水面离容器口有2 cm.23.解:以8cm为轴,得以8cm为轴体积为×π×62×8=96π(cm3),以6cm为轴,得以6cm为轴的体积为×π×82×6=128π(cm3),以10cm为轴,得以10cm为轴的体积为×π()2×10=76.8π(cm3).故几何体的体积为:96πcm3或128πcm3或76.8πcm3.24.解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.25.解:(1)由题可得,截面的形状为长方形;(2)∵△ADE是周长为3的等边三角形,∴DE=AD=1,又∵△ABC是周长为10的等边三角形,∴AB=AC=BC=,∴DB=EC=﹣1=,∴四边形DECB的周长=1+×2+=9.26.解:丁说的对.(1)当四点共线时,可画1条,如图(1);(2)当四点中有三点共线时,可画4条,如图(2);(3)当四点中任意三点不共线时,可画6条,如图(3);27.解:∵AC=18cm,CB=AC,∴BC=×18=12cm,则AB=AC+BC=30cm,∵D、E分别为AC、AB的中点,∴AD=AC=9cm,AE=AB=15cm,∴DE=AE﹣AD=15﹣9=6cm,答:DE的长是6cm.。
用相反数的知识化简含有多个负号的数
难易度:★★★
关键词:有理数
答案:
含有多个负号的数的化简,一定要弄清负号的意义:表示一个数的相反数,而不是表示负数。
【举一反三】
典例: -(-6) .
思路导引:根据定义我们知道只有符号不同的两个数,我们就说其中一个是另一个的相反数。
本题就是求(-6)的相反数,和(-6)只有符号不同的数是(+6),其中的(+)可以省略,所以本题答案为6。
本题还可以这样考虑:互为相反数的两个数在数轴上表示这两
个数的点,分别在原点的两旁,且与原点的距离相等,在数轴上与(-6)距离相等的点是6。
标准答案:6
1。
2.3相反数与绝对值基础知识点一、相反数1、相反数的概念:只有符号不同的两个数叫做互为相反数,一般来说a 的相反数是—a.几何意义:在数轴上,分别位于原点的两侧,且到原点的距离相等,那么一个数叫做另一个数的相反数,或说它们互为相反数。
2、相反数的性质:任何一个数都有相反数,而且只有一个,正数的相反数一定是负数;负数的相反数一定是正数;0的相反数仍是0.3、注意:(1)若两个数互为相反数,则它们的和为0. 用字母表示:若a=—b 则 a + b = 0 (2)数轴上表示相反数的两个点关于原点对称。
(3)相反数等于它本身的数只有0. 用字母表示为若a =—a 则a=0(4)相反数是成对出现的,不能单独存在。
例如,-3和+3互为相反数,是说-3是+3的相反数,同时+3也是-3的相反数,单独的一个数不能说是相反数。
(5)“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是绝对值相同)。
不能理解为只要符号不同的两个数就互为相反数。
例如-2和-3,符号不同,但它们不互为相反数。
(6)要把“相反数”与“相反意义的量”区别开来。
“相反数”不但数的符号相反,而且要求符号后面的数相同,如+5与-5;而“具有相反意义的量”只要符号相反即可,如+2与-3. 4、多重符号的化简:两中方法(1)正正得正、正负得负(负正得负)(2)查负号的个数,当负号个数为奇数时,结果为负,当负号个数为偶数时,结果为正 二、绝对值1、绝对值的概念:在数轴上,一个数所对应的点到原点的距离叫作这个数的绝对值。
绝对值用符号“”表示,读作绝对值、数a 的绝对值记作a ,如—2的绝对值记作 —2 .2、绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 用数学式子表示数a 的绝对值:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(1)任何数都有绝对值,且只有一个。
七年级数学上册集体备课教案科目数学课时年级七年级课题§2、3相反数与绝对值教学目标借助数轴,了解相反数的意义。
会求一个数的相反数2、借助数轴,初步理解绝对值的意义,能求出一个数的绝对值。
3、会利用绝对值比较两个负数的大小。
重点难点重点:相反数的意义绝对值的概念难点:相反数的特点利用绝对值比较两个负数的大小教学方法与手段自主学习、合作探究教学设计课内探究备课区修改区一、温故而知新问题1:你能画一条数轴,并标出-5和5,-0.5和0.5,0的点吗?问题2:你发现数轴上的这些点的排列有什么特点?课内探究二、自主学习1、自学课本“交流与发现”。
2、观察数轴上的两对点A和A′,B和B′,它们分别表示什么数?它们有怎样的位置关系?A B B′A′●●●●●●●●●●●-5 -4 -3 -2 -1 0 1 2 3 4 5(1)数-4与4有什么相同点与不同点?-2.5与2.5呢?(2)你还能说出两个具有这种特征的数吗?并与同桌交流你的想法。
(3)归纳相反数的意义:(4)数轴上表示5,2,的点到原点的距离分别是多少?(5)数轴上表示-5,-2,-12的点到原点的距离分别是多少?(6)数轴上表示0的点到原点的距离是多少?3、什么叫数a的绝对值?4、有理数a的绝对值怎样表示?5、请填空:|2|=____;|12|=_____;|-5|=_____;|-2|____;|0|=_____。
从上面的填空,你发现一个数和它的绝对值有什么关系?。
华东师大版数学七年级上册《 2.3 相反数》教学设计一. 教材分析华东师大版数学七年级上册《2.3 相反数》这一节主要让学生理解相反数的定义,以及相反数在数学运算中的应用。
教材通过例题和练习题,使学生掌握相反数的性质和运算规律。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数学运算有一定的理解。
但相反数的概念和应用可能对学生来说比较抽象,需要通过具体的例题和练习,让学生理解和掌握。
三. 教学目标1.让学生理解相反数的定义,知道相反数的性质和运算规律。
2.培养学生运用相反数解决实际问题的能力。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.相反数的定义和性质。
2.相反数在数学运算中的应用。
五. 教学方法采用讲授法、例题解析法、练习法、小组讨论法等,通过引导、讲解、练习、讨论等方式,让学生理解和掌握相反数的概念和应用。
六. 教学准备1.准备相关的PPT课件,展示相反数的定义和性质。
2.准备一些例题和练习题,让学生进行实际操作和练习。
3.准备一些小组讨论的问题,引导学生进行思考和讨论。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入相反数的概念。
例如:小明的成绩是80分,他的成绩比小华多20分,求小华的成绩。
让学生思考如何解决这个问题,从而引出相反数的概念。
2.呈现(10分钟)讲解相反数的定义和性质,通过PPT课件展示,让学生直观地理解相反数的概念。
同时,给出一些相反数的性质和运算规律,让学生进行理解和记忆。
3.操练(10分钟)让学生进行一些相反数的运算练习,巩固刚刚学到的知识。
可以让学生在课堂上完成,也可以作为课后作业。
4.巩固(10分钟)通过一些例题,让学生运用相反数解决实际问题。
例如:计算两个数的和、差、乘积、商等,让学生运用相反数的概念和性质进行计算。
5.拓展(10分钟)引导学生进行一些拓展思考,例如:相反数在实际生活中的应用,如何利用相反数解决实际问题等。
可以让学生进行小组讨论,也可以让学生进行课堂发言。
2.3相反数与绝对值教学设计教学目标:1、借助数轴理解相反数的意义,掌握求一个有理数的相反数的方法.2、借助数轴理解绝对值的意义,知道|a|的含义(这里a表示有理数);掌握求一个数的绝对值的方法,会利用绝对值比较两个负数的大小。
3、经历知识的发生过程,感悟数形结合、转化的数学思想,培养学生的推理能力。
教学重难点:重点:相反数及绝对值的意义。
难点:利用绝对值比较两个负数的大小。
课时安排:1课时教学过程:导入环节:(一)导入新课:师:数-4与4有什么相同点和不同点?2.5与-2.5呢?你还能说出几对具有这种特征的两个数吗?与同学交流。
(设计意图:通过展示问题情境,提出问题,引领学生兴趣,激起学生的探究欲望.)(二)展示学习目标:(多媒体展示学习目标,指导学生观看)(设计意图:让学生明确本节课的学习目标,教师强调学习重点.)课内助学任务1.通过交流讨论,借助数轴理解相反数的意义,会求一个有理数的相反数。
(学习目标1)活动时间:2分钟,活动要求:先自己解答,然后小组合作。
(设计意图:充分利用教材“观察与思考”考查学生自学能力.)的两个数叫做互为相反数特别地,。
小试牛刀:写出下列数的相反数:- 3,0.39,0,4,5.3,-0.7任务2.借助数轴理解绝对值的意义,知道|a|的含义。
活动二:教师引导活动时间:8分钟;活动要求:,先独立完成,小组交流,师生共同总结。
(1)数轴上表示有理数4,2.5,到原点的距离是多少?(2)数轴上表示有理数-4,-2.5,到原点的距离是多少?发现:(3)数轴上表示0的点到原点的距离是多少?发现:总结:几何意义:在数轴上,叫做这个数的绝对值。
记作。
根据绝对值的几何意义填空:代数意义:正数的绝对值是 ;负数的绝对值是 ;0的绝对值是 。
根据绝对值的代数意义填空:|5|= |2.4|= |3|= |0.5|=|-5|= |-2.4|= |-3|= |-0.5|=互为 的两个数的绝对值 .即: 。
2.3相反数与绝对值第1课时【课型】新授课【教学目标】1、记住相反数的概念,知道互为相反数的一对数在数轴上的位置关系。
2、记住绝对值的概念,会求一个数的绝对值,利用绝对值比较两个负数的大小。
【教学重点】绝对值的概念。
【教学难点】利用绝对值比较两个负数的大小。
【教学过程】一、自主探究观察数轴上的两对点A和A,B和B,它们分别表示什么数?它们有怎样的位置关系?1、数—4和4有什么相同点与不同点?—2.5与2.5呢?2、你还能说出两个具有这种特征的数吗?并与同桌交流你的想法。
3、一般的,把一个不等于0的数与它的相反数用数轴上的点表示出来这两个点与原点之间有怎样的位置关系?4、在数轴上表示0的点与原点的距离是多少?5、你能说出—3.5,7,—8,0 的绝对值各是多少吗?你发现一个数与它的绝对值之间有什么样的关系?与同桌交流一下。
6、—20与—10哪个数的绝对值大?—3与—1呢?二、教师点拨1、像—4与4,2.5与—2.5等这样,只有符号不同的两个数叫做互为相反数,其中一个数叫做另一个数的相反数。
2、0的相反数是0.3、在数轴上,表示互为相反数的两个点,分别位于原点的两旁,并且它们与原点的距离相等。
4、在数轴上,表示一个数a 的点与原点的距离叫做这个数的绝对值,记作|a|。
5、正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
6、互为相反数的两个数的绝对值相等。
7、两个负数,绝对值大的负数反而小。
三、尝试训练1 求下列各数的相反数:(1)-5 (2) (3)0(4) (5)-2b (6) a-b四、 达标检测:定时5分钟,然后交流。
1、填空: (1)—8的相反数是_______;—(—2.8)的相反数是_______;_______的相反数是;100和_______互为相反数。
(2)如果m = —9,那么—m =_______。
(3)a-4的相反数是 ,3-x 的相反数是 。
2、求下列各数的绝对值。
2.3相反数知识点总结与例题讲解一.本节知识点(1)相反数的定义.(2)相反数的性质.(3)相反数的表示.(4)多重正、负号的化简.二、本节题型(1)识别相反数.(2)求相反数.(3)多重正、负号的化简(4)相反数的性质的应用.三、知识点讲解知识点一相反数的定义只有正负号不同的两个数称互为相反数.其中一个数都是另一个数的相反数.对相反数的理解:(1)相反数的定义不能理解为只要正负号不同的两个数称互为相反数.如+1与 的符号不同,但它们不是互为相反数.3互为相反数的两个数,只有正负号不同.除去正负号,剩下的数字是相同的. (2)相反数指的是两个数之间的关系.知识点二相反数的性质代数性质任何一个数都有相反数,并且相反数只有一个.正数的相反数是负数;负数的相反数是正数;0的相反数是0.相反数等于它本身的数只有一个,是0.互为相反数的两个数,它们的和等于0.几何性质互为相反数的两个数,在数轴上表示它们的点到原点的距离相等.反过来,在数轴上,如果两个点到原点的距离相等,那么它们表示的数相等或互为相反数. 在原点两侧,并且到原点的距离相等的两个点所表示的数互为相反数.知识点三相反数的表示求一个数的相反数,只要在这个数的前面添一个负号即可.注意 负号“—”表示相反,因此只要在一个数的前面加上“—”,就变成了原数的相反数.数a 的相反数表示为a -.注意添加小括号.知识点四 多重正、负号的化简如果一个数的前面是“+”号,那么仍表示这个数.如,()3++,表示3+,即()333=+=++;如()3-+,表示3-,即()33-=-+.如果一个数的前面是“—”号,那么表示原数的相反数.如,()3+-表示3+的相反数,为3-,即()33-=+-;如,()3--表示3-的相反数,为3,即()333=+=--.多重正、负号的化简的方法 多重符号化简的结果由“—”号的个数决定.如果一个数的前面有偶数个“—”号,则化简结果为正;如果一个数的前面有奇数个“—”号,则化简结果为负.简记为“奇负偶正”.如,()555=+=--,()22-=+-,()[]33=+--,()[]33-=---.四、题型讲解题型一 识别相反数在识别相反数时,要明确互为相反数的两个数只有符号不同,剩下的数字是相同的.如果含有多重正负号,则要先化简再判断.例1. 下列各对数中互为相反数的是【 】(A )()5.2-+和212- (B )()8.1--和()8.1-+ (C )⎪⎭⎫ ⎝⎛+-314和⎪⎭⎫ ⎝⎛-+314 (D )()2018--和()2018++ 分析:对于含有多重正负号的数字,先化简再按照相反数的定义进行判断.或者,在一个数的前面加负号,结果为原数的相反数;在一个数的前面加正号,结果仍为原数.解:(A )中,()5.25.2-=-+,不符合题意;(B )中,()8.18.1=--,()8.18.1-=-+,符合题意;(C )中,314314-=⎪⎭⎫ ⎝⎛+-,314314-=⎪⎭⎫ ⎝⎛-+,不符合题意; (D )中,()20182018=--,()20182018=++.选择答案【 B 】.题型二 求相反数(1)对于简单的数(不含多重正负号),按照相反数的定义求原数的相反数.(2)对于含有多重正负号的数,先化简原数,再求其相反数.例2. 8-的相反数是【 】(A )8- (B )81 (C )81- (D )8 分析:按照相反数的定义可立即求得8-的相反数为8.解: 选择【 D 】.例3. 20181-的相反数是【 】 (A )20181 (B )20181- (C )2018 (D )2018- 分析:求20181-的相反数,只需改变原数的正负号即可. 解: 选择【 A 】.例4. ()[]10--+的相反数是_________.分析: 原数含有多重正负号,先化简原数,再求结果的相反数,即为原数的相反数.解: 因为()[]101010=+=--+,10的相反数为10-,所以()[]10--+的相反数是10-.题型三 多重正、负号的化简例5. 化简:()[]=---2_________.分析: 多重符号化简的结果由“—”号的个数决定.如果一个数的前面有偶数个“—”号,则化简结果为正;如果一个数的前面有奇数个“—”号,则化简结果为负.简记为“奇负偶正”. 解: ()[]=---2 2.例6. ⎪⎭⎫ ⎝⎛--81的相反数是_________.解: 方法一: 因为8181=⎪⎭⎫ ⎝⎛--,而81的相反数为81-,所以⎪⎭⎫ ⎝⎛--81的相反数是81-; 方法二: ⎪⎭⎫ ⎝⎛--81的相反数表示为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---81,化简结果为81-,即⎪⎭⎫ ⎝⎛--81的相反数为81-. 题型四 相反数的性质的应用例7. 若47+x 与5-互为相反数,求x 的值.分析: 本题难度较高,因为5-的相反数为5,说明47+x 等于5,所以得到方程547=+x ,解方程即可求出x 的值.解: 由题意得:547=+x ,17=x ,解得71=x 所以x 的值为71. 例8. 若数轴上表示互为相反数的两个点之间的距离为7,则这两个数分别为__________.分析:本题考查相反数的性质:在数轴上,表示互为相反数的两个点,到原点的距离相等.本题中,两点之间的距离为7,则其中一个点到原点的距离为27. 解:27,27-.。
青岛版数学七年级上册《2.3 相反数与绝对值》说课稿1一. 教材分析《2.3 相反数与绝对值》这一节内容是青岛版数学七年级上册的重要内容,主要介绍了相反数和绝对值的概念、性质及其应用。
这一节内容是学生学习数学的基础知识,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
在教材中,首先介绍了相反数的概念,通过实例让学生理解相反数的含义,并掌握相反数的性质。
接着,教材介绍了绝对值的概念,并通过实例让学生理解绝对值的含义,掌握绝对值的性质。
最后,教材介绍了相反数和绝对值的应用,让学生学会运用相反数和绝对值解决实际问题。
在教材的编写上,注重了学生的认知规律,从实例出发,逐步引导学生理解相反数和绝对值的概念,培养学生的数学思维能力。
同时,教材还设置了丰富的练习题,帮助学生巩固所学知识,提高学生的应用能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有一定的了解。
但是,学生在数学思维能力方面还有待提高,特别是在理解抽象的数学概念方面存在一定的困难。
在《2.3 相反数与绝对值》这一节内容的学习中,学生需要理解相反数和绝对值的概念,掌握相反数和绝对值的性质,并学会运用相反数和绝对值解决实际问题。
因此,教师需要根据学生的实际情况,采取适当的教学方法,引导学生逐步理解相反数和绝对值的概念,提高学生的数学思维能力。
三. 说教学目标1.知识与技能:让学生掌握相反数和绝对值的概念,理解相反数和绝对值的性质,并学会运用相反数和绝对值解决实际问题。
2.过程与方法:通过实例引导学生理解相反数和绝对值的概念,培养学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,提高学生的自主学习能力。
四. 说教学重难点1.教学重点:相反数和绝对值的概念、性质及其应用。
2.教学难点:相反数和绝对值的性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用实例教学法、问题教学法和小组合作学习法。
2.3 相反数与绝对值教案一、教学目标:1、了解相反数的意义,会求有理数的相反数;2、了解绝对值的概念,会求有理数的绝对值;3、会利用绝对值比拟两负数的大小。
二、教学重点、难点:理解相反数并掌握双重符号的化简原那么,难点是能正确理解绝对值在数轴上表示的意义。
三、教学过程:〔一〕情境引入1、互为相反数:(1)观察数轴上两对点和,+3和-3,他们的位置关系怎样?有什么区别和联系?(2)什么样的数被称为互为相反数?(3)指出以下各数的相反数;-3,,5,-4,0(4)在数轴上,表示互为相反数的点分别在〔〕的两侧,并且到〔〕的距离相等;2、绝对值:(1)什么叫绝对值?(2)在数轴上,,-3,,0,,3,到原点的距离是多少?一个数与他的绝对值之间存在着怎样的联系?(3)求出以下各数的绝对值:∣+5∣= ∣-4∣= ∣∣=∣∣= ∣0∣= ∣∣=3、两负数比拟大小:(1)负数绝对值大了,离原点就越远,就越靠近数轴的〔〕边,因此,两负数比拟大小,绝对值大的数〔〕。
(2)根据例1解答:比拟:-4∕7和-6∕11〔二〕合作交流:1、独立完成,小组内交流;2、进展组际交流;〔三〕精讲点拨:1、互为相反数是两个数的关系,注意互为相反数的绝对值相等;2、0的相反数和绝对值都是它本身;3、两负数比拟大小,绝对值大的反而小。
〔四〕有效训练1、假设x+1与-3互为相反数,那么x=( )2、说出以下各数的相反数和绝对值:,-18,,0,53、比拟以下各组数的大小:(1)0和-1 和0 和〔五〕拓展提升:1、假设-x=-(-),那么x=______;假设,那么-a=______;2、假设|a|=6,那么a=______;(2)假设|-b|=,那么b=______;3、假设x+|x|=0,那么x是______数;四、小结:通过本节课的学习你都学到了哪些知识?五、达标检测:课本P38:练习1、2、3六、作业:课本P39:习题2.3。