相反数练习含答案
- 格式:doc
- 大小:133.00 KB
- 文档页数:3
相反数专项练习60题(有答案)1.﹣2009的相反数是()A .2009 B.C.﹣D.﹣20092.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣8 3.的相反数是()A .B.C.D.4.如果a+b=0,那么a与b之间的关系是()A .相等B.符号相同C.符号相反D.互为相反数5.一个数的相反数是最大的负整数,则这个数是()A .﹣1 B.1 C.0 D.±16.在数轴上将点A向右移动10个单位,得到它的相反数,则点A表示的数为()A .10 B.﹣10 C.﹣5 D.57.一个数在数轴上向右移动6个单位长度后得到它的相反数的对应点,则这个数的相反数是()A .﹣3 B.3 C.6 D.﹣68.下列说法正确的是()A.最大的负数是﹣1 B.数轴上9与11之间的有理数是10C.一个数不是负数就是正数D.互为相反数的两个数和为09.在数轴上表示数a的点在原点左侧,并且到原点的距离为2个单位,则数a的相反数是()A .﹣2 B.2C.﹣D.10.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A .5或﹣5 B.或C.5或D.﹣5或12.a﹣b的相反数是()A .a﹣b B.b﹣a C.﹣a﹣b D.不能确定13.一个数的相反数是非负数,那么这个数是()A .非正数B.正数C.零D.负数14.若m,n互为相反数,则下列结论不正确的是()A .m+n=0 B.m=﹣n C.|m|=|n| D.15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是()A .4 B.﹣4 C.8 D.﹣816.已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相反数.其中正确的个数是()A .1个B.2个C.3个D.4个17.一个数的相反数比它的本身小,则这个数是()A .正数B.负数C.正数和零D.负数和零18.3的相反数与﹣3的差是()A.6B.﹣6 C. 0 D.﹣2 19.a﹣2的相反数是()A .a+2 B.﹣a﹣2 C.﹣a+2 D.﹣|a﹣2|20.a代表有理数,那么,a和﹣a的大小关系是()A. a大于﹣a B. a小于﹣a C. a大于﹣a或a小于﹣a D.a不一定大于﹣a 21.a﹣b+c的相反数是()A .a﹣b﹣c B.﹣a﹣b+c C.b﹣a+c D.b﹣a﹣c22.设a是最小的正整数,b是最大的负整数,c的相反数等于它本身,则a﹣b+c的值是()A .﹣1 B.0C.1D.223.下列各数中,互为相反数的是()A. +(﹣9)和﹣(+9)B.﹣(﹣9)和+(+9)C.﹣(﹣9)和+(﹣9)D.﹣(﹣9)和﹣[+(﹣9)]24.已知2x+4与﹣x﹣8互为相反数,则x的值为()A. 4 B.﹣4 C.0 D.﹣825.如果2x+3的值与1﹣x的值互为相反数,那么x=()A .﹣6 B.6 C.﹣4 D.426.相反数等于它本身的数是_________.27.用“?”与“?”表示一种法则:(a?b)=﹣b,(a?b)=﹣a,如(2?3)=﹣3,则(2010?2011)?(2009?2008)=_________.28.a的相反数是﹣(+2),则a=_________.29.如x=﹣9,则﹣x=_________;如果x<0,那么﹣3x_________0.30.在3×(_________)+5×(_________)=10的括号内分别填上一个数,使这两个数互为相反数.31.请任意写出一对相反数,并赋予它们实际意义:_________.32.在有理数:﹣0.75,8,,﹣,,﹣0.125中,互为相反数的是_________.33.在数轴上,若点A,B互为相反数,并且这两点的距离为6.2,则这两点所表示的数是_____,______.34.互为相反数在数轴上表示的点到_________的距离相等.35.已知a与b互为相反数,b与c互为相反数,且c=﹣6,则a=_________.36.如果两个数只有_____不同,那么我们称其中一个数为另外一个数的相反数.37.判断正误:(1)符号相反的数叫相反数;(_________)(2)数轴上原点两旁的数是相反数;(_________)(3)﹣(﹣3)的相反数是3;(_________)(4)﹣a一定是负数;(_________)(5)若两个数之和为0,则这两个数互为相反数;(_________)(6)若两个数互为相反数,则这两个数一定是一个正数一个负数.(_________)38.已知a、b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=_________.39.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则=﹣1;④若=﹣1,则a、b互为相反数.其中正确的结论是_________.40.如果a的相反数是最大的负整数,b的相反数是最小的正整数,则a+b=_________.41.如果一个数的相反数大于它本身,则这个数为_________数.42.若a=+3.2,则﹣a=_____;若a=﹣,则﹣a=__;若﹣a=1,则a=___;若﹣a=﹣2,则a=______.43.一个数a的相反数是非负数,那么这个数a与0的大小关系是a_________0.44.+3的相反数是_________;_________的相反数是﹣1.2;﹣1与_________互为相反数.45.若m,n互为相反数,则m﹣1+n=_________.46.一个数的相反数是最大的负整数,这个数是_________.47.已知有理数a,b在数轴上的位置如图所示,那么a,b,﹣a,﹣b的大小关系是_________.(用“>”连接)48.相反数>﹣3的自然数有_________.49.已知5a+7与此1﹣2a互为相反数,那么(7+3a)2008=_________.50.已知4﹣m与﹣1互为相反数,求m的值.51.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?52.化简下列各数:(1)﹣(﹣100);(2)﹣(﹣5);(3)+(+);(4)+(﹣2.8);(5)﹣(﹣7);(6)﹣(+12).53.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是﹣2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在﹣2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度?54.数轴上A点表示﹣5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求点B 和点C对应什么数?55.下列各数:2,0.5,,﹣2,1.5,﹣,﹣,互为相反数的有哪几对?56.a的相反数是2b+1,b的相反数是3,求a2+b2的值.57.如果a,b表示有理数,在什么条件下,a+b和a﹣b互为相反数?a+b与a﹣b的积为﹣2?58.在数轴上表示下列各数:0,﹣2.5,﹣3,+5,,4.5及它们的相反数.59.(1)若数轴上的点A和点B表示两个互为相反数的数,并且这两个数间的距离为8.4,求A 点和B点表示的数是什么.(A>B)(2)数轴上如果A点表示的数是﹣5,A点与B点的距离是6,写出B点表示的数.(3)数轴上如果A点表示的数是a,A点与B点的距离是m,写出B点表示的数.60.如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?相反数专项练习60题参考答案:1.A2.B 3.D 4.D 5.B6.C7.A 8.D 9.B 10.D11.设这个数是a,则它的相反数是﹣a.根据题意,得|a﹣(﹣a)|=5,2a=±5,a=±.故选B12.根据相反数的定义,得a﹣b的相反数是﹣(a﹣b)=b﹣a.故选B.13.一个数的相反数是非负数,那么这个数是非正数.故选A14.由相反数的性质知:m+n=0,m=﹣n;由于相反数是一对符号相反,但绝对值相等的数,所以|m|=|n|;故A、B、C均成立;D中,由于0与0互为相反数,但是0作除数没有意义,所以D的情况不一定成立;故选D 15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,即这个数和它的相反数在数轴上对应的点的距离是8个单位长度.且这两个点到原点的距离相等,这个点在原点的左侧,所以,这个数是﹣4.故选B.16.a表示负数时,①错误;a表示负数时,﹣a就是正数,②错误;a=0时既不是正数也不是负数,③错误;a与﹣a互为相反数,这是相反数的定义,④正确.所以只有一个正确.故选A17.根据相反数的定义,知一个数的相反数比它的本身小,则这个数是正数.故选A.18.3的相反数是﹣3,﹣3与﹣3的差即﹣3﹣(﹣3)=0.故选C19.根据相反数的定义,得a﹣2的相反数是﹣(a﹣2)=2﹣a.故选C.20.令a=0,A、a=﹣a,故本选项错误;B、a=﹣a,故本选项错误;C、a=﹣a,故本选项错误;D、a不一定大于﹣a,故本选项正确.故选D.21.a﹣b+c的相反数是﹣(a﹣b+c)=﹣a+b﹣c=b﹣a﹣c.故选D.22. ∵a是最小的正整数,∴a=1,又b是最大的负整数,∴b=﹣1,又c的相反数等于它本身,∴c=0,∴a﹣b+c=1﹣(﹣1)+0=2,故选D.23.A+(﹣9)=﹣9,﹣(+9)=﹣9,符号相同,故错误,B﹣(﹣9)=9,+(+9)=9,符号相同,故错误,C﹣(﹣9)=9,+(﹣9)=﹣9,符号不同,故正确,D﹣(﹣9)=9,﹣[+(﹣9)]=9,符号相同,故错误,故选C.24.∵2x+4与﹣x﹣8互为相反数,∴2x+4=﹣(﹣x﹣8),解得x=4.故选A25.∵2x+3的值与1﹣x的值互为相反数,∴2x+3+1﹣x=0,∴x=﹣4.故选C26.相反数等于它本身的数是0.27.∵(a?b)=﹣b,(a?b)=﹣a,∴(2010?2011)?(2009?2008)=(﹣2011?﹣2008)=2011 28.a的相反数是﹣(+2),则a= 2 .29.如x=﹣9,则﹣x= 9 ;如果x<0,那么﹣3x >0.30.根据题意可设这两个数为x与﹣x,则有3x+5×(﹣x)=10,解得:x=﹣5,∴这两个数分别为﹣5和531.请任意写出一对相反数,并赋予它们实际意义:小刚向北走了50米,记作+50米,那么小刚向南走了50米,记作﹣50米,即+50和﹣50互为相反数..32.在有理数:﹣0.75,8,,﹣,,﹣0.125中,互为相反数的是﹣0.75与.33.在数轴上,若点A,B互为相反数,并且这两点的距离为6.2,则这两点所表示的数是3.1,﹣3.1.34.互为相反数在数轴上表示的点到原点的距离相等.35.∵a与b互为相反数,∴a=﹣b.∵b与c互为相反数,∴b=﹣c,∴a=﹣(﹣c)=c.∵c=﹣6,∴a=﹣6.故答案为:﹣636.如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数.37.(1)符号相反,绝对值相等的两个数叫互为相反数,故错误;(2)数轴上分别在原点两旁且到原点距离相等的两个数叫互为相反数,故错误;(3)﹣(﹣3)的相反数是﹣3,故错误;(4)当a=0时,﹣a=0,故﹣a不一定是负数,故错误;(5)若两个数之和为0,则这两个数互为相反数,故正确;(6)若两个数互为相反数,则这两个数可能都是0,故错误.故答案为×;×;×;×;√;×38.∵a、b互为相反数,∴a+b=0,∴a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=(a+b)+2(a+b)+3(a+b)+…+50(a+b)=0.故答案为:039.①互为相反数的两个数的和为0,故本小题正确;②若a+b=0,则a、b互为相反数,故本小题正确;③当b=0时,无意义,故本小题错误;④若=﹣1,则a、b互为相反数,故本小题正确.故答案为:①②④.40.∵最大的负整数为﹣1,∴a的相反数为﹣1,则a=1,∵最小的正整数为1,∴b的相反数为1,则b=﹣1,则a+b=1+(﹣1)=0.41.负数的相反数是一个正数,大于它本身.故这个数是负数.故答案为:负42.若a=+3.2,则﹣a=﹣3.2;若a=﹣,则﹣a=;若﹣a=1,则a=﹣1;若﹣a=﹣2,则a=2.43.由题意得,﹣a≥0,∴a≤0.故答案为:≤44.+3的相反数是﹣3; 1.2的相反数是﹣1.2;﹣1与1互为相反数.45.由题意得:m﹣1+n=(m+n)﹣1=0﹣1=﹣1.故答案为:﹣146.一个数的相反数是最大的负整数,这个数是1.47.根据图形可知:|a|>|b|,a<0,b>0,∴﹣a>b>﹣b>a.48.>﹣3的自然数有﹣2,﹣1,0,1,2,3等无数个数,但相反数>﹣3的自然数则就只有三个了.因为这些数的相反数除0,1,2这三个外就都是负数了,都不符合题意.所以答案:0、1、2.49.∵5a+7与1﹣2a互为相反数,∴5a+7+1﹣2a=0,解得a=﹣.∴(7+3a)2008=(7﹣3×)2008=1.50.根据概念(﹣1)+(4﹣m)=0,解得m=3.51.∵A点表示+7,C点与A点的距离为2,∴C点对应数为+5或+9,又B、C两点所表示的数是相反数,∴当C点对应数+5时,B点对应数﹣5;当C点对应数+9时,B点对应数﹣9.52.(1)100;(2)5;(3);(4)﹣2.8;(5)7;(6)﹣1253.向右移动4个单位长度.正确画数轴为:54.∵数轴上A点表示﹣5,且点B到点A的距离为4,∴B点有两种可能﹣9或+1.又∵B,C 两点所表示的数互为相反数,∴C点也有两种可能9或﹣1.故答案为:B:﹣9或+1;C:9或﹣1.55.由题意得:2+(﹣2)=0,0.5+(﹣)=0,1.5+(﹣),∴互为相反数的有:2和﹣2,0.5和﹣,1.5和﹣.56.∵a的相反数是2b+1,b的相反数是3,∴,解得.∴a2+b2=52+(﹣3)2=34.57.根据题意可得:若a+b和a﹣b互为相反数,则a+b+a﹣b=0,解得:a=0,又a+b与a﹣b的积为﹣2,则(a+b)(a﹣b)=a2﹣b2=﹣2,故当b2比a2大2时,a+b与a﹣b 的积为﹣2.故a=0时,a+b和a﹣b互为相反数,当b2比a2大2时a+b与a﹣b的积为﹣2.58.0的相反数是0,﹣2.5的相反数是2.5,﹣3的相反数是3,+5的相反数是﹣5,1的相反数是﹣1,4.5的相反数是﹣4.5.在数轴上可表示为:59.(1)设A点表示的数为a,则B点表示的数为﹣a,∵这两个数间的距离为8.4,∴|2a|=8.4,∴a=±4.2,∵A>B,∴a>0,∴A、B两点所表示的数分别为:4.2,﹣4.2;(2)设B点表示的数是b,则|﹣5﹣b|=6,解得b=﹣11或b=1,故B点表示的数为﹣11或1;(3)设B点表示的数是b,则|a﹣b|=m,故b=a±m,故B点表示的数为a+m或a﹣m.60.(1)将点B向左平移3个单位后,三个点所表示的数B最小,是﹣2﹣3=﹣5;(2)有两种移动方法:①A不动,B右移6个单位;②B不动,A右移6个单位;(3)有三种移动方法:①A不动,把B左移2个单位,C左移7个单位;②B不动,把A右移2个单位,C左移5个单位③C不动,把A右移7个单位,B右移5个单位。
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
1.2.3相反数—2024-2025学年人教版数学七年级上册堂堂练1.-5的相反数是( )A. B. C.5 D.-52.从百年前的“奥运三问”到今天的“双奥之城”,2022年中国与奥运再次牵手,2022年注定是不平凡的一年.数字2022的相反数是( )A.2022B.-2022C.D.3.的相反数是( )A.2B.-2C.D.4.的相反数是( )A. B. C. D.25.下列各对数中,是互为相反数的是( )A.-2与3B.与C.4与-4D.5与6.中国人最早使用负数,可追溯到两千多年前的秦汉时期,的相反数是_________.7.化简:___________;___________;___________.8.如图,小明有8张写着不同数字的卡片,将这8张卡片上的数字在数轴上表示出来,再找出哪些数互为相反数.答案以及解析1.答案:C解析:-5的相反数是5.故选C.2.答案:B解析:2022的相反数是-2022;故选B.3.答案:B解析:去括号是2,2的相反数是-2,故选B.4.答案:C解析:是的相反数是.5.答案:C解析:根据只有符号不同的两个数叫做互为相反数进行判断:-2与3不是只有符号不同的两个数;与化简后都是-3;4与-4是只有符号不同的两个数,是互为相反数;5与符号相同,故选C.6.答案:2解析:,故答案为:2.7.答案:6,-6,-0.73解析:故答案为:6,-6,-0.738.答案:在数轴上表示如图所示:-3.5与3.5,-0.5与0.5互为相反数.。
人教版数学七年级上册第1章 1.2.3相反数同步练习一、单选题(共12题;共24分)1、﹣(﹣)的相反数是()A、﹣﹣B、﹣+C、﹣D、+2、下列的数中,负有理数的个数为()﹣,﹣(﹣2),﹣|﹣7|,|﹣|,﹣(+ ).A、2个B、3个C、4个D、5个3、下列说法正确的是()A、a一定是正数B、绝对值最小的数是0C、相反数等于自身的数是1D、绝对值等于自身的数只有0和14、﹣2017的相反数是()A、2017B、C、﹣D、05、相反数不大于它本身的数是()A、正数B、负数C、非正数D、非负数6、一个数的相反数是非负数,这个数是()A、负数B、非负数C、正数D、非正数7、下列各组数中,互为相反数的是()A、2和B、﹣2和C、2 和﹣2.375D、+(﹣2)和﹣28、一个数的相反数等于它本身,这样的数一共有()A、1个B、2个C、3个D、4个9、已知5个数中:(﹣1)2017,|﹣2|,﹣(﹣1.5),﹣32,﹣3的倒数,其中正数的个数有()A、1B、2C、3D、410、在﹣中,负数有()A、1个B、2个C、3个D、4个11、如果a,b互为相反数,那么(6a2﹣12a)﹣6(a2+2b﹣5)的值为()A、﹣18B、18C、30D、﹣3012、下列各对数:﹣2与+(﹣2),+(+3)与﹣3,﹣(﹣)与+(﹣),﹣(﹣12)与+(+12),﹣(+1)与﹣(﹣1).其中互为相反数的有()A、0对B、1对C、2对D、3对二、填空题(共5题;共13分)13、当2x+1和﹣3x+2互为相反数时,则x2﹣2x+1=________.14、±=________;=________;|﹣|=________;π﹣3.14的相反数是________.15、的相反数是________,它的绝对值是________.16、计算:﹣(+ )=________,﹣(﹣5.6)=________,﹣|﹣2|=________,0+(﹣7)=________.(﹣1)﹣|﹣3|=________.17、当x=________时,代数式与x﹣3的值互为相反数.三、解答题(共5题;共25分)18、a、b互为相反数,c、d互为倒数,|m|=2,且m<0,求2a﹣(cd)2007+2b﹣3m的值.19、把下列各数及其相反数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来﹣2.5,0,+3.5,﹣.20、已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求x2﹣(a+b+cd)x﹣cd.21、把下列各数及它们的相反数在数轴上表示出来,并用“<”把所有数都连接起来. 2 ,﹣1.5,0,﹣4.22、如果与|y+1|互为相反数,求x﹣y的平方根.答案解析部分一、单选题1、【答案】C【考点】相反数,有理数的加减混合运算【解析】【解答】解:﹣(﹣)的相反数是﹣,故选C【分析】原式计算后,利用相反数定义判断即可.2、【答案】B【考点】相反数【解析】【解答】解:因为﹣(﹣2)=2,﹣|﹣7|=﹣7,|﹣|= ,﹣(+ )=﹣.所以负有理数有﹣,﹣|﹣7|,﹣(+ )共三个.故选B.【分析】先对各数进行化简,根据化简后的结果再确定负有理数的个数.3、【答案】B【考点】相反数,绝对值【解析】【解答】解:A、a既是正数,也可能是负数,还可能是0,故本选项错误;B、,绝对值最小的数是0;故本选项正确;C、相反数等于自身的数是0,故本选项错误;D、绝对值等于自身的数是非负数,故本选项错误.故选B.【分析】根据绝对值的性质,以及相反数的定义对各选项举反例验证即可得解.4、【答案】A【考点】相反数【解析】【解答】解:﹣2017的相反数是2017,故选:A.【分析】根据相反数的定义,可得答案.5、【答案】D【考点】相反数【解析】【解答】解:设这个数为a,根据题意,有﹣a≤a,所以a≥0.故选D.【分析】设这数是a,得到a的不等式,求解即可;也可采用特殊值法进行筛选.6、【答案】D【考点】相反数【解析】【解答】解:∵一个数的相反数是非负数,∴这个数是非正数,故选D.【分析】非负数包括正数和0,再根据相反数的定义得出即可.7、【答案】C【考点】相反数【解析】【解答】解:A、2与是互为倒数,故本选项错误;B、﹣2和相等,是互为负倒数,故本选项错误;C、2 和﹣2.375互为相反数,正确;D、∵+(﹣2)=﹣2,∴+(﹣2)与﹣2相等,不是互为相反数,故本选项错误.故选C.【分析】根据相反数的定义,只有符号不同的两个数是互为相反数解答.8、【答案】A【考点】相反数【解析】【解答】解:∵0的相反数等于0,故选:A.【分析】根据只有符号不同的两个数互为相反数,一个数的相反数等于它本身,可得这个数.9、【答案】B【考点】正数和负数,相反数,绝对值,倒数【解析】【解答】解:(﹣1)2017=﹣1,|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,﹣3的倒数是﹣.故正数的个数有2个.故选:B.【分析】根据有理数的乘方求出(﹣1)2007和﹣32,根据绝对值的性质求出|﹣2|,根据相反数的定义求出﹣(﹣1.5),根据倒数的定义求出﹣3的倒数的值即可作出判断.10、【答案】C【考点】正数和负数,相反数,绝对值【解析】【解答】解:﹣|﹣2|=﹣2,|﹣(﹣2)|=2,﹣(+2)=﹣2,﹣(﹣)= ,﹣[+(﹣2)]=2,+[﹣(+ )]=﹣,负数有:﹣|﹣2|,﹣(+2),+[﹣(+ )],共3个.故选C.【分析】负数是小于0的数,结合所给数据进行判断即可.11、【答案】C【考点】相反数,整式的加减【解析】【解答】解:∵果a,b互为相反数,∴a+b=0,∴(6a2﹣12a)﹣6(a2+2b﹣5)=6a2﹣12a﹣6a2﹣12b+30=﹣12a﹣12b+30=﹣12(a+b)+30=﹣12×0+30=30,故选C.【分析】根据a,b互为相反数,然后对题目中所求式子化简,即可解答本题.12、【答案】D【考点】相反数【解析】【解答】解:﹣2与+(﹣2)不是相反数,+(+3)与﹣3互为相反数,﹣(﹣)与+(﹣)互为相反数,﹣(﹣12)与+(+12)是同一个数,﹣(+1)与﹣(﹣1)互为相反数,故选:D.【分析】根据相反数的意义,只有符号不同的数为相反数.二、填空题13、【答案】4【考点】相反数,解一元一次方程【解析】【解答】解:根据题意得:2x+1﹣3x+2=0,移项合并得:﹣x=﹣3,解得:x=3,则原式=9﹣6+1=4,故答案为:4【分析】利用互为相反数两数之和为0列出方程,求出方程的解得到x的值,代入原式计算即可得到结果.14、【答案】;﹣3;;3.14﹣π【考点】相反数,绝对值,平方根【解析】【解答】解:±= ;=﹣3;|﹣|= ;π﹣3.14的相反数是3.14﹣π,故答案为:,﹣3,,3.14﹣π.【分析】根据平方根的意义,立方根的意义,绝对值的性质,相反数的意义,可得答案.15、【答案】3﹣;【考点】相反数,绝对值【解析】【解答】解:根据相反数的概念有的相反数是﹣(),即3﹣;根据绝对值的定义:的绝对值是.【分析】分别根据相反数、绝对值的概念即可求解.16、【答案】﹣;5.6;﹣2;﹣7;﹣4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=﹣;原式=5.6;原式=﹣2;原式=﹣7;原式=﹣1﹣3=﹣4,故答案为:﹣;5.6;﹣2;﹣7;﹣4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.17、【答案】【考点】相反数,一元一次方程的应用【解析】【解答】解:∵代数式与x﹣3的值互为相反数,∴+x﹣3=0,解得:x= .故填.【分析】紧扣互为相反数的特点:互为相反数的和为0.三、解答题18、【答案】解:由题意知:a+b=0,cd=1,m=﹣2.原式=2(a+b)﹣(cd)2007﹣3m=2×0﹣1﹣3×(﹣2)=5【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】先依据相反数、倒数、绝对值的性质得到a+b、c d、m的值,然后代入计算即可.19、【答案】解:这几个数分别为,2.5,﹣2.5,0,+3.5,﹣3.5,1 ,﹣1 ,根据负数的绝对值越大则负数的值越小可得:﹣3.5<﹣2.5<﹣1 <0<1 <2.5<3.5【考点】数轴,相反数,有理数大小比较【解析】【分析】负数的绝对值越大则负数的值越小,由此可得出答案.20、【答案】解:∵a、b互为相反数,c、d互为倒数,x的绝对值是3,∴a+b=0,cd=1,x=±3.当x=3时,原式=32﹣(0+1)×3﹣1=9﹣3﹣1=5;当x=﹣3时,原式=(﹣3)2﹣(0+1)×(﹣3)﹣1=9+3﹣1=11【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】根据题意可知a+b=0,cd=1,x=±3,然后代入计算即可.21、【答案】解:﹣4<﹣2 <﹣1.5<0<1.5<2 <4【考点】数轴,相反数,有理数大小比较【解析】【分析】先在数轴上表示各个数和相反数,再比较即可.22、【答案】解:∵与|y+1|互为相反数,∴x﹣3=0,y+1=0,解得,x=3,y=﹣1,∴,即x﹣y的平方根是±2.【考点】相反数,二次根式的非负性,绝对值的非负性【解析】【分析】根据非负数的性质和题目中与|y+1|互为相反数,可以得到x、y的值,从而可以求得x﹣y的平方根.。
湘教版七年级上册数学第一章第二节相反数练习题(附答案)一、单选题1.下列各对数中,互为相反数的()A.﹣(﹣2)和2B.﹣(﹣5)和+(﹣5)C.12和﹣2D.+(﹣3)和﹣(+3)2.下列各对数中,互为相反数的是()A.-2与12B.-2与−12C.2与−12D.12与−123.点A在数轴上的位置如图所示,则点A表示的数的相反数为()A.4B.−4C.14D.−144.−15的相反数是()A.−15B.15C.-5D.55.下列各组数中,互为相反数的是()A.43和−34B.13和−0.333C.a和−a D.14和46.-2的相反数是()A.-2B.-12C.2D.2或-27.−15的相反数是()A.15B.﹣5C.5D.125 8.2021的相反数是()A.12021B.−2021C.−12021D.|−2021|9.有理数−23的相反数是()A.32B.−32C.23D.−2310.−13的相反数是()A.3B.−3C.13D.±13二、填空题11.2022的相反数为.12.−14的相反数是 .13.若−35与x 互为相反数,则x = .14.若点A 、B 、C 、D 在数轴上的位置如图所示,则-3的相反数所对应的点是 .15.−2021的相反数是 .16.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是 .17.−12022的相反数是 . 18.已知3a - 4与-5互为相反数,则a 的值为 . 19.-2022的相反数是 .20. 若a+2的相反数是-5,则a=三、计算题21.化简下列各数:(1)+(﹣3); (2)﹣(+5); (3)﹣(﹣3.4); (4)﹣[+(﹣8)]; (5)﹣[﹣(﹣9)].22.化简下列各数.(1)-(+3.5) (2)-{-[+(- 23)]}四、解答题23.已知数轴上点 A 表示的数-1比6大,点 B 、 C 表示互为相反数的两个数,且点 C 与点 A间的距离为2,求 B 、 C 表示的数24.若x 的相反数是3,|y|=5,求x -y 的值. 25.已知3m+7与﹣10互为相反数,求m 的值.26.如图,点A .B 和线段MN 都在数轴上,点A .M 、N 、B 对应的数字分别为﹣1、0、2、11.线段MN 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)用含有t的代数式表示AM的长为.(2)当t=秒时,AM+BN=11.(3)若点A.B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t 的值,若不相等,请说明理由.答案1.B 2.D 3.B 4.B 5.C 6.C 7.A 8.B 9.C 10.C 11.-2022 12.14 13.35 14.A 15.2021 16.−2 17.12022 18.3 19.2022 20.321.(1)解: +(−3)=−3 (2)解: −(+5)=−5(3)解: −(−3.4)=3.4 (4)解: −[+(−8)]=−(−8)=8 (5)解: −[−(−9)]=−(+9)=−922.(1)解:原式=-3.5 (2)解:原式= −[−(−23)]=−(+23)=−23 23.解:因为点 A 表示的数比-1大6,所以点 A 表示的数是5, 因为点 C 与点 A 间的距离为2, 所以点 C 表示的数为3或7,因为点 B 、 C 表示互为相反的两个数,所以当点C 表示的数是3时,点B 表示的数为-3, 当点C 表示的数是7时,点B 表示的数为-7.24.解:∵x 的相反数为3, ∴x=-3,∵|y|=5,∴y=5或-5,∴x-y=-3-5=-8,或x-y=-3-(-5)=-3+5=2,所以,x-y 的值是-8或2.25.解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m 的值为126.(1)t+1(2)192(3)解:假设能相等,则点A 表示的数为2t ﹣1,M 表示的数为t ,N 表示的数为t+2,B 表示的数为11﹣t ,∴AM=|2t ﹣1﹣t|=|t ﹣1|,BN=|t+2﹣(11﹣t )|=|2t ﹣9|, ∵AM=BN ,∴|t ﹣1|=|2t ﹣9|,解得:t 1=103,t 2=8.故在运动的过程中AM 和BN 能相等,此时运动的时间为 103秒和8秒.。
(完整版)相反数和绝对值经典练习题1. 计算以下数的相反数:-12 ______________25 _______________-3 ________________0 ________________2. 计算以下数的绝对值:-10 ______________15 _______________-2 _______________0 ________________3. 求以下数的相反数和绝对值:-8 _______________-18 ______________23 _______________0 _______________4. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。
相反数:______________绝对值:______________5. 如果一个数的相反数比它本身的绝对值大6,求这个数是多少。
这个数是:____________6. 如果一个数的绝对值比它本身的相反数大3,求这个数是多少。
这个数是:____________7. 如果一个数的相反数比它本身的绝对值小4,求这个数是多少。
这个数是:____________8. 如果一个数的绝对值比它本身的相反数小2,求这个数是多少。
这个数是:____________9. 小明的体重是x公斤,小红的体重是x的绝对值的两倍加1公斤。
如果x = -5,请计算小明和小红的体重。
小明的体重:____________小红的体重:____________10. 已知一个数的相反数比它本身大9,求这个数。
这个数是:____________参考答案如下:(完整版)相反数和绝对值经典练题1. 计算以下数的相反数:-12 1225 -25-3 30 02. 计算以下数的绝对值:-10 1015 15-2 20 03. 求以下数的相反数和绝对值:-8 8-18 1823 -230 04. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。
相反数专项练习题有答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】相反数专项练习60题(有答案)1.﹣2009的相反数是()A .2009 B.C.﹣D.﹣20092.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣83.的相反数是()A .B.C.D.4.如果a+b=0,那么a与b之间的关系是()A .相等B.符号相同C.符号相反D.互为相反数5.一个数的相反数是最大的负整数,则这个数是()A .﹣1 B.1 C.0 D.±16.在数轴上将点A向右移动10个单位,得到它的相反数,则点A表示的数为()A .10 B.﹣10 C.﹣5 D.57.一个数在数轴上向右移动6个单位长度后得到它的相反数的对应点,则这个数的相反数是()A .﹣3 B.3 C.6 D.﹣68.下列说法正确的是()A.最大的负数是﹣1 B.数轴上9与11之间的有理数是10C.一个数不是负数就是正数D.互为相反数的两个数和为09.在数轴上表示数a的点在原点左侧,并且到原点的距离为2个单位,则数a的相反数是()A .﹣2 B.2 C.﹣D.10.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A .5或﹣5 B.或C.5或D.﹣5或12.a﹣b的相反数是()A .a﹣b B.b﹣a C.﹣a﹣b D.不能确定13.一个数的相反数是非负数,那么这个数是()A .非正数B.正数C.零D.负数14.若m,n互为相反数,则下列结论不正确的是()A .m+n=0 B.m=﹣n C.|m|=|n| D.15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是()A .4 B.﹣4 C.8 D.﹣816.已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相反数.其中正确的个数是()A .1个B.2个C.3个D.4个17.一个数的相反数比它的本身小,则这个数是()A .正数B.负数C.正数和零D.负数和零18.3的相反数与﹣3的差是()A .6 B.﹣6 C.0 D.﹣219.a﹣2的相反数是()A .a+2 B.﹣a﹣2 C.﹣a+2 D.﹣|a﹣2|20.a代表有理数,那么,a和﹣a的大小关系是()A.a大于﹣a B.a小于﹣a C.a大于﹣a或a小于﹣a D.a不一定大于﹣a21.a﹣b+c的相反数是()A .a﹣b﹣c B.﹣a﹣b+c C.b﹣a+c D.b﹣a﹣c22.设a是最小的正整数,b是最大的负整数,c的相反数等于它本身,则a﹣b+c的值是()A .﹣1 B.0 C.1 D.223.下列各数中,互为相反数的是()A.+(﹣9)和﹣(+9)B.﹣(﹣9)和+(+9)C.﹣(﹣9)和+(﹣9)D.﹣(﹣9)和﹣[+(﹣9)]24.已知2x+4与﹣x﹣8互为相反数,则x的值为()A. 4 B.﹣4 C.0 D.﹣825.如果2x+3的值与1﹣x的值互为相反数,那么x=()A .﹣6 B.6 C.﹣4 D.426.相反数等于它本身的数是_________.27.用“”与“”表示一种法则:(ab)=﹣b,(ab)=﹣a,如(23)=﹣3,则(20102011)(20092008)=_________.28.a的相反数是﹣(+2),则a=_________.29.如x=﹣9,则﹣x=_________;如果x<0,那么﹣3x_________0.30.在3×(_________)+5×(_________)=10的括号内分别填上一个数,使这两个数互为相反数.31.请任意写出一对相反数,并赋予它们实际意义:_________.32.在有理数:﹣,8,,﹣,,﹣中,互为相反数的是_________.33.在数轴上,若点A,B互为相反数,并且这两点的距离为,则这两点所表示的数是_____,______.34.互为相反数在数轴上表示的点到_________的距离相等.35.已知a与b互为相反数,b与c互为相反数,且c=﹣6,则a=_________.36.如果两个数只有_____不同,那么我们称其中一个数为另外一个数的相反数.37.判断正误:(1)符号相反的数叫相反数;(_________)(2)数轴上原点两旁的数是相反数;(_________)(3)﹣(﹣3)的相反数是3;(_________)(4)﹣a一定是负数;(_________)(5)若两个数之和为0,则这两个数互为相反数;(_________)(6)若两个数互为相反数,则这两个数一定是一个正数一个负数.(_________)38.已知a、b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=_________.39.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则=﹣1;④若=﹣1,则a、b互为相反数.其中正确的结论是_________.40.如果a的相反数是最大的负整数,b的相反数是最小的正整数,则a+b=_________.41.如果一个数的相反数大于它本身,则这个数为_________数.42.若a=+,则﹣a=_____;若a=﹣,则﹣a=__;若﹣a=1,则a=___;若﹣a=﹣2,则a=______.43.一个数a的相反数是非负数,那么这个数a与0的大小关系是a_________0.44.+3的相反数是_________;_________的相反数是﹣;﹣1与_________互为相反数.45.若m,n互为相反数,则m﹣1+n=_________.46.一个数的相反数是最大的负整数,这个数是_________.47.已知有理数a,b在数轴上的位置如图所示,那么a,b,﹣a,﹣b的大小关系是_________.(用“>”连接)48.相反数>﹣3的自然数有_________.49.已知5a+7与此1﹣2a互为相反数,那么(7+3a)2008=_________.50.已知4﹣m与﹣1互为相反数,求m的值.51.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?52.化简下列各数:(1)﹣(﹣100);(2)﹣(﹣5);(3)+(+);(4)+(﹣);(5)﹣(﹣7);(6)﹣(+12).53.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是﹣2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在﹣2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度?54.数轴上A点表示﹣5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求点B和点C对应什么数?55.下列各数:2,,,﹣2,,﹣,﹣,互为相反数的有哪几对?56.a的相反数是2b+1,b的相反数是3,求a2+b2的值.57.如果a,b表示有理数,在什么条件下,a+b和a﹣b互为相反数a+b与a﹣b的积为﹣258.在数轴上表示下列各数:0,﹣,﹣3,+5,,及它们的相反数.59.(1)若数轴上的点A和点B表示两个互为相反数的数,并且这两个数间的距离为,求A点和B点表示的数是什么.(A>B)(2)数轴上如果A点表示的数是﹣5,A点与B点的距离是6,写出B点表示的数.(3)数轴上如果A点表示的数是a,A点与B点的距离是m,写出B点表示的数.60.如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小是多少(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数有几种移动方法(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?相反数专项练习60题参考答案:1.A2.B 3.D 4.D 5.B6.C7.A 8.D 9.B 10.D11.设这个数是a,则它的相反数是﹣a.根据题意,得|a﹣(﹣a)|=5,2a=±5,a=±.故选B12.根据相反数的定义,得a﹣b的相反数是﹣(a﹣b)=b﹣a.故选B.13.一个数的相反数是非负数,那么这个数是非正数.故选A14.由相反数的性质知:m+n=0,m=﹣n;由于相反数是一对符号相反,但绝对值相等的数,所以|m|=|n|;故A、B、C均成立;D中,由于0与0互为相反数,但是0作除数没有意义,所以D的情况不一定成立;故选D15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,即这个数和它的相反数在数轴上对应的点的距离是8个单位长度.且这两个点到原点的距离相等,这个点在原点的左侧,所以,这个数是﹣4.故选B.16.a表示负数时,①错误;a表示负数时,﹣a就是正数,②错误;a=0时既不是正数也不是负数,③错误;a与﹣a互为相反数,这是相反数的定义,④正确.所以只有一个正确.故选A 17.根据相反数的定义,知一个数的相反数比它的本身小,则这个数是正数.故选A.18.3的相反数是﹣3,﹣3与﹣3的差即﹣3﹣(﹣3)=0.故选C19.根据相反数的定义,得a﹣2的相反数是﹣(a﹣2)=2﹣a.故选C.20.令a=0,A、a=﹣a,故本选项错误;B、a=﹣a,故本选项错误;C、a=﹣a,故本选项错误;D、a不一定大于﹣a,故本选项正确.故选D.21.a﹣b+c的相反数是﹣(a﹣b+c)=﹣a+b﹣c=b﹣a﹣c.故选D.22. ∵a是最小的正整数,∴a=1,又b是最大的负整数,∴b=﹣1,又c的相反数等于它本身,∴c=0,∴a﹣b+c=1﹣(﹣1)+0=2,故选D.23.A+(﹣9)=﹣9,﹣(+9)=﹣9,符号相同,故错误,B﹣(﹣9)=9,+(+9)=9,符号相同,故错误,C﹣(﹣9)=9,+(﹣9)=﹣9,符号不同,故正确,D﹣(﹣9)=9,﹣[+(﹣9)]=9,符号相同,故错误,故选C.24.∵2x+4与﹣x﹣8互为相反数,∴2x+4=﹣(﹣x﹣8),解得x=4.故选A 25.∵2x+3的值与1﹣x的值互为相反数,∴2x+3+1﹣x=0,∴x=﹣4.故选C26.相反数等于它本身的数是0.27.∵(ab)=﹣b,(ab)=﹣a,∴(20102011)(20092008)=(﹣2011﹣2008)=201128.a的相反数是﹣(+2),则a= 2 .29.如x=﹣9,则﹣x= 9 ;如果x<0,那么﹣3x >0.30.根据题意可设这两个数为x与﹣x,则有3x+5×(﹣x)=10,解得:x=﹣5,∴这两个数分别为﹣5和531.请任意写出一对相反数,并赋予它们实际意义:小刚向北走了50米,记作+50米,那么小刚向南走了50米,记作﹣50米,即+50和﹣50互为相反数..32.在有理数:﹣,8,,﹣,,﹣中,互为相反数的是﹣与.33.在数轴上,若点A,B互为相反数,并且这两点的距离为,则这两点所表示的数是,﹣.34.互为相反数在数轴上表示的点到原点的距离相等.35.∵a与b互为相反数,∴a=﹣b.∵b与c互为相反数,∴b=﹣c,∴a=﹣(﹣c)=c.∵c=﹣6,∴a=﹣6.故答案为:﹣636.如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数.37.(1)符号相反,绝对值相等的两个数叫互为相反数,故错误;(2)数轴上分别在原点两旁且到原点距离相等的两个数叫互为相反数,故错误;(3)﹣(﹣3)的相反数是﹣3,故错误;(4)当a=0时,﹣a=0,故﹣a不一定是负数,故错误;(5)若两个数之和为0,则这两个数互为相反数,故正确;(6)若两个数互为相反数,则这两个数可能都是0,故错误.故答案为×;×;×;×;√;×38.∵a、b互为相反数,∴a+b=0,∴a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=(a+b)+2(a+b)+3(a+b)+…+50(a+b)=0.故答案为:039.①互为相反数的两个数的和为0,故本小题正确;②若a+b=0,则a、b互为相反数,故本小题正确;③当b=0时,无意义,故本小题错误;④若=﹣1,则a、b互为相反数,故本小题正确.故答案为:①②④.40.∵最大的负整数为﹣1,∴a的相反数为﹣1,则a=1,∵最小的正整数为1,∴b的相反数为1,则b=﹣1,则a+b=1+(﹣1)=0.41.负数的相反数是一个正数,大于它本身.故这个数是负数.故答案为:负42.若a=+,则﹣a=﹣;若a=﹣,则﹣a=;若﹣a=1,则a=﹣1;若﹣a=﹣2,则a=2.43.由题意得,﹣a≥0,∴a≤0.故答案为:≤44.+3的相反数是﹣3;的相反数是﹣;﹣1与1互为相反数.45.由题意得:m﹣1+n=(m+n)﹣1=0﹣1=﹣1.故答案为:﹣146.一个数的相反数是最大的负整数,这个数是1.47.根据图形可知:|a|>|b|,a<0,b>0,∴﹣a>b>﹣b>a.48.>﹣3的自然数有﹣2,﹣1,0,1,2,3等无数个数,但相反数>﹣3的自然数则就只有三个了.因为这些数的相反数除0,1,2这三个外就都是负数了,都不符合题意.所以答案:0、1、2.49.∵5a+7与1﹣2a互为相反数,∴5a+7+1﹣2a=0,解得a=﹣.∴(7+3a)2008=(7﹣3×)2008=1.50.根据概念(﹣1)+(4﹣m)=0,解得m=3.51.∵A点表示+7,C点与A点的距离为 2,∴C点对应数为+5或+9,又B、C两点所表示的数是相反数,∴当C点对应数+5时,B点对应数﹣5;当C点对应数+9时,B点对应数﹣9.52.(1)100;(2)5;(3);(4)﹣;(5)7;(6)﹣1253.向右移动4个单位长度.正确画数轴为:54.∵数轴上A点表示﹣5,且点B到点A的距离为4,∴B点有两种可能﹣9或+1.又∵B,C两点所表示的数互为相反数,∴C点也有两种可能9或﹣1.故答案为:B:﹣9或+1;C:9或﹣1.55.由题意得:2+(﹣2)=0,+(﹣)=0,+(﹣),∴互为相反数的有:2和﹣2,和﹣,和﹣.56.∵a的相反数是2b+1,b的相反数是3,∴,解得.∴a2+b2=52+(﹣3)2=34.57.根据题意可得:若a+b和a﹣b互为相反数,则a+b+a﹣b=0,解得:a=0,又a+b与a﹣b的积为﹣2,则(a+b)(a﹣b)=a2﹣b2=﹣2,故当b2比a2大2时,a+b与a﹣b的积为﹣2.故a=0时,a+b和a﹣b互为相反数,当b2比a2大2时a+b与a﹣b的积为﹣2.58.0的相反数是0,﹣的相反数是,﹣3的相反数是3,+5的相反数是﹣5,1的相反数是﹣1,的相反数是﹣.在数轴上可表示为:59.(1)设A点表示的数为a,则B点表示的数为﹣a,∵这两个数间的距离为,∴|2a|=,∴a=±,∵A>B,∴a>0,∴A、B两点所表示的数分别为:,﹣;(2)设B点表示的数是b,则|﹣5﹣b|=6,解得b=﹣11或b=1,故B点表示的数为﹣11或1;(3)设B点表示的数是b,则|a﹣b|=m,故b=a±m,故B点表示的数为a+m或a﹣m.60.(1)将点B向左平移3个单位后,三个点所表示的数B最小,是﹣2﹣3=﹣5;(2)有两种移动方法:①A不动,B右移6个单位;②B不动,A右移6个单位;(3)有三种移动方法:①A不动,把B左移2个单位,C左移7个单位;②B不动,把A右移2个单位,C左移5个单位③C不动,把A右移7个单位,B右移5个单位。
相反数专项练习60题(有答案)1.﹣2009的相反数是()A .2009 B.C.﹣D.﹣20092.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣8 3.的相反数是()A .B.C.D.4.如果a+b=0,那么a与b之间的关系是()A .相等B.符号相同C.符号相反D.互为相反数5.一个数的相反数是最大的负整数,则这个数是()A .﹣1 B.1 C.0 D.±16.在数轴上将点A向右移动10个单位,得到它的相反数,则点A表示的数为()A .10 B.﹣10 C.﹣5 D.57.一个数在数轴上向右移动6个单位长度后得到它的相反数的对应点,则这个数的相反数是()A .﹣3 B.3 C.6 D.﹣68.下列说法正确的是()A.最大的负数是﹣1 B.数轴上9与11之间的有理数是10C.一个数不是负数就是正数D.互为相反数的两个数和为09.在数轴上表示数a的点在原点左侧,并且到原点的距离为2个单位,则数a的相反数是()A .﹣2 B.2 C.﹣D.10.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A .5或﹣5 B.或C.5或D.﹣5或A .a﹣b B.b﹣a C.﹣a﹣b D.不能确定13.一个数的相反数是非负数,那么这个数是()A .非正数B.正数C.零D.负数14.若m,n互为相反数,则下列结论不正确的是()A .m+n=0 B.m=﹣n C.|m|=|n| D.15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是()A .4 B.﹣4 C.8 D.﹣816.已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相反数.其中正确的个数是()A .1个B.2个C.3个D.4个17.一个数的相反数比它的本身小,则这个数是()A .正数B.负数C.正数和零D.负数和零18.3的相反数与﹣3的差是()A .6 B.﹣6 C.0 D.﹣219.a﹣2的相反数是()A .a+2 B.﹣a﹣2 C.﹣a+2 D.﹣|a﹣2|20.a代表有理数,那么,a和﹣a的大小关系是()A. a大于﹣a B. a小于﹣a C. a大于﹣a或a小于﹣a D.a不一定大于﹣a 21.a﹣b+c的相反数是()A .a﹣b﹣c B.﹣a﹣b+c C.b﹣a+c D.b﹣a﹣c22.设a是最小的正整数,b是最大的负整数,c的相反数等于它本身,则a﹣b+c的值是()A .﹣1 B.0 C.1 D.223.下列各数中,互为相反数的是()A. +(﹣9)和﹣(+9)B.﹣(﹣9)和+(+9)C.﹣(﹣9)和+(﹣9)D.﹣(﹣9)和﹣[+(﹣9)] 24.已知2x+4与﹣x﹣8互为相反数,则x的值为()25.如果2x+3的值与1﹣x的值互为相反数,那么x=()A .﹣6 B.6 C.﹣4 D.426.相反数等于它本身的数是_________.27.用“⇒”与“⇐”表示一种法则:(a⇒b)=﹣b,(a⇐b)=﹣a,如(2⇒3)=﹣3,则(2010⇒2011)⇐(2009⇒2008)=_________.28.a的相反数是﹣(+2),则a=_________.29.如x=﹣9,则﹣x=_________;如果x<0,那么﹣3x_________0.30.在3×(_________)+5×(_________)=10的括号内分别填上一个数,使这两个数互为相反数.31.请任意写出一对相反数,并赋予它们实际意义:_________.32.在有理数:﹣0.75,8,,﹣,,﹣0.125中,互为相反数的是_________.33.在数轴上,若点A,B互为相反数,并且这两点的距离为6.2,则这两点所表示的数是_____,______.34.互为相反数在数轴上表示的点到_________的距离相等.35.已知a与b互为相反数,b与c互为相反数,且c=﹣6,则a=_________.36.如果两个数只有_____不同,那么我们称其中一个数为另外一个数的相反数.37.判断正误:(1)符号相反的数叫相反数;(_________)(2)数轴上原点两旁的数是相反数;(_________)(3)﹣(﹣3)的相反数是3;(_________)(4)﹣a一定是负数;(_________)(5)若两个数之和为0,则这两个数互为相反数;(_________)(6)若两个数互为相反数,则这两个数一定是一个正数一个负数.(_________)38.已知a、b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=_________.39.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则=﹣1;④若=﹣1,则a、b互为相反数.其中正确的结论是_________.40.如果a的相反数是最大的负整数,b的相反数是最小的正整数,则a+b=_________.42.若a=+3.2,则﹣a=_____;若a=﹣,则﹣a=__;若﹣a=1,则a=___;若﹣a=﹣2,则a=______.43.一个数a的相反数是非负数,那么这个数a与0的大小关系是a_________0.44.+3的相反数是_________;_________的相反数是﹣1.2;﹣1与_________互为相反数.45.若m,n互为相反数,则m﹣1+n=_________.46.一个数的相反数是最大的负整数,这个数是_________.47.已知有理数a,b在数轴上的位置如图所示,那么a,b,﹣a,﹣b的大小关系是_________.(用“>”连接)48.相反数>﹣3的自然数有_________.49.已知5a+7与此1﹣2a互为相反数,那么(7+3a)2008=_________.50.已知4﹣m与﹣1互为相反数,求m的值.51.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?52.化简下列各数:(1)﹣(﹣100);(2)﹣(﹣5);(3)+(+);(4)+(﹣2.8);(5)﹣(﹣7);(6)﹣(+12).53.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是﹣2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在﹣2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度?54.数轴上A点表示﹣5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求点B和点C对应什么数?55.下列各数:2,0.5,,﹣2,1.5,﹣,﹣,互为相反数的有哪几对?56.a的相反数是2b+1,b的相反数是3,求a2+b2的值.57.如果a,b表示有理数,在什么条件下,a+b和a﹣b互为相反数?a+b与a﹣b的积为﹣2?58.在数轴上表示下列各数:0,﹣2.5,﹣3,+5,,4.5及它们的相反数.59.(1)若数轴上的点A和点B表示两个互为相反数的数,并且这两个数间的距离为8.4,求A点和B点表示的数是什么.(A>B)(2)数轴上如果A点表示的数是﹣5,A点与B点的距离是6,写出B点表示的数.(3)数轴上如果A点表示的数是a,A点与B点的距离是m,写出B点表示的数.60.如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?相反数专项练习60题参考答案:1.A2.B 3.D 4.D 5.B6.C7.A 8.D 9.B 10.D11.设这个数是a,则它的相反数是﹣a.根据题意,得|a﹣(﹣a)|=5,2a=±5,a=±.故选B12.根据相反数的定义,得a﹣b的相反数是﹣(a﹣b)=b﹣a.故选B.13.一个数的相反数是非负数,那么这个数是非正数.故选A14.由相反数的性质知:m+n=0,m=﹣n;由于相反数是一对符号相反,但绝对值相等的数,所以|m|=|n|;故A、B、C均成立;D中,由于0与0互为相反数,但是0作除数没有意义,所以D的情况不一定成立;故选D15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,即这个数和它的相反数在数轴上对应的点的距离是8个单位长度.且这两个点到原点的距离相等,这个点在原点的左侧,所以,这个数是﹣4.故选B.16.a表示负数时,①错误;a表示负数时,﹣a就是正数,②错误;a=0时既不是正数也不是负数,③错误;a与﹣a互为相反数,这是相反数的定义,④正确.所以只有一个正确.故选A17.根据相反数的定义,知一个数的相反数比它的本身小,则这个数是正数.故选A.18.3的相反数是﹣3,﹣3与﹣3的差即﹣3﹣(﹣3)=0.故选C19.根据相反数的定义,得a﹣2的相反数是﹣(a﹣2)=2﹣a.故选C.20.令a=0,A、a=﹣a,故本选项错误;B、a=﹣a,故本选项错误;C、a=﹣a,故本选项错误;D、a不一定大于﹣a,故本选项正确.故选D.21.a﹣b+c的相反数是﹣(a﹣b+c)=﹣a+b﹣c=b﹣a﹣c.故选D.22. ∵a是最小的正整数,∴a=1,又b是最大的负整数,∴b=﹣1,又c的相反数等于它本身,∴c=0,∴a﹣b+c=1﹣(﹣1)+0=2,故选D.23.A+(﹣9)=﹣9,﹣(+9)=﹣9,符号相同,故错误,B﹣(﹣9)=9,+(+9)=9,符号相同,故错误,C﹣(﹣9)=9,+(﹣9)=﹣9,符号不同,故正确,D﹣(﹣9)=9,﹣[+(﹣9)]=9,符号相同,故错误,故选C.24.∵2x+4与﹣x﹣8互为相反数,∴2x+4=﹣(﹣x﹣8),解得x=4.故选A25.∵2x+3的值与1﹣x的值互为相反数,∴2x+3+1﹣x=0,∴x=﹣4.故选C26.相反数等于它本身的数是0.27.∵(a⇒b)=﹣b,(a⇐b)=﹣a,∴(2010⇒2011)⇐(2009⇒2008)=(﹣2011⇐﹣2008)=201128.a的相反数是﹣(+2),则a= 2 .29.如x=﹣9,则﹣x= 9 ;如果x<0,那么﹣3x >0.30.根据题意可设这两个数为x与﹣x,则有3x+5×(﹣x)=10,解得:x=﹣5,∴这两个数分别为﹣5和5 31.请任意写出一对相反数,并赋予它们实际意义:小刚向北走了50米,记作+50米,那么小刚向南走了50米,记作﹣50米,即+50和﹣50互为相反数..32.在有理数:﹣0.75,8,,﹣,,﹣0.125中,互为相反数的是﹣0.75与.35.∵a与b互为相反数,∴a=﹣b.∵b与c互为相反数,∴b=﹣c,∴a=﹣(﹣c)=c.∵c=﹣6,∴a=﹣6.故答案为:﹣636.如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数.37.(1)符号相反,绝对值相等的两个数叫互为相反数,故错误;(2)数轴上分别在原点两旁且到原点距离相等的两个数叫互为相反数,故错误;(3)﹣(﹣3)的相反数是﹣3,故错误;(4)当a=0时,﹣a=0,故﹣a不一定是负数,故错误;(5)若两个数之和为0,则这两个数互为相反数,故正确;(6)若两个数互为相反数,则这两个数可能都是0,故错误.故答案为×;×;×;×;√;×38.∵a、b互为相反数,∴a+b=0,∴a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=(a+b)+2(a+b)+3(a+b)+…+50(a+b)=0.故答案为:039.①互为相反数的两个数的和为0,故本小题正确;②若a+b=0,则a、b互为相反数,故本小题正确;③当b=0时,无意义,故本小题错误;④若=﹣1,则a、b互为相反数,故本小题正确.故答案为:①②④.40.∵最大的负整数为﹣1,∴a的相反数为﹣1,则a=1,∵最小的正整数为1,∴b的相反数为1,则b=﹣1,则a+b=1+(﹣1)=0.41.负数的相反数是一个正数,大于它本身.故这个数是负数.故答案为:负42.若a=+3.2,则﹣a=﹣3.2;若a=﹣,则﹣a=;若﹣a=1,则a=﹣1;若﹣a=﹣2,则a=2.43.由题意得,﹣a≥0,∴a≤0.故答案为:≤44.+3的相反数是﹣3; 1.2的相反数是﹣1.2;﹣1与1互为相反数.45.由题意得:m﹣1+n=(m+n)﹣1=0﹣1=﹣1.故答案为:﹣146.一个数的相反数是最大的负整数,这个数是1.47.根据图形可知:|a|>|b|,a<0,b>0,∴﹣a>b>﹣b>a.48.>﹣3的自然数有﹣2,﹣1,0,1,2,3等无数个数,但相反数>﹣3的自然数则就只有三个了.因为这些数的相反数除0,1,2这三个外就都是负数了,都不符合题意.所以答案:0、1、2.49.∵5a+7与1﹣2a互为相反数,∴5a+7+1﹣2a=0,解得a=﹣.∴(7+3a)2008=(7﹣3×)2008=1.50.根据概念(﹣1)+(4﹣m)=0,解得m=3.51.∵A点表示+7,C点与A点的距离为2,∴C点对应数为+5或+9,又B、C两点所表示的数是相反数,∴当C点对应数+5时,B点对应数﹣5;当C点对应数+9时,B点对应数﹣9.52.(1)100;(2)5;(3);(4)﹣2.8;(5)7;(6)﹣1253.向右移动4个单位长度.正确画数轴为:54.∵数轴上A点表示﹣5,且点B到点A的距离为4,∴B点有两种可能﹣9或+1.又∵B,C两点所表示的数互为相反数,∴C点也有两种可能9或﹣1.故答案为:B:﹣9或+1;C:9或﹣1.55.由题意得:2+(﹣2)=0,0.5+(﹣)=0,1.5+(﹣),∴互为相反数的有:2和﹣2,0.5和﹣,1.5和﹣.56.∵a的相反数是2b+1,b的相反数是3,∴,解得.∴a2+b2=52+(﹣3)2=34.又a+b与a﹣b的积为﹣2,则(a+b)(a﹣b)=a2﹣b2=﹣2,故当b2比a2大2时,a+b与a﹣b的积为﹣2.故a=0时,a+b和a﹣b互为相反数,当b2比a2大2时a+b与a﹣b的积为﹣2.58.0的相反数是0,﹣2.5的相反数是2.5,﹣3的相反数是3,+5的相反数是﹣5,1的相反数是﹣1,4.5的相反数是﹣4.5.在数轴上可表示为:59.(1)设A点表示的数为a,则B点表示的数为﹣a,∵这两个数间的距离为8.4,∴|2a|=8.4,∴a=±4.2,∵A>B,∴a>0,∴A、B两点所表示的数分别为:4.2,﹣4.2;(2)设B点表示的数是b,则|﹣5﹣b|=6,解得b=﹣11或b=1,故B点表示的数为﹣11或1;(3)设B点表示的数是b,则|a﹣b|=m,故b=a±m,故B点表示的数为a+m或a﹣m.60.(1)将点B向左平移3个单位后,三个点所表示的数B最小,是﹣2﹣3=﹣5;(2)有两种移动方法:①A不动,B右移6个单位;②B不动,A右移6个单位;(3)有三种移动方法:①A不动,把B左移2个单位,C左移7个单位;②B不动,把A右移2个单位,C左移5个单位③C不动,把A右移7个单位,B右移5个单位。
七年级数学上册《相反数》同步练习题(附答案)一、选择题1、()2021--的相反数是( ) A .2021- B .2021 C .12021D .12021-2、如图,数轴上点A 、B 、C 、D 、表示的数中,表示互为相反数的两个点是( ).A .点B 和点C B .点A 和点C C .点B 和点D D .点A 和点D3、下列说法正确的是( ) A .()8--是8-的相反数 B .()2-+是2-的相反数 C .5+的相反数是()5-- D .12-的相反数是()12+-4、一个数的相反数是非负数,这个数一定是( ) A .零 B .负数 C .正数 D .非正数5、下列说法中,正确的是( ) A .π的相反数是-3.14B .任何一个有理数都有相反数C .符号不同的两个数一定互为相反数D .-(-2)和+(+2)互为相反数6、如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、C 表示的数互为相反数,则图中点B 对应的数是( )A .-1B .0C .1D .3二、填空题7、数轴上在原点左侧与表示数1的点的距离为3的数是a ,则a 的相反数是_________.8、把规定了_________, _________, __________的直线叫数轴.9、所有的有理数都可以用数轴上的一个点来表示,表示正有理数的点都在原点____侧,表示0的点在______,表示负有理数的点都在原点______侧10、如图,D 和B 两点虽然分别在原点的左边和右边,它们与原点的距离相同吗?11、像3和-3,5和-5,35 和-35等这样,_____的两个数叫做互为相反数, 0的相反数为____.12、互为相反数的两个数分别位于原点的_____(0除外);互为相反数的两个数到原点的距离_______.13、一般地,设a 是一个正数,数轴上与原点的距离是a 的点有____个,它们分别在原点的两侧,表示_____,这两点关于_____对称.14、结合数轴思考:0的相反数是_____.一个正数的相反数是一个___.一个负数的相反数是一个___.一个数的相反数是它本身的数是 ______.15、一般地,a的相反数是-a,a可表示任意有理数.求一个数的相反数,只需在这个数前加一个“___”号.16、如果a=﹣a,那么表示数a的点在数轴上的位置是_____﹣三、简答题17、化简下列各数前的符号:(1)﹣[﹣(﹣9)](2)﹣[+(﹣75)]18、如图所示,数轴上的一个单位长度表示2,观察下图,回答问题:(1)若点A与点D表示的数互为相反数,则点D表示的数是多少?(2)若点B与点F表示的数互为相反数,则点D表示的数的相反数是多少?19、在给出的数轴上,标出以下各数及它们的相反数,-1,2,5,-4,并把它们按照从小到大的2顺序用“<”连接起来20、写出下列各数的相反数原数:6,-8,-0.9,52,211-,100,021、化简下列各式:(1)47⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦;(2){[(0.03)]}+-+-;(3){[(5)]}----;(4){[(5)]}---+.参考答案1、A【分析】根据去括号法则以及相反数的定义解题即可.【详解】解:(2021)2021--=,2021∴的相反数为2021-,故选:A.【点睛】本题主要考查相反数的定义以及去括号法则,解题的关键是熟知定义.2、B【分析】根据数轴、相反数的性质分析,即可得到答案.【详解】根据题意,点A表示的数为6-,点B表示的数为0,点C表示的数为6﹣表示互为相反数的两个点是点A和点C故选:B.【点睛】本题考查了有理数的知识;解题的关键是熟练掌握数轴、相反数的性质,从而完成求解.3、A【分析】根据相反数的定义判断选项的正确性.【详解】().8A --是8-的相反数,故A 正确; B .()22-+=-,故B 错误; C .()55+=--,故C 错误; D .()1212-=+-,故D 错误. 故选:A .【点睛】本题考查相反数,解题的关键是掌握相反数的定义. 4、D【分析】一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.由此得出结果. 【详解】解:非负数是指正数或 0,而负数的相反数是正数,0 的相反数是 0,所以这个数一定是负数或 0. 故选:D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 5、B【分析】根据相反数的定义、去括号法则逐项判断即可得. 【详解】A 、π的相反数是π-,此项错误; B 、任何一个有理数都有相反数,此项正确;C 、只有符号不同的两个数一定互为相反数,此项错误;D 、()22--=,()22++=,不是相反数,此项错误; 故选:B .【点睛】本题考查了相反数的定义、去括号法则,熟练掌握相反数的概念是解题关键. 6、C【分析】根据点A 、C 表示的数互为相反数得到数轴原点的位置,读出点B表示的数即可求解. 【详解】解:根据点A 、C 表示的数互为相反数,可得图中点D 为数轴原点,,﹣点B 对应的数是1, 故选:C .【点睛】本题考查数轴上表示的数,根据相反数在数轴上的位置确定原点的位置是解题的关键.7、2【分析】数轴上在原点左侧即是负数,结合与表示数1的点的距离为3的数,即可得到a表示的数是-2,再根据相反数的定义解题.【详解】数轴上在原点的左侧且距离数1为3的数是-2,故-2的相反数为2,故答案为:2.【点睛】本题考查数轴上的点表示有理数、相反数等知识,是基础考点,难度较易,掌握相关知识是解题关键.8、原点、正方向、单位长度.【解析】分析:数轴的三要素为:原点,正方向,单位长度.解:我们把规定了原点,正方向和单位长度的直线叫做数轴.点评:本题考查数轴的定义,是需要熟记的内容.9、①. 右②. 原点③. 左10、相同,它们到原点的距离都是311、①. 只有符号不同②. 012、①. 两侧②. 相等13、①. 两②. a和-a③. 原点14、①. 0 ②. 负数③. 正数④. 015、-16、原点【解析】先求出a的值,再判断即可.【详解】a=-a,a=0,即表示数a的点在数轴上的位置是原点,故答案为原点.【点睛】本题考查了数轴和相反数,能求出a的值是解此题的关键.17、(1)﹣9;(2)75.【分析】根据相反数的定义,可得答案.【详解】(1)原式=﹣[+9]=﹣9;(2)原式=﹣[﹣75]=75.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.18、(1)点D表示的数为5;(2)点D表示的数的相反数为2-【分析】(1)先确定原点,即可确定点D表示的数;(2)先确定原点,可确定点D表示的数,再确定点D表示的数的相反数.【详解】(1)如图:﹣AD=10,点A与点D表示的数互为相反数,﹣点D表示的数为5;(2)如图:﹣点B与点F表示的数互为相反数,﹣点D表示的数为2;﹣点D表示的数的相反数为2-.【点睛】本题主要考查了数轴和相反数的应用,要注意两点,一是单位长度是多少,二是要注意找好原点,利用原点确定所表示的数.19、图见解析,5542112422-<-<-<-<<<<【分析】根据题意利用相反数性质得出并在数轴上表示出各数和它们的相反数,进而从左到右用“<”连接起来即可.【详解】解:-1,2,52,-4的相反数分别为:1,-2,52-,4,各数在数轴上表示为:所以55 42112422-<-<-<-<<<<.【点睛】本题考查的是有理数的大小比较,熟练掌握相反数的定义以及数轴上右边的数总比左边的大是解答此题的关键.20、-6,+8,+0.9,52-,211+,-100,021、(1)47;(2)0.03;(3)5;(4)5-.【分析】根据相反数的定义分别化简即可.【详解】(1)4477⎡⎤⎛⎫--+=⎪⎢⎥⎝⎭⎣⎦.(2){[(0.03)]}0.03+-+-=.(3){[(5)]}5----=.(4){[(5)]}5---+=-.【点睛】本题考查了利用相反数化简,对这类式子进行化简,非0数的正负与前边的正号的个数无关,而与负号的个数有关,当有奇数个负号时,值是负数,当有偶数个负号时,值是正数.。
相反数专项练习60题(有答案)1.﹣2009的相反数是()A.2009.C.﹣2009DB.﹣2.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10C.﹣(+5)=5D.﹣[﹣(+8)]=﹣8).的相反数是(3 ..DCA.B.4.如果a+b=0,那么a与b之间的关系是()A.相等B.符号相同C.符号相反D.互为相反数5.一个数的相反数是最大的负整数,则这个数是()1 ±1 B..C 0 D..A ﹣16.在数轴上将点A向右移动10个单位,得到它的相反数,则点A表示的数为()1 0 5 5 .DB.A.﹣10 C.﹣7.一个数在数轴上向右移动6个单位长度后得到它的相反数的对应点,则这个数的相反数是()3 66D.﹣B.A ﹣3 ..C8.下列说法正确的是()10 .A 11之间的有理数是1 最大的负数是﹣数轴上9B.与0C.互为相反数的两个数和为D.一个数不是负数就是正数9.在数轴上表示数a的点在原点左侧,并且到原点的距离为2个单位,则数a的相反数是()﹣A.2.C.D.B 2﹣10.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等﹣(+a)和+(﹣﹣a一定是负数a)一定相等D.C .11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是().DC.A.5或﹣5B.或或或﹣5512.a﹣b的相反数是()A.a﹣b B.b﹣a C.﹣a﹣b D.不能确定13.一个数的相反数是非负数,那么这个数是()负数.A.非正数零B.正数D.C14.若m,n互为相反数,则下列结论不正确的是()Dn.m=.A m+n=0﹣.C.|m|=|n|B15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是()4 B.﹣4C.8A.D.﹣816.已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与)互为相反数.其中正确的个数是(a﹣.A.1个B.2个C.3个D.4个17.一个数的相反数比它的本身小,则这个数是()负B.负数数和零D.C.A.正数正数和零18.3的相反数与﹣3的差是()C.DA.6.B.﹣62 ﹣19.a﹣2的相反数是()a+2B.﹣a﹣2C.﹣a+2D.A.﹣|a﹣2|20.a代表有理数,那么,a和﹣a的大小关系是()B.A.a大于﹣a a小于﹣a C.a大于﹣a或a小于﹣aa不一定大于﹣a D.21.a﹣b+c的相反数是()c a﹣﹣﹣a﹣b+c C.﹣A.ab﹣c b﹣a+c D.bB.22.设a是最小的正整数,b是最大的负整数,c的相反数等于它本身,则a﹣b+c的值是()A.C.1﹣1D.0B.223.下列各数中,互为相反数的是()A.+(﹣9)和﹣(+9)99C.﹣(﹣9)和+(﹣)D.﹣(﹣)和)+9(+)和9﹣(﹣.B])[+(﹣9﹣)的值为(x﹣8互为相反数,则x24.已知2x+4与﹣8﹣D 0.C A.4 B.﹣4 .)x=(x25.如果2x+3的值与1﹣的值互为相反数,那么46 46A.﹣B..D ﹣C._________.相反数等于它本身的数是.26)200820093)=﹣3,则(2010?2011)?(?(a?”27.用“?与“?”表示一种法则:(ab)=﹣b,(?b)=﹣a,如2?.=_________a=28.a的相反数是﹣(+2),则_________.._________0x<0,那么﹣3x;如果x=29.如﹣9,则﹣x=_________的括号内分别填上一个数,使这两个数互为相反)=10)+5×(_________30.在3×(_________数..31.请任意写出一对相反数,并赋予它们实际意义:__________________,﹣中,互为相反数的是32.在有理数:﹣,8,,﹣.,,_____B33.在数轴上,若点A,互为相反数,并且这两点的距离为,则这两点所表示的数是______.的距离相等.34.互为相反数在数轴上表示的点到_________ 与c互为相反数,且c=﹣6,则._________a=ba35.已知与b互为相反数,_____不同,那么我们称其中一个数为另外一个数的相反数.36.如果两个数只有37.判断正误:)1)符号相反的数叫相反数;(_________()_________(2)数轴上原点两旁的数是相反数;(3(3)﹣(﹣)的相反数是3;(_________))(一定是负数;_________a4()﹣_________,则这两个数互为相反数;()若两个数之和为(50))_________()若两个数互为相反数,则这两个数一定是一个正数一个负数.6(..38.已知a、b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=_________.下列说法:39 ;①若a、b互为相反数,则a+b=0 a②若a+b=0,则、b互为相反数;互为相反数,则=﹣1;③若a、b若=﹣1,则④a、b互为相反数.其中正确的结论是_________..a+b=_________40.如果a的相反数是最大的负整数,b的相反数是最小的正整数,则数._________.如果一个数的相反数大于它本身,则这个数为412,则a=___;若﹣a=﹣42.若a=+,则﹣a=_____;若a=﹣,则﹣a=__;若﹣a=1,则a= ______.0.的大小关系是0a_________43.一个数a的相反数是非负数,那么这个数a与互为相反数.1与_________44.+3的相反数是_________;_________的相反数是﹣;﹣1+n=_________.n45.若m,互为相反数,则m﹣._________.一个数的相反数是最大的负整数,这个数是4647.已知有理数a,b在数轴上的位置如图所示,那么a,b,﹣a,﹣b的大小关系是_________.(用“>”连接).3的自然数有_________48.相反数>﹣2008.=1﹣2a互为相反数,那么(7+3a)_________.已知495a+7与此m的值.与﹣1互为相反数,求50.已知4﹣m点各C,求B点和C点与A点的距离为2,51.数轴上A点表示+7B、C两点所表示的数是相反数,且对应什么数?.化简下列各数:52);(+ (3)+(2)﹣(﹣5);(1)﹣(﹣100);+12).(6)﹣();(+(4)(﹣);5)﹣(﹣7,由于一时粗心把数轴上的,其表示的数是﹣253.马虎同学在做题时画一条数轴,数轴上原有一点A的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个点正好落在﹣2原点标错了位置,使A 数轴画正确,原点应向哪个方向移动几个单位长度?C和点4,求点B两点所表示的数互为相反数,且点B到点A的距离为C54.数轴上A点表示﹣5,B,对应什么数?,互为相反数的有哪几对?,,﹣,﹣.下列各数:2,,,﹣25522 a的值.+b,求.56a的相反数是2b+1,b的相反数是3 2?的积为﹣a+b与a﹣b﹣表示有理数,在什么条件下,.如果57a,ba+b和ab互为相反数?,及它们的相反数.,+5,358.在数轴上表示下列各数:0,﹣,﹣59.(1)若数轴上的点A和点B表示两个互为相反数的数,并且这两个数间的距离为,求A点和B点)B>A表示的数是什么.(.点表示的数.点的距离是6,写出B2)数轴上如果A点表示的数是﹣5,A点与B(点表示的数.点的距离是m,写出B)数轴上如果A点表示的数是a,A点与B(3 B、C,请据图回答下列问题:、60.如图,在数轴上有三点A B向左平移3个单位后,三个点所表示的数谁最小?是多少?(1)将点A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(2)怎样移动B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?(3)怎样移动A、题参考答案:相反数专项练习60.D9.B 10 5.B6.C7.A 8.D 41.A2.B 3.D .DB a=±.故选﹣(﹣a)|=5,2a=±5,11.设这个数是a,则它的相反数是﹣a.根据题意,得|a .故选B.﹣b)=b﹣a12.根据相反数的定义,得a﹣b的相反数是﹣(aA13.一个数的相反数是非负数,那么这个数是非正数.故选;由于相反数是一对符号相反,但绝对值相等的数,所以m=﹣n14.由相反数的性质知:m+n=0,|m|=|n|;C均成立;故A、B、D0互为相反数,但是0作除数没有意义,所以D的情况不一定成立;故选D中,由于0与个单位后,得到它的相反数,即这个数和它的相反数在数轴.一个数在数轴上所对应的点向右移动815 上对应的点个单位长度.且这两个点到原点的距离相等,这个点在原点的左侧,所以,这个数是﹣的距离是8 B.4.故选时既不是正数也不是负数,错误;a=0a表示负数时,﹣a就是正数,②16.a表示负数时,①错误;③错误;A 正确.所以只有一个正确.故选a与﹣a互为相反数,这是相反数的定义,④17.根据相反数的定义,知一个数的相反数比它的本身小,则这个数是正数.故选A.C.故选3﹣(﹣3)=018.3的相反数是﹣3,﹣3与﹣3的差即﹣.﹣a.故选Ca﹣2的相反数是﹣(a﹣2)=219.根据相反数的定义,得a=﹣a,故本选项错误;﹣,故本选项错误;B、a=a,故本选项错误;C、20.令a=0,A、a=﹣a 故选D.D、a不一定大于﹣a,故本选项正确..故选D.a+b﹣c=b﹣a﹣c的相反数是﹣(21.a﹣b+ca﹣b+c)=﹣c=0,cb=﹣1,又的相反数等于它本身,∴22. ∵a是最小的正整数,∴a=1,又b是最大的负整数,∴D.1)+0=2,故选∴a﹣b+c=1﹣(﹣,符号相同,故错=9,+(+9))=﹣9,符号相同,故错误,B﹣(﹣9)=9923.A+(﹣9)=﹣,﹣(+9 误,,符号相同,故(﹣9)]=9,符号不同,故正确,D﹣(﹣9)=9,﹣[+=9 C﹣(﹣)=9,+(﹣9)﹣9 错误, C.故选A x=4.故选2x+4=﹣(﹣x﹣8),解得互为相反数,24.∵2x+4与﹣x﹣8∴﹣4.故选C,1的值与﹣x的值互为相反数,∴2x+3+1﹣x=0∴x=.25∵2x+3 26.相反数等于它本身的数是0.=2011 )=(﹣2011?﹣20082009?20082010?2011=ba?b.∵()=﹣,(a?b)﹣a,∴()?()27 a= 2 .的相反数是﹣(28.a+2),则.0 >3x ,那么﹣0<x;如果9 x= ,则﹣9﹣x=.如29.,∴这两个数分别为﹣5根据题意可设这两个数为30. x与﹣x,则有3x+5×(﹣x)=10,解得:x=﹣5 和5米,那么小刚向南31小刚向北走了米,记作.请任意写出一对相反数,并赋予它们实际意义:50+50 50走了米,.50米,即+50和﹣50互为相反数.记作﹣.﹣与32.在有理数:﹣,8,,﹣,,﹣中,互为相反数的是.在数轴上,若点A,B互为相反数,并且这两点的距离为,则这两点所表示的数是,﹣.3334.互为相反数在数轴上表示的点到原点的距离相等.35.∵a与b互为相反数,∴a=﹣b.∵b与c互为相反数,∴b=﹣c,∴a=﹣(﹣c)=c.∵c=﹣6,∴a=﹣6.故答案为:﹣636.如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数.37.(1)符号相反,绝对值相等的两个数叫互为相反数,故错误;(2)数轴上分别在原点两旁且到原点距离相等的两个数叫互为相反数,故错误;(3)﹣(﹣3)的相反数是﹣3,故错误;(4)当a=0时,﹣a=0,故﹣a不一定是负数,故错误;(5)若两个数之和为0,则这两个数互为相反数,故正确;(6)若两个数互为相反数,则这两个数可能都是0,故错误.故答案为×;×;×;×;√;×38.∵a、b互为相反数,∴a+b=0,∴a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=(a+b)+2(a+b)+3(a+b)+…+50(a+b)=0.故答案为:0 39.①互为相反数的两个数的和为0,故本小题正确;②若a+b=0,则a、b互为相反数,故本小题正确;③当b=0时,无意义,故本小题错误;④若=﹣1,则a、b互为相反数,故本小题正确.故答案为:①②④.40.∵最大的负整数为﹣1,∴a的相反数为﹣1,则a=1,∵最小的正整数为1,∴b的相反数为1,则b=﹣1,则a+b=1+(﹣1)=0.41.负数的相反数是一个正数,大于它本身.故这个数是负数.故答案为:负42.若a=+,则﹣a=﹣;若a=﹣,则﹣a=a=,则2﹣a=;若﹣1﹣a=,则a=1;若﹣2.43.由题意得,﹣.故答案为:a≤0≤a≥0,∴互为相反数.与;的相反数是﹣;﹣11﹣.44+3的相反数是31 ﹣)﹣1=01=﹣1.故答案为:﹣(.由题意得:45m﹣1+n=m+n ..一个数的相反数是最大的负整数,这个数是146 ><|b|,a0,b0,∴.b>a>﹣>﹣ab>.根据图形可知:47|a|的自然数则就只有三个3等无数个数,但相反数>﹣3,,,,,﹣的自然数有﹣.>﹣48321012 了.因为这些数.2、1、0这三个外就都是负数了,都不符合题意.所以答案:2,1,0的相反数除20082008=1.)7﹣.∴(7+3a)3×=∴49.∵5a+7与1﹣2a互为相反数,5a+7+1﹣2a=0,解得a=(﹣50.根据概念(﹣1)+(4﹣m)=0,解得m=3.51.∵A点表示+7,C点与A点的距离为2,∴C点对应数为+5或+9,又B、C两点所表示的数是相反数,∴当C点对应数+5时,B点对应数﹣5;当C点对应数+9时,B点对应数﹣9.);(4)﹣;(5);(37;(6)﹣252.(1)100;()125个单位长度.正确画数轴为:4 53.向右移动54.∵数轴上A点表示﹣5,且点B到点A的距离为4,∴B 点有两种可能﹣9或+1.又∵B,C两点所表示的数互为相反数,∴C点也有两种可能9或﹣1.故答案为:B:﹣9或+1;C:9或﹣1.,和﹣.,和﹣∴互为相反数的有:2和﹣,+2(﹣)=0,+,(﹣)2+55.由题意得:(﹣2)=0222+(﹣a3+b),b的相反数是3,=5∴∴,解得.的相反数是56.∵a2b+12 =34.57.根据题意可得:若a+b 和a﹣b互为相反数,则a+b+a﹣b=0,解得:a=0,2222大2时,a+b与a﹣﹣2,故当bb比aa与﹣b的积为﹣2,则(a+b)(a﹣b)=ab﹣的积= 又a+b为﹣2.22大2时a+b与a﹣比ab的积为﹣2.a 故a=0时,a+b和﹣b互为相反数,当b1,1的相反数是﹣的相反数是3,+5的相反数是﹣5,58.0的相反数是0,﹣的相反数是,﹣3 的相反数是﹣.在数轴上可表示为:59.(1)设A点表示的数为a,则B点表示的数为﹣a,∵这两个数间的距离为,∴|2a|=,∴a=±,∵A>B,∴a>0,∴A、B两点所表示的数分别为:,﹣;(2)设B点表示的数是b,则|﹣5﹣b|=6,解得b=﹣11或b=1,故B点表示的数为﹣11或1;(3)设B点表示的数是b,则|a﹣b|=m,故b=a±m,故B点表示的数为a+m或a﹣m.60.(1)将点B向左平移3个单位后,三个点所表示的数B最小,是﹣2﹣3=﹣5;(2)有两种移动方法:①A不动,B右移6个单位;②B不动,A右移6个单位;(3)有三种移动方法:①A不动,把B左移2个单位,C左移7个单位;②B不动,把A右移2个单位,C左移5个单位个单位5右移B个单位,7右移A不动,把③C。
相反数练习
一. 选择题
1.下列说法中,正确的是( C )
A.一个数的相反数一定是负数 B .两个符号不同的数一定是相反数
C .相反数等于它本身的只有0
D .C 的相反数是3
2.下列各数中,互为相反数的共有( c )组
①18和-18; ②-(-1)和+(-1);③-(-2)和+(+2);④-(+1.5)和+(-1.5) A. 4 B. 3 C. 2 D. 1
3.下列说法正确的是( c )
A .符号不同的两个数互为相反数 B. 0. 37与37100
互为相反数 C .x 的相反数是-x D. + 1的相反数等于它本身
4.一个数的相反数小于原数,这个数是( A )
A .正数
B .负数 C.零 D. 正分数
5.某个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为1个单位长度,则 这个数是( C )
A. 18或-18
B. 14或-14
C. 12或-12
D. -1或1 6.下列叙述正确的是( C )
A .符号不同的两个数互为相反数 B.一个数的相反数一定是负数
C.324与2.75都是114
的相反数 D. 0没有相反数 7.下列各数互为倒数的是( C )
A. 0. 12和-8
B.5和-5
C.1和1
D.-132和+27
※8.若a 与
8b
(b ≠0)互为相反数,那么a 的倒数是( B ) A .-8b B.-8b C. 8b D. 8b 9.数轴上A 点表示+7, B 、C 两点表示的数互为相反数,且C 点与A 点的距离是2个单位 长度,则B 点所表示的数为( D )
A .±5 B.±9 C. 5或-9 D. - 5或-9
※10.若2x 与2-x 互为相反数,则x 等于( B )
A. 0 B .-2 C. 23 D.12
二.填空题
11. -(-10)的相反数是 -10.
12. -4.5和它的相反数之间,整数有 9 个.
13.如果-x=12,则x= -12
14.如果a=-13,那么-a=13
15.两个数互为相反数,在数轴上表示这两个数的点到原点的距离相等
16.比4的相反数还小2的数,这个数的相反数是6
※17. -9的相反数是9;3-x 的相反数是 X-3;若-〔-(x+y)〕是负数,则x+y <0.
18.如果-a=-9,那么-a 的相反数是9
19.a-1的相反数是6,则a 的值是 -5
※20.已知a 、b 互为相反数,则2a +2b +1=1.
三、解答题
21.化简多重符号.
(1)-(+5)=-5 (2) -(-5)=5
(3)+(-3.2)=-3.2 (4) -[-(-5)]=-5
(5)-{-〔-(-3.5)]}=3.5 (6) -﹛-〔+(- 4) ]}=-4
22.若2m 与m-1互为相反数,试求m 的值 ()3
1m 0
1-m m 21-m 2=
∴=+∴互为相反数
与m
※23. 已知a 和b 互为相反数,m 和n 互为倒数,c= -(+2),求2a+2b+mn c 的值。
()
()2
1-2
-102c
mn b a 2c
mn 222
-c 2-c 1
mn n m 0
a =+⨯=++=++∴=∴+==∴=+∴)(互为倒数
与互为相反数
与解:
b a b a b。