2019_2019学年高中数学第二章解析几何初步2.1.3两条直
- 格式:ppt
- 大小:1.48 MB
- 文档页数:37
2.1.3 两条直线的平行与垂直[学业水平训练]1.直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-3k -b =0的两根,若l 1⊥l 2,则b =________;若l 1∥l 2,则b =________.解析:l 1⊥l 2时,k 1k 2=-1,由一元二次方程根与系数的关系得k 1k 2=-b 2,∴-b 2=-1,得b =2.l 1∥l 2时,k 1=k 2,即关于k 的二次方程2k 2-3k -b =0有两个相等的实根,∴Δ=(-3)2-4×2·(-b )=0,即b =-98. 答案:2 -982.设a ∈R ,如果直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行,那么a =________.解析:当a =0时,l 1:y =12,l 2:x +y +4=0,这两条直线不平行;当a =-1时,l 1:x -2y +1=0,l 2:x +4=0,这两条直线不平行;当a ≠0且a ≠-1时,l 1:y =-a 2x +12,l 2:y =-1a +1x -4a +1,由l 1∥l 2得-a 2=-1a +1且12≠-4a +1,解得a =-2或a =1. 答案:-2或13.如图,已知△ABC 的三个顶点坐标分别为A (-1,1),B (1,5),C (-3,2),则△ABC 的形状为________.解析:因为k AB =1-5-1-1=-4-2=2,k AC =1-2-1--=-12,所以k AB ·k AC =-1,且A 、B 、C 、D 4点不共点,所以AB ⊥AC ,即∠BAC =90°.所以△ABC 是直角三角形.答案:直角三角形4.已知A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥CD ;③AC ∥BD ;④AC ⊥BD ,其中正确的序号为________.解析:k AB =-4-26--=-35,k CD =12-62-12=-35,且A 、B 、C 、D 4点不共线,所以AB ∥CD ,k AC =6-212--=14,k BD =12--2-6=-4, k BD ·k AC =-1,所以AC ⊥BD .答案:①④5.已知P (-2,m ),Q (m,4),M (m +2,3),N (1,1),若直线PQ ∥直线MN ,则m =________. 解析:当m =-2时,直线PQ 的斜率不存在,而直线MN 的斜率存在,MN 与PQ 不平行,不合题意;当m =-1时,直线MN 的斜率不存在,而直线PQ 的斜率存在,MN 与PQ 不平行,不合题意;当m ≠-2且m ≠-1时,k PQ =4-m m --=4-m m +2, k MN =3-1m +2-1=2m +1,因为直线PQ ∥直线MN , 所以k PQ =k MN ,即4-m m +2=2m +1,解得m =0或m =1.经检验m =0或m =1时直线MN ,PQ 都不重合.综上,m 的值为0或1.答案:0或16.已知两条直线ax +4y -2=0与直线2x -5y +c =0互相垂直,垂足为(1,b ),则a +c -b =________.解析:∵k 1k 2=-1,∴a =10.∵垂足(1,b )在直线10x +4y -2=0上,∴b =-2.将(1,-2)代入2x -5y +c =0得c =-12,故a +c -b =0.答案:07.(1)求与直线y =-2x +10平行,且在x 轴、y 轴上的截距之和为12的直线的方程;(2)求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程.解:(1)设所求直线的方程为y =-2x +λ,则它在y 轴上的截距为λ,在x 轴上的截距为12λ,则有λ+12λ=12, ∴λ=8.故所求直线的方程为y =-2x +8,即2x +y -8=0.(2)法一:由直线方程2x +3y +5=0得直线的斜率是-23, ∵所求直线与已知直线平行,∴所求直线的斜率也是-23. 根据点斜式,得所求直线的方程是y +4=-23(x -1), 即2x +3y +10=0.法二:设所求直线的方程为2x +3y +b =0,∵直线过点A (1,-4),∴2×1+3×(-4)+b =0,解得b =10.故所求直线的方程是2x +3y +10=0.8.已知在▱ABCD 中,A (1,2),B (5,0),C (3,4).(1)求点D 的坐标;(2)试判断▱ABCD 是否为菱形?解:(1)设D (a ,b ),由▱ABCD ,得k AB =k CD ,k AD =k BC ,即⎩⎪⎨⎪⎧ 0-25-1=b -4a -3,b -2a -1=4-03-5,解得⎩⎪⎨⎪⎧ a =-1,b =6,∴D (-1,6).(2)∵k AC =4-23-1=1,k BD =6-0-1-5=-1, ∴k AC ·k BD =-1,∴AC ⊥BD .∴▱ABCD 为菱形.[高考水平训练]1.已知A (1,-1),B (2,2),C (3,0)三点,若存在点D ,使CD ⊥AB ,且BC ∥AD ,则点D 的坐标为________.解析:设点D 的坐标为(x ,y ).因为k AB =2--2-1=3,k CD =y x -3, 且CD ⊥AB ,所以k AB ·k CD =-1,即3×yx -3=-1. ①因为k BC =2-02-3=-2,k AD =y +1x -1, 且BC ∥AD ,所以k BC =k AD ,即-2=y +1x -1, ② 由①②得x =0,y =1,所以点D 的坐标为(0,1).答案:(0,1)2.△ABC 的顶点A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,则m 的值为________.解析:若∠A 为直角,则AC ⊥AB ,所以k AC ·k AB =-1,即m +12-5·1+11-5=-1,得m =-7; 若∠B 为直角,则AB ⊥BC ,所以k AB ·k BC =-1,即1+11-5·m -12-1=-1,得m =3; 若∠C 为直角,则AC ⊥BC ,所以k AC ·k BC =-1,即m +12-5·m -12-1=-1,得m =±2. 综上可知,m =-7或m =3或m =±2.答案:-7或±2或33.已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值. 解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -=2-m +, k CD =3m +2-m 3--m =m +m +3. 因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1.综上,m 的值为1或-1.4.在平面直角坐标系中,四边形OPQR 的顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t,2+t ),R (-2t,2),其中t >0.试判断四边形OPQR 的形状.解:如图所示,由已知两个点的坐标得:k OP =t -01-0=t , k RQ =+t -2-2t --2t=t , k OR =2-0-2t -0=-1t. k PQ =t -+t 1--2t =-1t, 所以k OP =k RQ ,k OR =k PQ ,所以OP ∥RQ ,OR ∥PQ ,所以四边形OPQR 是平行四边形;又k OP ·k OR =t ·(-1t)=-1, 所以OP ⊥OR ,∠POR 是直角, 所以四边形OPQR 是矩形;过点P 作PA ⊥x 轴,垂足为A , RB ⊥x 轴,垂足为B ,那么由勾股定理得: OP 2=OA 2+AP 2=1+t 2.∴OP =1+t 2,OR 2=OB 2+BR 2=(-2t )2+22=4(1+t 2),∴OR =21+t 2.∴OP ≠OR ,所以四边形OPQR 不是正方形, 综上可知,四边形OPQR 是矩形.。
2.1.3 两条直线的位置关系[A.基础达标]1.下列说法正确的是( )A .如果两条直线平行,则它们的斜率相等B .如果两条直线垂直,则它们的斜率互为负倒数C .如果两条直线斜率之积为-1,则这两条直线互相垂直D .如果直线的斜率不存在,则这条直线一定平行于y 轴解析:选C.不论两直线平行还是垂直都要考虑两直线斜率不存在的情况,A 、B 忽略斜率不存在,D 忽略了直线与y 轴重合.2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0解析:选A.直线x -2y -2=0的斜率为12,所以所求直线的斜率为12.故所求直线方程为y -0=12(x -1),即x -2y -1=0. 3.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0解析:选B.因为k AB =2-11-3=-12, 所以所求直线的斜率为2.又线段AB 的中点为⎝ ⎛⎭⎪⎫2,32, 故线段AB 的垂直平分线方程为y -32=2(x -2), 即4x -2y -5=0.4.已知点A (m ,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( )A .1B .0C .0或2D .0或1解析:选D.因为AB ∥CD ,所以m +4-32m -m =2-0m +1-1, 解得m =1.当m =0时,直线AB 为y 轴,直线CD 为x =1,两直线平行,故若两直线平行则m =0或1.5.已知点A (2,3),B (-2,6),C (6,6),D (10,3),则以A ,B ,C ,D 为顶点的四边形是( )A .梯形B .平行四边形C .菱形D .矩形解析:选B.如图所示,易知k AB =-34,k BC =0,k CD =-34,k AD =0,k BD =-14,k AC =34,所以k AB =k CD ,k BC =k AD ,k AB ·k AD =0,k AC ·k BD =-316, 故AD ∥BC ,AB ∥CD ,AB 与AD 不垂直,BD 与AC 不垂直.所以四边形ABCD 为平行四边形.6.已知直线l 1:2x +(λ+1)y -2=0,l 2:λx +y -1=0,若l 1∥l 2,则λ的值是________. 解析:因为l 1∥l 2,所以2×1-(λ+1)λ=0,即λ2+λ-2=0,解得λ=-2或λ=1.当λ=1时,l 1与l 2重合,不符合题意.所以λ=-2.答案:-27.已知直线l 1过点A (-2,3),B (4,m ),直线l 2过点M (1,0),N (0,m -4),若l 1⊥l 2,则常数m 的值是________.解析:由已知得k AB =m -34-(-2)=m -36, k MN =m -4-1=4-m . 因为AB ⊥MN ,所以m -36×(4-m )=-1, 即m 2-7m +6=0,解得m =1或m =6,经检验m =1或m =6适合题意.答案:1或68.已知点P (0,-1),点Q 在直线x -y +1=0上,若直线PQ 垂直于直线x +2y -5=0,则点Q 的坐标是________.解析:依题意设点Q 的坐标为(a ,b ),则有⎩⎪⎨⎪⎧a -b +1=0,b +1a·⎝ ⎛⎭⎪⎫-12=-1, 解得⎩⎪⎨⎪⎧a =2,b =3.故点Q 的坐标为(2,3). 答案:(2,3)9.已知定点A (-1,3),B (4,2),以A ,B 为直径作圆与x 轴有交点C ,求交点C 的坐标.解:因为以线段AB 为直径的圆与x 轴相交于点C ,所以AC ⊥CB .据题设条件可知AC 与BC 的斜率均存在(如图),设C (x ,0),则k AC =-3x +1,k BC =-2x -4. 所以-3x +1·-2x -4=-1,解得x =1或2. 所以C (1,0)或C (2,0).10.已知在▱ABCD 中,A (1,2),B (5,0),C (3,4).(1)求点D 的坐标;(2)试判定▱ABCD 是否为菱形?解:(1)设D (a ,b ),由▱ABCD ,得k AB =k CD ,k AD =k BC ,即⎩⎪⎨⎪⎧0-25-1=b -4a -3,b -2a -1=4-03-5.解得⎩⎪⎨⎪⎧a =-1,b =6.所以D (-1,6). (2)因为k AC =4-23-1=1,k BD =6-0-1-5=-1, 所以k AC ·k BD =-1.所以AC ⊥BD .所以▱ABCD 为菱形.[B.能力提升]1.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为( )A .(0,-6)B .(0,7)C .(0,-6)或(0,7)D .(-6,0)或(7,0)解析:选C.由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1, 故y +52·⎝⎛⎭⎪⎫-y -66=-1, 解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7).2.顺次连接A (-4,3),B (2,5),C (6,3),D (-3,0)四点所组成的图形是( )A .平行四边形B .直角梯形C .等腰梯形D .以上都不对解析:选B.观察知连接后各边所在直线斜率都存在.因为k AB =5-32-(-4)=13,k CD =0-3-3-6=13,所以AB ∥CD .又k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12,所以AD 与BC 不平行,且AD ⊥CD .所以四边形ABCD 为直角梯形.3.若直线l 经过点(a -2,-1)和(-a -2,1)且与经过点(-2,1),斜率为-23的直线垂直,则实数a 的值为________.解析:由题意知两直线的斜率均存在,且直线l 与斜率为-23的直线垂直,则直线l 的斜率为32,于是32=1-(-1)(-a -2)-(a -2)=2-2a =-1a ,解得a =-23. 答案:-234.已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.解析:由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8,故面积最小时k =18. 答案:185.已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值.解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4-(-m -3)=2-(m +1), k CD =3m +2-m 3-(-m )=2(m +1)m +3. 因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1.综上,m 的值为1或-1.6.(选做题)直线l 的倾斜角为30°,点P (2,1)在直线l 上,直线l 绕点P (2,1)按逆时针方向旋转30°后到达直线l 1的位置,且直线l 1与l 2平行,l 2是线段AB 的垂直平分线,A (1,m -1),B (m ,2),试求m 的值.解:因为直线l 1的倾斜角为30°+30°=60°,所以直线l 1的斜率k 1=tan 60°= 3.又直线AB 的斜率为m -1-21-m =m -31-m, 所以AB 的垂直平分线l 2的斜率k 2=m -1m -3. 因为直线l 1与l 2平行,所以k 1=k 2, 即3=m -1m -3,解得m =4+ 3.。
第五课时 直线的一般式方程一、教学目标1、知识与技能:(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法:学会用分类讨论的思想方法解决问题。
3、情态与价值观:(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
二、教学重点、难点1、重点:直线方程的一般式。
2、难点:对直线方程一般式的理解与应用。
三、教学方法:探析交流法 四、教学过程问 题设计意图 师生活动1、(1)平面直角坐标系中的每一条直线都可以用一个关于yx ,的二元一次方程表示吗?(2)每一个关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)都表示一条直线吗?使学生理解直线和二元一次方程的关系。
教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。
对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。
为此要对B 分类讨论,即当0≠B 时和当B=0时两种情形进行变形。
然后由学生去变形判断,得出结论:关于y x ,的二元一次方程,它都表示一条直线。
教师概括指出:由于任何一条直线都可以用一个关于y x ,的二元一次方程表示;同时,任何一个关于y x ,的二元一次方程都表示一条直线。
我们把关于关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?使学生理解直线方程的一般式的与其他形 学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:问 题设计意图 师生活动式的不同点。
直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与x 轴垂直的直线。
高中数学 第2章《解析几何初步》1两条直线的位置关系导学案北师大版必修2【学习目标】1.理解两条直线平行与垂直的充要条件;2.能根据直线的方程判断两条直线的位置关系.【重点难点】重点:理解直线平行与垂直的充要条件,能判断两条直线的位置关系. 难点:直线斜率为零或不存在时的位置关系讨论.【自主学习】1.两条直线平行:如果两条不重合的直线1l :11b x k y +=和2l :22b x k y +=(21b b ≠)若12//l l ,则 ;反之,若21k k =,则 .如果两条直线的斜率都不存在,那么它们的位置关系是或 .2.两条直线垂直:设两条直线1l :11b x k y +=和2l :22b x k y +=若12l l ⊥,则 ;反之,若1-k k 21=∙,则 .特别地,如果一条直线1l 的斜率不存在...且方程为x=a ,另一条直线2l 的斜率为0且方程为y=b,那么它们的位置关系是 .3.判断下列各对直线是否平行或垂直:(1)1l :2x 3y +=与2l :5x 3y +=;(2)1l :1x 2y +=与2l :x 3y =;(3)1l :6y 3x 5=+与2l :5y 5x 3=-;(4)1l :2x 4y +=与2l :3x 41-y +=;(5)1l :3y =与2l :15x =(6)1l :2x =与2l :7x =【合作探究】1.已知直线09y 4x 3=--与02y 2ax =++垂直,求a 的值.2.求m 的值,使过点A(m,1),B(-1,m)的直线与过点P(1,2), Q(-5,0)的直线.(1)平行;(2)垂直.【课堂小结】。
高中数学第二章解析几何初步2.1.3两条直线的位置关系课后篇巩固探究(含解析)北师大版必修2课后篇巩固探究A组基础巩固1.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0解析设直线方程为x-2y+c=0(c≠-2),又经过(1,0),故c=-1,所求方程为x-2y-1=0.答案A2.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7B.0或7C.0D.4解析∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或m=7,经检验都符合题意.故选B.答案B3.直线l1:kx+(1-k)y-3=0和l2:(k-1)x+(2k+3)y-2=0互相垂直,则k的值为()A.-3或-1B.3或1C.-3或1D.-1或3解析若1-k=0,即k=1,直线l1:x=3,l2:y=,显然两直线垂直.若k≠1,直线l1,l2的斜率分别为k1=,k2=.由k1k2=-1,得k=-3.综上k=1或k=-3,故选C.答案C4.已知点A(1,2),B(3,1),线段AB的中点D,则线段AB的垂直平分线的方程是()A.4x+2y-5=0B.4x-2y-5=0C.x+2y-5=0D.x-2y-5=0解析因为k AB==-,所以所求直线的斜率为2.又线段AB的中点D为,所以线段AB的垂直平分线方程为y-=2(x-2),即4x-2y-5=0.答案B5.顺次连接A(-4,3),B(2,5),C(6,3),D(-3,0)四点所组成的图形是()A.平行四边形B.直角梯形C.等腰梯形D.以上都不对解析由斜率公式可得k AB=k CD=,而k AD=-3,k BC=-.所以AB∥CD,且AD与BC不平行.所以四边形ABCD为梯形.又k AD·k AB=-1,所以AD⊥AB,所以四边形ABCD为直角梯形.答案B6.已知A(3,),B(2,0),直线l与AB平行,则直线l的倾斜角为.解析由已知得k AB=,因此k l=k AB=.因为tan60°=,所以直线l的倾斜角为60°.答案60°7.已知点P(0,-1),点Q在直线x-y+1=0上,若直线PQ垂直于直线x+2y-5=0,则点Q的坐标是.解析依题意设点Q的坐标为(a,b),则有解得故点Q的坐标为(2,3).答案(2,3)8.已知l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0,则下列说法正确的是(填序号).①若l1⊥l2,则A1A2+B1B2=0②若l1⊥l2,则=-1③若A1A2+B1B2=0,则l1⊥l2④若=-1,则l1⊥l2.解析当B1,B2均不为0时,由两条直线垂直可得-=-1,即A1A2+B1B2=0;当B1=0,A2=0或A1=0,B2=0时,两条直线也垂直,并满足A1A2+B1B2=0.由此可知①③④正确,②错.答案①③④9.(1)求与直线5x+3y-10=0平行且与x轴的交点到原点的距离为2的直线方程;(2)求经过点(0,2)且与直线l:2x-3y-3=0垂直的直线方程.解(1)设直线方程为5x+3y+m=0(m≠-10).因为直线与x轴的交点到原点的距离为2,且直线与x轴的交点为,所以=2,解得m=±10.又因为m≠-10,所以m=10,所以直线方程为5x+3y+10=0.(2)因为所求直线与直线l:2x-3y-3=0垂直,所以可设所求直线的方程为3x+2y+m=0.又因为所求直线过点(0,2),所以4+m=0,解得m=-4,故所求直线的方程为3x+2y-4=0.10.导学号91134044已知A(1,-1),B(2,2),C(3,0)三点.(1)求点D,使直线CD⊥AB,且BC∥AD;(2)判断此时四边形ACBD的形状.解(1)如图,设D(x,y),则由CD⊥AB,BC∥AD,可知得解得即点D坐标为(0,1).(2)∵k AC=,k BD=,∴k AC=k BD.∴AC∥BD,∴四边形ACBD为平行四边形.而k BC==-2,∴k BC·k AC=-1.∴AC⊥BC,∴四边形ACBD是矩形.∵DC⊥AB,∴四边形ACBD是正方形.B组能力提升1.若过点A(-2,2),B(5,0)的直线与过点P(2m,1),Q(-1,m)的直线平行,则m的值为()A.-1B.3C.2D.解析由已知k AB=k PQ,得,解得m=3,故选B.答案B2.已知直线l1:mx+4y-2=0与l2:2x-5y+n=0互相垂直且垂足为(1,p),则m-n+p的值为()A.24B.20C.0D.-8解析因为l1⊥l2,所以2m+4×(-5)=0,解得m=10,又点(1,p)在l1上,所以10+4p-2=0,即p=-2,因为点(1,p)在l2上,所以2×1-5p+n=0,得n=-12.所以m-n+p=10-(-12)+(-2)=20.答案B3.已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有()A.b=a3B.b=a3+C.(b-a3)=0D.|b-a3|+=0解析若△OAB为直角三角形,则∠A=90°或∠B=90°.当∠A=90°时,有b=a3;当∠B=90°时,有=-1,得b=a3+.故(b-a3)=0,选C.答案C4.已知直线l的倾斜角为135°,直线l1经过点A(3,2),B(a,-1),且直线l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b=.解析依题意知,直线l的斜率为k=tan135°=-1,则直线l1的斜率为1,于是有=1,所以a=0.又直线l2与l1平行,所以1=-.即b=-2,所以a+b=-2.答案-25.与直线2x+3y+5=0平行,且在两坐标轴上截距之和为的直线的方程为.解析所求直线与直线2x+3y+5=0平行,则其斜率为-,可设直线方程为y=-x+b,令y=0,得x=b,由题意可得b+b=,解得b=,所以所求直线的方程为y=-x+,即2x+3y-4=0.答案2x+3y-4=06.若三条直线2x-y+4=0,x-y+5=0和2mx-3y+12=0围成直角三角形,则m=. 解析设l1:2x-y+4=0,l2:x-y+5=0,l3:2mx-3y+12=0,l1不垂直于l2,要使围成的三角形为直角三角形,则l3⊥l1或l3⊥l2.由l3⊥l1得2×m=-1,∴m=-;由l3⊥l2得1×m=-1,∴m=-.答案-或-7.已知点M(2,2),N(5,-2),点P在x轴上,分别求满足下列条件的点P的坐标.(1)∠MOP=∠OPN(O为坐标原点);(2)∠MPN是直角.解设P(x,0),(1)∵∠MOP=∠OPN,∴MO∥PN,∴k OM=k NP,又k OM==1,k NP=.∴=1,解得x=7,即点P为(7,0).(2)∵∠MPN=90°,∴MP⊥NP,∴k MP·k NP=-1.∵k MP=,k NP=,∴=-1,解得x=1或x=6.∴P为(1,0)或(6,0).8.导学号91134045如图,一个矩形花园里需要铺设两条笔直的小路,已知矩形花园长|AD|=5 m,宽|AB|=3 m,其中一条小路定为AC,另一条小路过点D,如何在BC上找到一点M,使得两条小路AC与DM互相垂直?解如图,以点B为原点,分别以BC,BA所在直线为x轴、y轴建立平面直角坐标系,单位:m.由|AD|=5m,|AB|=3m得C(5,0),D(5,3),A(0,3).设点M的坐标为(x,0),∵AC⊥DM,∴k AC·k DM=-1,即=-1,解得x=.故当|BM|=3.2m时,两条小路AC与DM互相垂直.。