动量与能量专题1要点
- 格式:doc
- 大小:138.50 KB
- 文档页数:12
动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
动量和能量专题限时训练1建议用时40分钟,实际用时________1.如图,长度x =5m 的粗糙水平面PQ 的左端固定一竖直挡板,右端Q 处与水平传送带平滑连接,传送带以一定速率v 逆时针转动,其上表面QM 间距离为L =4m ,MN 无限长,M 端与传送带平滑连接.物块A 和B 可视为质点,A 的质量m =1.5kg,B 的质量M =5.5kg.开始A 静止在P 处,B 静止在Q 处,现给A 一个向右的初速度v 0=8m/s ,A 运动一段时间后与B 发生弹性碰撞,设A 、B 与传送带和水平面PQ 、MN 间的动摩擦因数均为μ=0.15,A 与挡板的碰撞也无机械能损失.取重力加速度g =10m/s 2,求:(1)A 、B 碰撞后瞬间的速度大小;(2)若传送带的速率为v =4m/s ,试判断A 、B 能否再相遇,若能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远.解析:(1)设A 与B 碰撞前的速度为v A ,由P 到Q 过程,由动能定理得:-μmgx =12mv 2A -12mv 20①A 与B 碰撞前后动量守恒,有mv A =mv A ′+Mv B ′②由能量守恒定律得:12mv 2A =12mv A ′2+12Mv B ′2③联立①②③式得v A ′=-4m/s ,v B ′=3m/s碰后A 、B 的速度大小分别为4m/s 、3m/s(2)设A 碰撞后运动的路程为s A ,由动能定理得:-μmgs A =0-12mv A ′2④s A =163m 所以A 与挡板碰撞后再运动s A ′=s A -x =13m ⑤设B 碰撞后向右运动的距离为s B ,则-μMgs B =0-12Mv B ′2⑥解得s B =3m<L ⑦故物块B 碰后不能滑上MN ,当速度减为0后,B 将在传送带的作用下反向加速运动,B 再次到达Q 处时的速度大小为3m/s.在水平面PQ 上,B 再运动s B ′=s B =3m 停止,s B ′+s A ′<5m ,所以A 、B 不能再次相遇.最终A 、B 的距离s AB =x -s A ′-s B ′=53m.答案:(1)4m/s 3m/s (2)不能相遇53m 2.如图所示,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为μ=13,质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断裂,小球与C 碰撞后反弹速率为碰前的一半.(1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大;(3)通过计算判断C 能否从木板上掉下来.解析:(1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理mgL =12mv 20得,v 0=2gL 小球在圆周最低点时拉力最大,由牛顿第二定律得:F T -mg =m v 20R解得:F T =3mg由牛顿第三定律可知,小球对细绳的拉力:F T ′=F T即细绳能够承受的最大拉力为:F T ′=3mg (2)小球碰撞后做平抛运动:竖直位移h =12gt 2水平分位移:L =v 02t 解得:h =L(3)小球与滑块C C 组成的系统动量守恒,设C 碰后速率为v 1,依题意有mv 0=m -v 023mv 1假设木板足够长,在C 与木板相对滑动直到相对静止过程中,设两者最终共同速率为v 2,由动量守恒得:3mv 1=(3m +6m )v 2由能量守恒得:12·3mv 21=12(3m +6m )v 22+μ·3mgs 联立解得:s =L 2由s <L 知,滑块C 不会从木板上掉下来.答案:(1)3mg (2)h =L (3)不能3.光滑水平面上有一质量m 车=1.0kg 的平板小车,车上静置A 、B 两物块。
动量与能量高中物理知识点与常用结论动量与能量动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。
分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。
一、力学规律的选用原则1、如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。
2、研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间问题)或动能定理(涉及位移问题)去解决。
3、若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但须注意研究的问题是否满足守恒条件。
4、在涉及相对位移问题时,则优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量。
5、在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到一般这些过程均隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场。
二、利用动量观点和能量观点解题应注意下列问题(1)动量定理和动量守恒定律是矢量表达式,还可以写出分量表达式,而动能定理和能量守恒定律是标量式,绝无分量式。
(2)从研究对象上看动量定理既可研究单体,又可研究系统,但高中阶段一般用于单体,动能定理在高中阶段只能用于单体。
(3)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,解题时必须注意动量守恒的条件和机械能守恒的条件,在应用这两个规律时,应当确定了研究对象及运动状态变化的过程后,根据问题的已知条件和要求解未知量,选择研究的两个状态列方程求解。
(4)中学阶段可用力的观点解决的问题,若用动量观点或能量观点求解,一般都要比用力的观点简便,而中学阶段涉及的曲线运动(加速度不恒定)、竖直面内的圆周运动、碰撞等,就中学只是而言,不可能单纯考虑用力的观点解决,必须考虑用动量观点和能量观点解决。
机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
智慧课堂高效课堂--动量和能量之
弧形槽模型专题复习
第一章动量的概念
动量是物体运动时所具有的内在性质,它可以衡量物体的运动能力。
根据牛顿第二定律,
动量可以用质量和速度的乘积来表示,即p=mv。
这里的m表示物体的质量,v表示物体的
速度,单位是千克·米/秒。
第二章动量守恒定律
动量守恒定律是物理学中的重要定律之一,它规定了在没有外力作用的情况下,物体的动
量是守恒的。
也就是说,在相同的时间内,物体的动量总是不变的。
这个定律在很多物理
现象中都有体现,如碰撞、弹弹球等。
第三章能量的概念
能量是物体存在的能力,它是物体可以进行动力学运动的条件。
根据第一定律,能量是动
量的函数,即E=f(p)。
这里的E表示能量,单位是千焦耳;p表示动量,单位是千克·米
/秒。
第四章能量守恒定律
能量守恒定律是物理学中另一个重要的定律,它规定了在任何情况下,物体的能量都是守
恒的。
这意味着,物体的能量不会凭空消失或增加,它只会从一种形式转化为另一种形式。
能量守恒定律在许多物理现象中都有体现,如热力学、光学、声学等。
第五章弧形槽模型
弧形槽模型是用来模拟物体在弧形轨道运动的过程。
这个模型可以用来研究物体在弧形轨道上的动量变化情况,以及物体的能量随时间的变化情况。
第六章弧形槽模型的应用
弧形槽模型在物理学中有广泛的应用,可以用来研究物体在自由落体运动、摆动运动等物理现象中的运动规律。
此外,弧形槽模型还可以用来解决许多实际问题,如机械设计、航天工程等。
运用动量和能量观点解题的思路动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。
试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。
试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。
冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。
能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。
应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。
因此,在用它们解题时,首先应选好研究对象和研究过程。
对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。
选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。
临界状态往往应作为研究过程的开始或结束状态。
2.要能视情况对研究过程进行恰当的理想化处理。
3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。
4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。
确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。
2.若是多个物体组成的系统,优先考虑两个守恒定律。
一.必备知识精讲1.对动量的理解(1)动量的两性①瞬时性:动量是描述物体运动状态的物理量,是针对某一时刻或位置而言的。
②相对性:动量的大小与参考系的选取有关,通常情况是指相对地面的动量。
(2)动量与动能的比拟(1)冲量的两性①时间性:冲量不仅由力决定,还由力的作用时间决定,恒力的冲量等于该力与该力的作用时间的乘积。
②矢量性:对于方向恒定的力来说,冲量的方向与力的方向一致。
(2)作用力和反作用力的冲量:一定等大、反向,但作用力和反作用力做的功之间并无必然联系。
(3)冲量与功的比拟标矢量矢量标量意义①表示力对时间的累积②是动量变化的量度①表示力对空间的累积②是能量变化的量度联系①都是过程量,都与力的作用过程相互联系②冲量不为零时,功可能为零;功不为零时,冲量一定不为零3.冲量的四种计算方法公式法利用定义式I=FΔt计算冲量,此方法仅适用于恒力的冲量,无需考虑物体的运动状态图像法利用F-t图像计算,F-t图像与时间轴围成的面积表示冲量,此法既可以计算恒力的冲量,也可以计算变力的冲量动量定理法如果物体受到大小或方向变化的力的作用,那么不能直接用I=FΔt 求变力的冲量,可以求出该力作用下物体动量的变化量,由I=Δp求变力的冲量平均力法如果力随时间是均匀变化的,那么F=12(F0+F t),该变力的冲量为I =12(F0+F t)t二.典型例题精讲题型1 对动量和冲量的定性分析例1如图为跳水运发动从起跳到落水过程的示意图,运发动从最高点到入水前的运动过程记为Ⅰ,运发动入水后到最低点的运动过程记为Ⅱ,忽略空气阻力,那么运发动( )A.过程Ⅰ的动量改变量等于零B.过程Ⅱ的动量改变量等于零C.过程Ⅰ的动量改变量等于重力的冲量D.过程Ⅱ的动量改变量等于重力的冲量答案 C解析过程Ⅰ中动量改变量等于重力的冲量,即为mgt,不为零,故A错误,C正确;运发动入水前的速度不为零,末速度为零,过程Ⅱ的动量改变量不等于零,故B错误;过程Ⅱ的动量改变量等于合外力的冲量,不等于重力的冲量,故D错误.题型2 对动量和冲量的定量计算例2(多项选择)一质量为m的运发动托着质量为M的重物从下蹲状态(图甲)缓慢运动到站立状态(图乙),该过程重物和人的肩部相对位置不变,运发动保持乙状态站立Δt时间后再将重物缓慢向上举,至双臂伸直(图丙).甲到乙、乙到丙过程重物上升高度分别为h1、h2,经历的时间分别为t1、t2,重力加速度为g,那么( )A.地面对运发动的冲量为(M+m)g(t1+t2+Δt),地面对运发动做的功为0B.地面对运发动的冲量为(M+m)g(t1+t2),地面对运发动做的功为(M+m)g(h1+h2)C.运发动对重物的冲量为Mg(t1+t2+Δt),运发动对重物做的功为Mg(h1+h2)D.运发动对重物的冲量为Mg(t1+t2),运发动对重物做的功为0答案AC解析因运发动将重物缓慢上举,那么可认为是平衡状态,地面对运发动的支持力为:(M+m)g,整个过程的时间为(t1+t2+Δt),根据I=Ft可知地面对运发动的冲量为(M+m)g(t1+t2+Δt);因地面对运发动的支持力没有位移,可知地面对运发动做的功为0,选项A正确,B错误;运发动对重物的作用力为Mg,作用时间为(t1+t2+Δt),根据I=Ft可知运发动对重物的冲量为Mg(t1+t2+Δt),重物的位移为(h1+h2),根据W=Fl cos α可知运发动对重物做的功为Mg(h1+h2),选项C正确,D错误.题型3 动量、冲量与图像结合例3某物体的vt图像如下图,以下说法正确的选项是( )A .0~t 1和t 2~t 3时间内,合力做功和冲量都相同B .t 1~t 2和t 3~t 4时间内,合力做功和冲量都相同C .0~t 2和t 2~t 4时间内,合力做功和冲量都相同D .0~t 1和t 3~t 4时间内,合力做功和冲量都相同 答案 C解析 0~t 1时间内物体动能的变化量为12mv 20,动量的变化量为mv 0;t 2~t 3时间内物体动能的变化量为12mv 20,动量的变化量为-mv 0,根据动能定理可知这两段时间内合力做的功相等;根据动量定理得知:合力的冲量不同,故A 错误。
动量及能量经典题剖析一.动量问题1.斜面问题【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。
质量为m的小球以速度v1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H和物块的最终速度v。
2.子弹打木块类问题【例2】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3.反冲问题在某些情况下,原来系统物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问题统称为反冲。
【例3】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?【例4】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。
火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例5】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其块质量300g 仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
5.某一方向上的动量守恒【例6】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例7】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
动量与能量守恒高三知识点动量与能量守恒是高中物理中的重要知识点,它们是描述物体运动的基本原理。
本文将从理论原理、实例分析以及应用等方面介绍动量与能量守恒的概念和作用。
一、动量与能量守恒的理论原理动量守恒定律是指在没有外力或者合外力为零的情况下,物体或系统的总动量保持不变。
动量的定义是物体的质量与速度的乘积,用数学公式表示为p=mv,其中p为动量,m为质量,v为速度。
根据动量守恒定律,如果物体在一个封闭系统内发生碰撞,那么碰撞前后物体的总动量将保持不变。
能量守恒定律是指在一个封闭系统中,能量总量保持不变。
能量可以分为动能和势能两种形式。
动能是指物体由于运动而具有的能量,计算公式为KE=1/2mv²,其中KE为动能,m为质量,v 为速度。
势能是指物体由于位置或状态而具有的能量,常见的包括重力势能、弹性势能等。
根据能量守恒定律,封闭系统内的能量总和在任何时刻都保持不变。
二、动量守恒实例分析1. 弹性碰撞在弹性碰撞中,碰撞前后物体的总动量保持不变。
例如,两个相互碰撞的小球A和小球B,它们之间不存在能量损失,碰撞前后它们的总动量保持不变。
假设小球A的质量为m1,速度为v1,小球B的质量为m2,速度为v2,根据动量守恒定律可得m1v1 +m2v2 = m1v1' + m2v2',其中v1'和v2'分别为碰撞后两个小球的速度。
2. 爆炸在爆炸过程中,物体内部发生剧烈的分解,将储存的内能转化为动能,物体的总动量保持不变。
例如,火箭发射时,燃料燃烧释放出巨大能量,将火箭推向空中。
此时,火箭与燃料的总动量保持不变,燃料的推力将火箭向上推进。
三、动量与能量守恒的应用1. 轨道运动在行星绕太阳的运动中,动量守恒保证了行星的运动轨道的稳定性。
太阳和行星的总动量始终保持不变,行星的速度和轨道半径相应调整以维持动量守恒。
同样地,卫星绕地球的运动也遵循动量守恒原理。
2. 交通事故分析在交通事故中,动量守恒和能量守恒的原理可以用来分析事故发生的原因和结果。
专题 动量和能量的综合应用考点1、碰撞作用 碰撞类问题应注意: ⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,即1212k k k k E '+E 'E +E ≤; ⑶速度要符合物理情景:碰前两物体同向运动,即v v 后前>,碰撞后, ≥v v 后前;例1、A 、B 两球在光滑水平面上沿同一直线运动,A 球动量为p A =5kg·m/s ,B 球动量为p B =7kg·m/s ,当A 球追上B 球时发生碰撞,则碰后A 、B 两球的动量可能是:( ) A .p A =6kg·m/s 、p B =6kg·m/s B .p A =3kg·m/s 、p B =9kg·m/s C .p A =-2kg·m/s 、p B =14kg·m/s D .p A =5kg·m/s 、p B =17kg·m/s考点2、爆炸和反冲⑴爆炸时内力远大于外力,系统动量守恒; ⑵由于有其它形式的能转化为动能(机械能),系统动能增大。
例2.2007年10月24日18时05分,中国首枚绕月探测卫星“嫦娥一号”顺利升空,24日18时29分,搭载 “嫦娥一号”的“长征三号甲”火箭成功实施“星箭分离”。
此次采用了爆炸方式分离星箭,爆炸产生的推力将置于箭首的卫星送入预定轨道运行。
为了保证在爆炸时卫星不致于由于受到过大冲击力而损坏,分离前关闭火箭发动机,用“星箭分离冲击传感器”测量和控制爆炸作用力,使星箭分离后瞬间火箭仍沿原方向飞行,关于星箭分离,下列说法正确的是( )A .由于爆炸,系统总动能增大,总动量增大B .卫星的动量增大,火箭的动量减小,系统动量守恒C .星箭分离后火箭速度越大,系统的总动能越大D .若爆炸作用力持续的时间一定,则星箭分离后火箭速度越小,卫星受到的冲击力越大考点3、两个定理的结合例3:如图所示,质量m1为4kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ=0.24,木板右端放着质量m2为1.0kg 的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12N S ∙的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能1k E 为8.0J ,小物块的动能2k E 为0.50J ,重力加速度取10m/s2,求:(1)瞬时冲量作用结束时木板的速度V0. (2)木板的长度L考点4、动量与圆周运动的结合例4..如图8所示,A、B两球质量均为m,期间有压缩的轻短弹簧处于锁定状态。
例1 如图2-1所示,单摆的质量为m、摆长为l,最大摆角为θ(θ<100),则在摆球从最高点第一次运动到平衡位置的过程中,求:(1)重力的冲量;(2)合外力的冲量?图2-1 例2 在一次抗洪抢险活动中,解放军某部动用直升飞机抢救落水人员,静止在空中的直升飞机上电动机通过悬绳将人从离飞机90m处的洪水中吊到机舱里.已知人的质量为80kg,吊绳的拉力不能超过1200N,电动机的最大输出功率为12kw,为尽快把人安全救起,操作人员采取的办法是:先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当人到达机舱时恰好达到最大速度.(g=10m/s2)求:(1)人刚到达机舱时的速度;(2)这一过程所用的时间.例3 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60kg 的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处.已知运动员与网接触的时间为1.2s.若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g=10m/s2)例4 有一宇宙飞船,以v=10km/s的速度进入分布均匀的宇宙微粒区,飞船每前进s =1km与n=1×104个微粒相碰.已知每个微粒的质量m=2×10-4g.假如微粒与飞船碰撞后附于飞船上,则要保持飞船速度不变,飞船的牵引力应增加多少?1.下列说法中正确的是 ( )A .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同B .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反C .在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反D .在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反2.质量为m 的物体以初速度v 0水平抛出,经过时间t ,下降的高度为h ,速率变为v ,在这段时间内物体动量变化量的大小为 ( )A .m (v -v 0)B .mgtC .22v v mD .gh m 23.古有“守株待兔”的寓言。
高考物理知识归纳(三) ---------------动量和能量1.力的三种效应:力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理2.动量观点:动量:p=mv=KmE 2 冲量:I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0(系统总动量变化为0)如果相互作用的系统由两个物体构成,动量守恒的具体表达式为P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP '(两物体动量变化大小相等、方向相反)实际中应用有:m 1v 1+m 2v 2='22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。
即:P+(-P)=0注意理解四性:系统性、矢量性、同时性、相对性矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。
相对性:所有速度必须是相对同一惯性参照系。
同时性:表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相互作用后同一时刻的瞬时速度。
动量和能量专题高考试题1.(2006年·全国理综Ⅰ)一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v .在此过程中,A .地面对他的冲量为mv +mg Δt ,地面对他做的功为212mv B .地面对他的冲量为mv +mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为212mv D .地面对他的冲量为mv -mg Δt ,地面对他做的功为零提示:运动员向上起跳的过程中,由动量定理可得,I mg t mv -∆=,则I m v m g t =+∆;起跳过程中,地面对运动员的作用力向上且其作用点的位移为零(阿模型化,认为地面没有发生形变),所以,地面对运动员做的功为零.2.(2006年·全国理综Ⅱ)如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等.Q 与轻质弹簧相连.设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于A .P 的初动能B .P 的初动能的1/2C .P 的初动能的1/3D .P 的初动能的1/4提示:设P 的初速度为v 0,P 、Q 通过弹簧发生碰撞,当两滑块速度相等时,弹簧压缩到最短,弹性势能最大,设此时共同速度为v ,对P 、Q (包括弹簧)组成的系统,由动量守恒定律,有02mv mv = ①由机械能守恒定律,有22Pm 01122E mv mv =-×2 ② 联立①②两式解得22Pm 00111422E mv mv ==× 3.(2006年·江苏)一质量为m 的物体放在光滑的水平面上,今以恒力F 沿水平方向推该物体,在相同的时间间隔内,下列说法正确的是A .物体的位移相等B .物体动能的变化量相等C .F 对物体做的功相等D .物体动量的变化量相等提示:物体在恒力的作用下做匀加速直线运动,在相同的时间内,其位移不相等,故力对物体做的功不相等,由动能定理可知,物体动能的变化量不相等;根据动量定理,有F t p ∆=∆,所以,物体动量的变化量相等.4.(2003年·辽宁大综合)航天飞机在一段时间内保持绕地心做匀速圆周运动,则A .它的速度大小不变,动量也不变B .它不断克服地球对它的万有引力做功C .它的速度大小不变,加速度等于零D .它的动能不变,引力势能也不变5.(2003年·上海)一个质量为0.3kg的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为A.Δv=0 B.Δv=12m/s C.W=0 D.W=10.8J 6.(2002年·广东大综合)将甲、乙两物体自地面同时上抛,甲的质量为m,初速为v,乙的质量为2m,初速为v/2.若不计空气阻力,则A.甲比乙先到最高点B.甲和乙在最高点的重力势能相等C.落回地面时,甲的动量的大小比乙的大D.落回地面时,甲的动能比乙的大7.(2002年·全国理综)在光滑水平地面上有两个弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P,则碰前A球的速度等于A B C.D.8.(2001年·全国理综)下列是一些说法:①一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反③在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反④在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反以上说法正确的是A.①②B.①③C.②③D.②④9.(1998年·全国)在光滑水平面上,动能为E0、动量的大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2.则必有A.E1<E0B.p1<p0C.E2>E0D.p2>p0 10.(1996年·全国)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是A.甲球的速度为零而乙球的速度不为零B.乙球的速度为零而甲球的速度不为零C.两球的速度均不为零D.两球的速度方向均与原方向相反,两球的动能仍相等11.(1995年·全国)一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和D.过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能12.(1992年·全国)如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A .动量守恒、机械能守恒B .动量不守恒、机械能不守恒C .动量守恒、机械能不守恒D .动量不守恒、机械能守恒13.(1991年·全国)有两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b .它们的初动能相同.若a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同的时间停下来,它们的位移分别为s a 和s b ,则A .F a >F b 且s a <s bB .F a >F b 且s a >s bC .F a <F b 且s a >s bD .F a <F b 且s a <s b 14.(1994年·全国)质量为4.0kg 的物体A 静止在水平桌面上,另一个质量为2.0kg 的物体B以5.0m/s 的水平速度与物体A 相撞,碰撞后物体B 以1.0m/s 的速度反向弹回.相撞过程中损失的机械能是_________J .【答案】6.015.(1993年·全国)如图所示,A 、B 是位于水平桌面上的两个质量相等的小木块,离墙壁的距离分别为L 和l ,与桌面之间的滑动摩擦系数分别为μA 和μB .今给A 以某一初速度,使之从桌面的右端向左运动.假定A 、B 之间,B 与墙之间的碰撞时间都很短,且碰撞中总动能无损失.若要使木块A 最后不从桌面上掉下来,则A 的初速度最大不能超过_______.16.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m 2的档板B 相连,弹簧处于原长时,B 恰位于滑道的末端O 点.A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:(1)物块A 在与挡板B 碰撞前瞬间速度v 的大小;(2)弹簧最大压缩量为d 时的弹性势能E p (设弹簧处于原长时弹性势能为零).【答案】(1)gh 2;(2)211212()m gh m m gd m m μ-++ 解析:(1)由机械能守恒定律,有21112m gh m v =解得v =gh 2 (2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有112()m v m m v '=+碰后A 、B 一起压缩弹簧,)到弹簧最大压缩量为d 时,A 、B 克服摩擦力所做的功 12()W m m gd μ=+由能量守恒定律,有212P 121()()2m m v E m m gd μ'+=++ 解得21P 1212()m E gh m m gd m m μ=-++ 17.(2006年·重庆理综)如图,半径为R 的光滑圆形轨道固定在竖直面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为14R ,碰撞中无机械能损失.重力加速度为g .试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度.【答案】(1)3;(2)1v =,方向水平向左;2v =4.5mg ,方向竖直向下.(3)见解析解析:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A 、B 两球应同时达到最大高度处,对A 、B 两球组成的系统,由机械能守恒定律得44mgR mgR mgR β=+,解得β=3 (2)设A 、B 第一次碰撞后的速度分别为v 1、v 2,取方向水平向右为正,对A 、B 两球组成的系统,有2212112mgR mv mv β=+12mv mv β=+解得1v =,方向水平向左;2v = 设第一次碰撞刚结束时轨道对B 球的支持力为N ,方向竖直向上为正,则22v N mg m Rββ-=,B 球对轨道的压力 4.5N N mg '=-=-,方向竖直向下.(3)设A 、B 球第二次碰撞刚结束时的速度分别为V 1、V 2,取方向水平向右为正,则 1212mv mv mV mV ββ--=+22121122mgR mV mV β=+ 解得V 1=-gR 2,V 2=0.(另一组解V 1=-v 1,V 2=-v 2不合题意,舍去) 由此可得:当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同.18.(2006年·江苏)如图所示,质量均为m 的A 、B 两个弹性小球,用长为2l 的不可伸长的轻绳连接.现把A 、B 两球置于距地面高H 处(H 足够大),艰巨为l .当A 球自由下落的同时,B 球以速度v0指向A 球水平抛出间距为l .当A 球自由下落的同时,B 球以速度v 0指向A 球水平抛出.求:(1)两球从开始运动到相碰,A 球下落的高度.(2)A 、B 两球碰撞(碰撞时无机械能损失)后,各自速度的水平分量.(3)轻绳拉直过程中,B 球受到绳子拉力的冲量大小.【答案】(1)2202gl v ;(2)A 0B ,0x x v v v ''==;(3)012mv 解析:(1)设到两球相碰时A 球下落的高度为h ,由平抛运动规律得0l v t =① 212h gt = ② 联立①②得2202gl h v = ③(2)A 、B 两球碰撞过程中,由水平方向动量守恒,得0A B x x mv mv mv ''=+ ④由机械能守恒定律,得22222220B A A A B B 1111()()()2222y y x y x y m v v mv m v v m v v ''''++=+++ ⑤式中A A B B ,y y y y v v v v ''== 联立④⑤解得A0B ,0x x v v v ''== (3)轻绳拉直后,两球具有相同的水平速度,设为v B x ,,由水平方向动量守恒,得 0B 2x mv mv = 由动量定理得B 012x I mv mv == 19.(2005年·广东)如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=2.88m .质量为2m ,大小可忽略的物块C 置于A 板的左端.C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C 施加一个水平向右,大小为mg 52的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?【答案】0.3m解析:设A 、C 之间的滑动摩擦力大小f 1,A 与水平地面之间的滑动摩擦力大小为f 2 0.220.10μμ==12,,则11225F mg f mg μ=<= 且222(2)5F mg f m m g μ=>=+ 说明一开始A 和C 保持相对静止,在F 的作用下向右加速运动,有2211()(2)2F f s m m v -=+ A 、B 两木板的碰撞瞬间,内力的冲量远大于外力的冲量,由动量守恒定律得:mv 1=(m +m )v 2碰撞结束后三个物体达到共同速度的相互作用过程中,设木板向前移动的位移s 1,选三个物体构成的整体为研究对象,外力之和为零,则2mv 1+(m +m )v 2=(2m +m +m )v 3设A 、B 系统与水平地面之间的滑动摩擦力大小为f 3,则A 、B 系统,由动能定理: 2211313232112222(2)f s f s mv mv f m m m gm -=-=++对C 物体,由动能定理得221113111(2)(2)2222F l s f l s mv mv +-+=- 联立以上各式,再代入数据可得l =0.3m .20.(2005年·全国理综Ⅰ)如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上升一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+m 2)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g .解析:开始时,A 、B 静止,设弹簧压缩量为x 1,有kx 1=m 1g ①挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有 kx 2=m 2g ②B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为ΔE =m 3g (x 1+x 2)-m 1g (x 1+x 2) ③C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得22311311211211()()()()22m m v m v m m g x x m g x x E ++=++-+-D ④ 由③④式得2131121(2+)=(+)2m m v m g x x ⑤ 由①②⑤式得v = ⑥21.(2005年·全国理综Ⅱ)质量为M 的小物块A 静止在离地面高h 的水平桌面的边缘,质量为m 的小物块B 沿桌面向A 运动并以速度v 0与之发生正碰(碰撞时间极短).碰后A 离开桌面,其落地点离出发点的水平距离为L .碰后B 反向运动.求B 后退的距离.已知B 与桌面间的动摩擦因数为μ.重力加速度为g .【答案】201)2v g m解析:设t 为A 从离开桌面至落地经历的时间,V 表示刚碰后A 的速度,有212h gt =① L =Vt② 设v 为刚碰后B 的速度的大小,由动量守恒,mv 0=MV -mv③ 设B 后退的距离为l ,由功能关系,212mgl mv μ= ④由以上各式得201)2l v g m = ⑤22.(2005年·全国理综Ⅲ)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比122m m =,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R解析:设分离前男女演员在秋千最低点B 的速度为v B ,由机械能守恒定律,得212121()()2B m m gR m m v +=+ 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒:(m 1+m 2)v 0=m 1v 1-m 2v 2分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t,根据题给条件,从运动学规律,21142R gt s v t ==根据题给条件,女演员刚好回到A 点,由机械能守恒定律得222212m gR m v =已知m 1=2m 2,由以上各式可得s=8R23.(2005年·天津理综)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E kA 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L . 【答案】0.50m解析:(1)设水平向右为正方向,有I =m A v 0 ①代入数据得v 0=3.0m/s ②(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 滑行的时间为t ,B 离开A 时A 和B 的速度分别为v A 和v B ,有-(F BA +F CA )t =m A v A -m A v A ③F AB t =m B v B ④其中F AB =F BA F CA =μ(m A +m B )g ⑤设A 、B 相对于C 的位移大小分别为s A 和s B , 有22011()22BA CA A A A A F F s m v m v -+=- ⑥ F AB s B =E kB ⑦动量与动能之间的关系为A A m v = ⑧B B m v =⑨ 木板A 的长度L =s A -s B ⑩代入数据解得L =0.50m24.(2005年·北京春招)下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍. (1)设卡车与故障车相撞前的速度为v 1,两车相撞后的速度变为v 2,求12v v ; (2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.【答案】(1)54;(2)32L 解析:(1)由碰撞过程动量守恒 M v 1=(M +m )v 2 ①则1254v v = (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式得v 02-v 12=2μgL由③式得v 22 =2μgL 又因208,325l L v gL μ==得 如果卡车滑到故障车前就停止,由20102Mv MgL μ'-= ④ 故32L L '= 这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生. 25.(2004年·广东)如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态,另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连,已知最后A 恰好返回出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L 2,求A 从P 出发时的初速度v 0.解析:令A 、B 质量均为m ,A 刚接触B 时速度为v 1(碰前),由动能关系,有220111122mv mv mgl μ-= A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2,有mv 1=mv 2碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这过程中,弹簧势能始末两态都为零.2223211(2)(2)(2)(2)22m v m v m g l μ-= 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有23112mv mgl μ=由以上各式解得0v =26.(2004年·全国理综Ⅱ)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物.在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动.现把柴油打桩机和打桩过程简化如下:柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处如图(a )从静止开始沿竖直轨道自由落下,打在质量为M (包括桩帽)的钢筋混凝土桩子上.同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短.随后,桩在泥土中向下移动一距离l .已知锤反跳后到达最高点时,锤与已停下的桩帽之间的距离也为h如图(b ).已知m 1=1.0×103kg ,M =2.0×103kg ,h =2.0m ,l =0.2m ,重力加速度g=10m/s 2,混合物的质量不计.设桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小.【答案】2.1×105N解析:考察锤m 和桩M 组成的系统,在碰撞过程中动量守恒(因碰撞时间极短,内力远大于外力),选取竖直向下为正方向,则mv 1=Mv -mv 2其中12v v 碰撞后,桩M 以初速v 向下运动,直到下移距离l 时速度减为零,此过程中,根据动能定理,有2102Mgl Fl Mv -=-由上各式解得()[2mg m F mg h l l M=+-+ 代入数据解得F =2.1×105N27.(2004年·全国理综Ⅲ)如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a端而不脱离木板.求碰撞过程中损失的机械能.【答案】2.4J解析:设木块和物块最后共同的速度为v ,由动量守恒定律得v M m mv )(0+= ①设全过程损失的机械能为E ,则220)(2121v M m mv E +-= ②用s 1表示从物块开始运动到碰撞前瞬间木板的位移,W 1表示在这段时间内摩擦力对木板所做的功.用W 2表示同样时间内摩擦力对物块所做的功.用s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间内摩擦力对木板所做的功.用W 4表示同样时间内摩擦力对物块所做的功.用W 表示在全过程中摩擦力做的总功,则W 1=1mgs μ ③W 2=)(1s s mg +-μ ④W 3=2mgs μ- ⑤ (a ) (b )W 4=)(2s s mg -μ ⑥W =W 1+W 2+W 3+W 4 ⑦用E 1表示在碰撞过程中损失的机械能,则 E 1=E -W⑧ 由①~⑧式解得mgs v M m mM E μ221201-+= ⑨代入数据得E 1=2.4J ⑩28.(2004年·全国理综Ⅳ)如图所示,在一光滑的水平面上有两块相同的木板B 和C .重物A (视为质点)位于B 的右端,A 、B 、C 的质量相等.现A 和B 以同一速度滑向静止的C 、B 与C 发生正碰.碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力.已知A 滑到C 的右端而未掉下.试问:从B 、C 发生正碰到A刚移到C 右端期间,C 所走过的距离是C 板长度的多少倍. 【答案】73解析:设A 、B 、C 的质量均为m .碰撞前,A 与B 的共同速度为v 0,碰撞后B 与C 的共同速度为v 1.对B 、C ,由动量守恒定律得mv 0=2mv 1 ①设A 滑至C 的右端时,三者的共同速度为v 2.对A 、B 、C ,由动量守恒定律得2mv 0=3mv 2 ②设A 与C 的动摩擦因数为μ,从发生碰撞到A 移至C 的右端时C 所走过的距离为s ,对B 、C 由功能关系2122)2(21)2(21v m v m mgs -=μ ③ 设C 的长度为l ,对A ,由功能关系 22202121)(mv mv l s mg -=+μ④ 由以上各式解得73s l = ⑤ 29.(2004年·天津)质量m =1.5kg 的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t =2.0s 停在B 点,已知A 、B 两点间的距离s =5.0m ,物块与水平面间的动摩擦因数μ=0.20,求恒力F 多大.(g =10m/s 2).【答案】15N解析:设撤去力F 前物块的位移为s 1,撤去力F 时物块速度为v .物块受到的滑动摩擦力F 1=μmg撤去力F 后,由动量定理得-F 1t =-mv由运动学公式得s -s 1=vt /2全过程应用动能定理得Fs 1-F 1s =0 由以上各式得222mgsF s gt μμ=-代入数据得F =15N30.(2003年·江苏)如图(a )所示,为一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 沿水平方向以速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动.在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 变化关系如图(b )所示,已知子弹射入的时间极短,且图(b )中t =0为A 、B 开始以相同的速度运动的时刻.根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A 的质量)及A 、B 一起运动过程中的守恒量,你能求得哪些定量的结果?【答案】06m g F m m -=;g F v m l m22020536=;22003m m v E g F = 解析:由图2可直接看出,A 、B 一起做周期性运动,运动的周期T =2t 0 ①令m 表示A 的质量,l 表示绳长.1v 表示B 陷入A 内时即0=t 时A 、B 的速度(即圆周运动最低点的速度),2v 表示运动到最高点时的速度,F 1表示运动到最低点时绳的拉力,F 2表示运动到最高点时绳的拉力,根据动量守恒定律,得1000)(v m m v m += ② 在最低点和最高点处应用牛顿定律可得tv m m g m m F 21001)()(+=+- ③ tv m m g m m F 22002)()(+=++ ④根据机械能守恒定律可得 2202100)(21)(21)(2v m m v m m g m m l +-+=+ ⑤ 由图2可知 02=F ⑥ m F F =1⑦ 由以上各式可解得,反映系统性质的物理量是06m g F m m -= ⑧ g F v m l m 22020536= ⑨A 、B 一起运动过程中的守恒量是机械能E ,若以最低点为势能的零点,则2011()2E m m v =+ ⑩ 由②⑧⑩式解得22003mm v E g F =31.(2003年·江苏)(1)如图(a ),在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各联结一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度μ0,求弹簧第一次恢复到自然长度时,每个小球的速度.(2)如图(b ),将N 个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E 0.其余各振子间都有一定的距离,现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度.【答案】(1)021,0u u u ==;(2)014E 解析:(1)设每个小球质量为m ,以1u 、2u 分别表示弹簧恢复到自然长度时左右两端小球的速度.由动量守恒和能量守恒定律有021mu mu mu =+(以向右为速度正方向)202221212121mu mu mu =+,解得021201,00,u u u u u u ====或 由于振子从初始状态到弹簧恢复到自然长度的过程中,弹簧一直是压缩状态,弹性力使左端小球持续减速,使右端小球持续加速,因此应该取解:021,0u u u ==(2)以v 1、v 1’分别表示振子1解除锁定后弹簧恢复到自然长度时左右两小球的速度,规定向右为速度的正方向,由动量守恒和能量守恒定律,mv 1+mv 1’=0021212121E v m mv ='+,解得1111v v v v ''=== 在这一过程中,弹簧一直是压缩状态,弹性力使左端小球向左加速,右端小球向右加速,故应取解:mE v m E v 0101,='-= 振子1与振子2碰撞后,由于交换速度,振子1右端小球速度变为0,左端小球速度仍为1v ,此后两小球都向左运动,当它们向左的速度相同时,弹簧被拉伸至最长,弹性势能最大,设此速度为10v ,根据动量守恒定律,有1102mv mv =用E 1表示最大弹性势能,由能量守恒有 211210210212121mv E mv mv =++解得0141E E 32.(2003年·全国理综)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切.现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h ,稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L ,每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动).已知在一段相当长的时间T 内,共运送小货箱的数目为N .这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求电动机的平均输出功率P . 【答案】T Nm [222TL N +gh ] 解析:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有s =1/2at 2 ①v 0=at ②在这段时间内,传送带运动的路程为s 0=v 0t ③由以上可得s 0=2s ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为A =fs =1/2mv 02 ⑤传送带克服小箱对它的摩擦力做功A 0=fs 0=2·1/2mv 02 ⑥两者之差就是克服摩擦力做功发出的热量Q =1/2mv 02 ⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等.T 时间内,电动机输出的功为W =P T ⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即W =1/2Nmv 02+Nmgh +NQ ⑨已知相邻两小箱的距离为L ,所以v 0T =NL ⑩联立⑦⑧⑨⑩解得P =T Nm [222TL N +gh ] 33.(2003年·春招理综)有一炮竖直向上发射炮弹,炮弹的质量为M =6.0kg (内含炸药的质量可以忽略不计),射出的初v 0=60m/s .当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m =4.0kg .现要求这一片不能落到以发射点为圆心、以R。
动量与能量专题1藁城市第九中学程志亮1.在光滑水平面上,两球以相等速率相向而行,并发生碰撞,下列现象可能的是:A.若两球质量相同,碰后以某一相等速率互相分开B.若两球质量相同,碰后以某一相等速率同向而行C.若两球质量不同,碰后以某一相等的速率互相分开D.若两球质量不同,碰后以某一相等的速率同向而行分析与解答:在光滑水平面上两球相碰,相碰过程两球组成系统动量守恒,此题仅就确定两球质量关系的前提下,讨论两球相碰后速率的可能性,所以判断的依据是这种碰撞是否违背动量守恒定律.A、B两选项中,两球质量相同,则根据题意两球组成的系统总动量应始终为零,选项A 满足这一点,而选项B给出的情景是两球碰撞后总动量不为零了,所以是错误的.在两球质量不等时,球以相等速率相向而行,则系统总动量不为零,其方向与质量大的相同,这样,碰撞后若以某一相等速率分开,则总动量方向发生改变不满足动量守恒定律,故选项C错误.选项D是可能发生的.此情况下,两球发生了完全非弹性碰撞,且碰撞后运动方向与质量大的球原来运动方向一致.2、.半径相等的两个小球甲和乙,在光滑水平面沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是:A.甲球的速度为零而乙球的速度不为零B.乙球的速度为零而甲球的速度不为零C.两球的速度均不为零D.两球的速度方向均与原方向相反,两球的动能仍相等分析与解答:两球组成的系统所受合外力为零,故在碰撞前后及碰撞的整个过程中动量守恒,由于碰撞前两球动能相等,故可将其动量写成,并由此式得到由于甲球的质量大于乙球的质量,可知甲的动量大于乙的动量,即同一直线上相向而行时,总动量方向为初始状态甲的动量方向.选项是正确的.甲、乙两球碰撞后,甲速为零、则乙一定是反向运动,且与甲原来运动方向相同.选项不可能发生.因为这种情景不外乎两种:一是乙停下来,甲反向弹回,它违背了总动量方向与甲初动量方向一致的动量守恒定律.二是乙停下来,甲动量方向不变,则甲要么是越过乙运动,要么是还要与乙再次碰撞,这是不符合事实的.选项可能发生.这种情况下甲、乙两球运动方向一定相同,且与甲原运动方向一致.两球的速度可能相同,即为完全非弹性碰撞,也可能不相同.选项不可能发生.因为碰撞后两球动能仍相等,由可知碰撞后仍是甲的动量大于乙的动量,但两球速度方向与原方向相反,意味着碰撞后总动量方向反向,显然这是违背动量守恒定恒的,所以是不可能发生的.由此题可见,在分析相互作用物体作用后可能出现的状态时,要从两方面入手讨论:一是要看是否遵守动量守恒定律和能量守恒定律;二是物理图景是否合理.比如这题在一个光滑水平面上,甲、乙只能碰撞一次,不可能发生第二次碰撞.3.如图47所示,斜面体的质量为,斜面的倾角为,放在光滑的水平面上处于静止.斜面最下端与水平面之间圆弧衔接,质量为的小物块,以速度冲上斜面体,若斜面足够长,物块与斜面的动摩擦因数为,且.则小物块冲上斜面的过程中A、斜面体与物块的总动量守恒B、斜面体与物块的水平方向总动量守恒C、斜面体与物块最终的速度为D、斜面体与物块最终的速度小于图47分析与解答:物块冲上斜面过程中,物块与斜面体组成系统所受外力有竖直方向的重力和地面支持力,由于物块冲上斜面体的过程其加速度有竖直向下的分量可知地面对斜面体的支持力小于两者重力之和,即系统所受合外力不为零,动量不守恒,故选项错误.但由于地面光滑,物块冲上斜面体的过程,系统所受水平方向合外力为零,所以水平方向动量守恒,选项正确.题设条件,意味着物块在斜面体上与斜面体能有共同速度,物块相对斜面体不能下滑.由于斜面体与水平面衔接处圆滑相接,所以物块刚冲上斜面体时速度为,其沿水平方向动量为,根据水平方向动量守恒有:,其中为物块和斜面体的最终共同速度.由此可见选项C错误、D正确.4、向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b两块.若质量较大的a块的速度方向仍沿原来的方向则[ ]A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a,b一定同时到达地面D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等【正确解答】物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(mA+mBv = mAvA+mBvB当vA与原来速度v同向时,vB可能与vA反向,也可能与vA同向,第二种情况是由于vA 的大小没有确定,题目只讲的质量较大,但若vA很小,则mAvA还可能小于原动量(mA+mBv。
这时,vB的方向会与vA方向一致,即与原来方向相同所以A不对。
a,b两块在水平飞行的同时,竖直方向做自由落体运动即做平抛运动,落地时间由决定。
因为h相等,所以落地时间一定相等,所以选项C是正确的。
由于水平飞行距离x = v·t,a、b两块炸裂后的速度vA、vB不一定相等,而落地时间t又相等,所以水平飞行距离无法比较大小,所以B不对。
根据牛顿第三定律,a,b所受爆炸力FA=-FB,力的作用时间相等,所以冲量I=F·t的大小一定相等。
所以D是正确的。
此题的正确答案是:C,D。
5、如图5-7所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。
今让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是: [ ]A.小球在半圆槽内运动的全过程中,只有重力对它做功B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒C.小球自半圆槽的最低点B向C点运动的过程中,小球与半圆槽在水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动。
【正确解答】本题的受力分析应与左侧没有物块挡住以及半圆槽固定在水平面上的情况区分开来。
(图5-8)从A→B的过程中,半圆槽对球的支持力N沿半径方向指向圆心,而小球对半圆槽的压力N′方向相反指向左下方,因为有物块挡住,所以半圆槽不会向左运动,情形将与半圆槽固定时相同。
但从B→C的过程中,小球对半圆槽的压力N′方向向右下方,所以半圆槽要向右运动,因而小球参与了两个运动:一个是沿半圆槽的圆运动,另一个与半圆槽一起向右运动,小球所受支持力N与速度方向并不垂直,所以支持力会做功。
所以A不对。
又因为有物块挡住,在小球运动的全过程,水平方向动量也不守恒,即B也不对。
当小球运动到C点时,它的两个分运动的速度方向如图5-9,并不是竖直向上,所以此后小球做斜上抛运动,即D也不对。
正确答案是:小球在半圆槽内自B→C运动过程中,虽然开始时半圆槽与其左侧物块接触,但已不挤压,同时水平而光滑,因而系统在水平方向不受任何外力作用,故在此过程中,系统在水平方向动量守恒,所以正确答案应选C。
6.图5-12,质量为m的人立于平板车上,人与车的总质量为M,人与车以速度v1在光滑水平面上向东运动。
当此人相对于车以速度v2竖直跳起时,车的速度变为: (【正确解答】人和车这个系统,在水平方向上合外力等于零,系统在水平方向上动量守恒。
设车的速度V1的方向为正方向,选地面为参照系。
初态车和人的总动量为Mv1,末态车的动量为(M-mv′l(因为人在水平方向上没有受到冲量,其水平动量保持不变。
人在水平方向上对地的动量仍为mv1,则有Mv1=(M-mv′1+mv1(M-mv1=(M-mv′1所以v′=v1正确答案应为D。
7、两个质量相同的小车位于同一水平光滑轨道上,A车上站着一个人,两车都静止,如图所示.当这个人自A车跳到B车上又立即跳回A车并在A车上站稳时,下面说法中正确的是 [ ]A.两车又都恢复到静止状态B.两车都在运动,它们的速率相等,方向相反C.两车都在运动,A车的速率大于B车的速率D.两车都在运动,A车的速率小于B车的速率解答:当人跳离A车时,人和A车系统水平动量守恒,人和车B结合系统水平动量守恒;当人又跳回A车时,人和B车系统动量守恒,人和A车系统水平动量守恒。
所以可以将全过程(A车、B车和人)作为研究的过程,三物体作为系统,水平动量守恒:,由此可知答案D是正确的。
8、一辆车在光滑水平地面上匀速滑行,车上以相对地面的速度v向行驶正前方抛出一质量为m的物体,结果车速减为原来的3/4,接着又以同样的对地速度v向前再抛出一质量为m的物体,此时车速减为最初速度的()A. 不到一半B. 一半C. 超过一半D. 无法确定解析:如下图所示,水平方向动量守恒第一次抛-m后:∴第二次抛m后:答案:A。
9、质量为2kg的小车 2m/s的速度沿光滑的水平面向右运动,若将质量为2kg砂袋以3m/s的速度迎面扔上小车,则砂袋与小车一起运动的速度大小和方向是()A.2.6m/s,向右 B.2.6m/s,向左C.0.5m/s,向左 D.0.8m/s,向右答案为 C10、在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动。
假定两板与冰面间的动摩擦因数相同。
已知甲在冰上滑行的距离比乙远,这是由于()A.在推的过程中,甲推乙的力小于乙推甲的力B.在推的过程中,甲推乙的时间小于乙推甲的时间C.在刚分开时,甲的初速度大于乙的初速度D.在分开后,甲的加速度大小小于乙的加速度大小答案为 C提示:S甲>S乙.所以V甲>V乙.11、如图,两个大小相等、方向相反且作用在同一直线上的力F1、F2,分别作用于静止在光滑水平地面上的物体A和B上,经大小相同的位移之后撤去力F1、F2,以后两物体碰撞粘合在一起,若A的质量较大,以下说法正确的是()A.碰撞后两物体皆静止B.碰撞后两物体运动方向与A原运动方向一致C.碰撞后两物体运动方向与B原运动方向一致D.以上三种情况都有可能发生答案为 B提示:经过相同位移所经历时间.因mA>mB ,所以IA>IB.12、A、B两船质量均为M,都静止在平静的湖面上,现A船中质量为的人,以对地的水平速率v从A船跳到B船,再从B船跳到A船……经过n次跳跃,人停在B船上,不计水的阻力,则()A.A、B(包括人)两船速度大小之比为2:3B.A、B(包括人)两船速度大小之比为3:2C.A、B(包括人)两船动量大小之比为2:3D.A、B(包括人)两船动量大小之比为1:1答案为 BD提示:两船(包括人)的总动量为零,人停在B船上时,A船和B船(含人)动量大小相等。
13、如图所示,两只小球在光滑水平面上沿同一直线运动。
已知m1=2kg,m2=4kg,m1以2m/s的速度向右运动,m2以8m/s的速度向左运动。
两球相碰后,m1以10m/s的速度向左运动,由此可得()A.相碰后m2的速度大小为2m/s,方向向左B.相碰后m2的速度大小为2m/s,方向向右C.在相碰过程中,m2的动量改变大小是24kg·m/s,方向向右D.在相碰过程中,m1所受冲量大小是24N·s,方向向左答案为 ACD提示:由动量守恒定律分析。