初三数学一轮复习1.1实数部分2015,2016真题
- 格式:docx
- 大小:117.30 KB
- 文档页数:4
实数考点1 实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 例1 比较3-2与2-1的大小.例2 在-6,0,3,8这四个数中,最小的数是( )A.-6B.0C.3D.8考点2 无理数常见的无理数类型(1) 一般的无限不循环小数,如:1.41421356¨···(2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。
(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。
如:35,3注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).例3 下列是无理数的是( )A.-5/2B.πC. 0D.7.131412例4在实数中-23,03.14) A .1个 B .2个 C .3个 D .4个考点3 实数有关的概念实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数例5若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1) 例6实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =例7 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A.5-2 B. 2-5 C. 5-3 D.3-5例8已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为 考点4 平方根、算术平方根、立方根与二次根式若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是3a 。
2015年中考数学复习资料第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; …等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
中考数学一轮复习第六章 实数复习题及答案一、选择题1.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则( )A .132B .146C .161D .6662 ) A .12 B .14 C .18 D .12±3.a ,小数部分为b ,则a-b 的值为()A .6-B 6C .8D 84.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2;(4是7的平方根.A .1B .2C .3D .4 5.下列各式中,正确的是( )A ±2B 2=C 2=-D 4=-6.,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定7.若一个数的平方根与它的立方根完全相同.则这个数是() A .1 B .1- C .0 D .10±,8.下列说法:①±3都是27的立方根;②116的算术平方根是±142的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( )A .1个B .2个C .3个D .4个9.估计2+的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间10.和 )A B C + D .-二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 13.64的立方根是___________.14.一个正数的平方根是21x -和2x -,则x 的值为_______.15.a※b 是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____.16.2(2)-的平方根是 _______ ;38a 的立方根是 __________.17.写出一个大于3且小于4的无理数:___________.18.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.19.若x <0323x x ____________.20.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=. ①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.22.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)23.对于实数a,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.24.观察下列各式的计算结果2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果: 211-6= × ; 211-10= × ; (2)用你发现的规律计算:22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果) 25.你能找出规律吗?(1=,= ;=,= .“<”).(2)请按找到的规律计算:;②231935⨯. (3)已知:a =2,b =10,则40= (可以用含a ,b 的式子表示).26.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出12336中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故12336=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选:B.点睛本题考查了估算无理数的大小.2.A【分析】【详解】1,41=.2故选:A.【点睛】此题主要考查了立方根的性质、算术平方根的性质和应用,要熟练掌握,解答此题的关键.3.A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】91516<<,<<,<<34∴==,a b3,3)∴-=-=,336a b故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.4.C解析:C【解析】=-,故(1)对;4根据算术平方根的性质,可知49的算术平方根是7,故(2)错;根据立方根的意义,可知23)对;是7的平方根.故(4)对;故选C.解析:D【分析】根据平方根及立方根的定义依次计算各项后即可解答.【详解】选项A=2,选项A错误;选项B2=±,选项B错误;选项C=,选项C错误;选项D4=-,选项D正确.故选D.【点睛】本题考查了平方根及立方根的定义,熟练运用平方根及立方根的定义是解决问题的关键.6.B解析:B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y,即x、y互为相反数,故选B.点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.7.C解析:C【详解】任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0,故选C.8.A解析:A【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.【详解】①3是27的立方根,原来的说法错误;②116的算术平方根是14,原来的说法错误;③﹣38-=2是正确的;④16=4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.【点睛】本题考查了立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.9.D解析:D【分析】+在4与5之间.先估算5在2与3之间,所以25【详解】解:∵22=4,32=9,∴2<5<3,∴2+2<2+5<3+2,+<5,则4<25故选:D.【点睛】本题考查了估算无理数的大小,正确得出5的取值范围,熟练掌握一个数的平方是关键.10.C解析:C【分析】在数轴上表示7和-6,7在右边,-6在左边,即可确定两个点之间的距离.【详解】如图,7和67在右边,6在左边,7和67-(6)76.故选:C.【点睛】本题考查了数轴,可以发现借助数轴有直观、简捷,举重若轻的优势.二、填空题【解析】解:该圆的周长为2π×2=4π,所以A′与A 的距离为4π,由于圆形是逆时针滚动,所以A′在A 的左侧,所以A′表示的数为-4π,故答案为-4π. 解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A ′与A 的距离为4π,由于圆形是逆时针滚动,所以A ′在A 的左侧,所以A ′表示的数为-4π,故答案为-4π.12.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-解析:-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-1.【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关键.15.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.16.2a【分析】根据平方根的定义及立方根的定义解答.【详解】的平方根是,的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a 的立方根是2a ,故答案为:,2a .【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根.17.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数. 18.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.19.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】 本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x <0,0x x =-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.三、解答题21.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时, 原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->- ∴综上所述最大值为53,最小值为117-. 【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.22.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.23.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.24.(1)5766⨯;9111010⨯(2)10092017(3)12n n + 【解析】试题分析:(1)根据题目中所给的规律直接写出答案;(2)根据所得的规律进行计算即可;(3)根据所得的规律进行计算即可德结论.试题解析:(1)5766⨯ , 9111010⨯; (2)原式=1324352016201822334420172017⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭() =1201822017⨯ =10092017 ;(3)12n n+. 点睛:本题是一个数字规律探究题,解决这类问题的基本方法为:通过观察,分析、归纳发现其中的规律,并应用规律解决问题.25.(1)6,6,20,20,=,=;(2)①10,②4;(3)2a b【分析】(1)0,0a b =≥≥,据此判断即可.(2=10===,4===,据此解答即可.(3)根据a =b =2a b ==,据此解答即可.【详解】解:(1236=⨯=6==;4520=⨯=20==.==故答案为:6,6,20,20,=,=;(210===;4===;(3)∵a =b =2a b ==, 故答案为:2a b .【点睛】 本题考查算数平方根,掌握求一个数算术平方根的方法为解题关键.26.(1)5;(2)5或1;(3)1+y-2x ;(4)t 1=3;t 2=53【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x 、y 的取值范围进行化简即可;(4)根据A 、B 在数轴上的移动方向和速度可分别用代数式表示出数a 和b ,再根据(2)的解题思路即可得到结果.【详解】解:(1)5(3)5(3)(3)5⊗-=--+-=;(2)依题意得:335-+=x , 化简得:3=2-x ,所以32x -=或32x -=-,解得:x =5或x =1;(3)由数轴可知:0<x <1,y <0,所以1x y x ⊗-⊗ = (1)()-+--+x x y x x=1-++--x x y x x=12+-y x(4)依题意得:数a =−1+t ,b =3−t ;因为2a b ⊗=, 所以(1)(3)32-+--+-=t t t , 化简得:241-=-t t ,解得:t =3或t =53, 所以当2a b ⊗=时,t 的值为3或53. 【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.。
中考数学一轮复习 第1讲:实数概念与运算 一、夯实基础1、绝对值是6的数是________2、|21|-的倒数是________________。
3、2的平方根是_________.4、下列四个实数中,比-1小的数是( ) A .-2 B.0 C .1 D .25、在下列实数中,无理数是( )A.2B.0C.5D.13二、能力提升6、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )A .4℃B .9℃C .-1℃D .-9℃7、定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是( )A .65B . 15C .5D .6 8、下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D )1223= 三、课外拓展9、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是________。
四、中考链接10、数轴上的点A 到原点的距离是6,则点A 表示的数为( )A. 6或6-B. 6 C . 6- D. 3或3-11、如果a与1互为相反数,则a等于().A.2 B.2- C.1 D.1-12、下列哪一选项的值介于0.2与0.3之间?()A、 4.84B、0.484C、0.0484D、0.0048413、―2×63=14、在﹣2,2,2这三个实数中,最小的是15、写出一个大于3且小于4的无理数。
参考答案一、夯实基础1、6和-62、2±3、24、A5、C二、能力提升6、C7、A8、A三、课外拓展9、a b>四、中考链接10、A11、C12、C13、-214、﹣215、解:∵π≈3.14…,∴3<π<4,故答案为:π(答案不唯一).第2讲:整式与因式分解一、夯实基础1.计算(直接写出结果)①a ·a 3=③(b 3)4=④(2ab )3=⑤3x 2y ·)223y x -(= 2.计算:2332)()(a a -+-= .3.计算:)(3)2(43222y x y x xy -⋅⋅-= .4.1821684=⋅⋅n n n ,求n = .5.若._____34,992213=-=⋅⋅++-m m y x y x y x n n m m 则二、能力提升6.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是()A .0B .5C .-5D .-5或57.若))(3(152n x x mx x ++=-+,则m 的值为()A .-5B .5C .-2D .28.若142-=y x ,1327+=x y ,则y x -等于()A .-5B .-3C .-1D .19.如果552=a ,443=b ,334=c ,那么()A .a >b >cB .b >c >aC .c >a >bD .c >b >a三、课外拓展10.①已知,2,21==mn a 求n m a a )(2⋅的值.②若的求n n n x x x 22232)(4)3(,2---=值11.若0352=-+y x ,求y x 324⋅的值.四、中考链接12.(龙口)先化简,再求值:(每小题5分,共10分)(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.(2)342)()(m m m -⋅-⋅-,其中m =2-13、(延庆)已知,求下列各式的值:(1); (2).14、(鞍山)已知:,.求:(1);(2).15、计算:;参考答案一、夯实基础1.a 4,b 4,8a 3b 3,-6x 5y 3;2.0;3.-12x 7y 9;4.2;5.4二、能力提升6.B ;7.C ;8.B ;9.B ;三、课外拓展10.①161;②56; 11.8;四、中考链接12.(1)-3x 2+18x-5,19;(2)m 9,-512;13.(1)45;(2)5714.(1)9;(2)115.第3讲:分式检测一、夯实基础1.下列式子是分式的是( )A .x 2B .x x +1C .x 2+yD .x32.如果把分式2xy x +y 中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .扩大9倍 D .不变3.当分式x -1x +2的值为0时,x 的值是( ) A .0 B .1 C .-1 D .-2 4.化简:(1)x 2-9x -3=__________. (2)aa -1+11-a=__________. 二、能力提升5.若分式2a +1有意义,则a 的取值范围是( ) A .a =0 B .a =1 C .a ≠-1 D .a ≠06.化简2x 2-1÷1x -1的结果是( ) A ..2x -1 B .2x 3-1 C .2x +1D .2(x +1) 7.化简m 2-163m -12得__________;当m =-1时,原式的值为__________. 三、课外拓展8.化简⎝ ⎛⎭⎪⎫m 2m -2+42-m ÷(m +2)的结果是( ) A .0 B .1 C .-1 D .(m +2)29.下列等式中,不成立的是( )A .x 2-y 2x -y =x -yB .x 2-2xy +y 2x -y=x -yC .xy x 2-xy =y x -yD .y x -x y =y 2-x 2xy10.已知1a -1b =12,则aba -b 的值是( )A .12 B .-12 C .2 D .-211.当x =__________时,分式x -2x +2的值为零.12.计算(2-a a—2+a a)·a a 24-的结果是( )A . 4B . -4C .2aD .-2a13.分式方程2114339x x x +=-+-的解是( )A .x=-2B .x=2C . x=±2D .无解14.把分式(0)xyx y x y +≠+中的x ,y 都扩大3倍,那么分式的值()A .扩大为原来的3倍B .缩小为原来的13C .扩大为原来的9倍D .不变四、中考链接15.(临沂)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =-1.(2)3-x 2x -4÷⎝ ⎛⎭⎪⎫5x -2-x -2,其中x =3-3.参考答案 一、夯实基础 1.B B 项分母中含有字母. 2.A 因为x 和y 都扩大3倍,则2xy 扩大9倍,x +y 扩大3倍,所以2xy x +y 扩大3倍.3.B 由题意得x -1=0且x +2≠0,解得x =1.4.(1)x +3 (2)1 (1)原式=(x +3)(x -3)x -3=x +3;(2)原式=a a -1-1a -1=a -1a -1=1. 二、能力提升5.C 因为分式有意义,则a +1≠0,所以a ≠-1.6.C 原式=2(x +1)(x -1)·(x -1)=2x +1. 7.m +43 1 原式=(m +4)(m -4)3(m -4)=m +43.当m =-1时,原式=-1+43=1. 三、课外拓展8.B 原式=m 2-4m -2·1m +2=(m +2)(m -2)m -2·1m +2=1. 9.A x 2-y 2x -y =(x +y )(x -y )x -y=x +y . 10.D 因为1a -1b =12,所以b -a ab =12,所以ab =-2(a -b ),所以ab a -b =-2(a -b )a -b=-2.11.2 由题意得x -2=0且x +2≠0,解得x =2.12. B13. B14. A四、中考链接15.解:(1)⎝⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a =a -2a -1·a (a -1)(a -2)2=a a -2.当a =-1时,原式=aa -2=-1-1-2=13.(2)3-x2x-4÷⎝⎛⎭⎪⎫5x-2-x-2=3-x2(x-2)÷⎝⎛⎭⎪⎫5x-2-x2-4x-2=3-x2(x-2)÷9-x2x-2=3-x2(x-2)·x-2(3-x)(3+x)=12x+6.∵x=3-3,∴原式=12x+6=36.第4讲:二次根式一、夯实基础1.使3x -1有意义的x 的取值范围是( )A .x >13B .x >-13C .x ≥13D .x ≥-132.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152 D .1523.下列二次根式中,与3是同类二次根式的是( ) A .18 B .27 C .23D .324.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=6 5.估计11的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 二、能力提升6.若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y 2 012的值是__________.7.有下列计算:①(m 2)3=m 6,②4a 2-4a +1=2a -1,③m 6÷m 2=m 3,④27×50÷6=15,⑤212-23+348=143,其中正确的运算有__________.(填序号)三、课外拓展8.若x +1+(y -2 012)2=0,则x y =__________. 9.当-1<x <3时,化简:x -32+x 2+2x +1=__________.10.如果代数式4x -3有意义,则x 的取值范围是________.11、比较大小:⑴3 5 2 6 ⑵11 -10 14 -1312、若最简根式m2-3 与5m+3 是同类二次根式,则m= .13、若 5 的整数部分是a,小数部分是b,则a-1b= 。
专题1 实数问题1.(2015甘肃省武威市)64的立方根是()A.4B.±4C.8D.±8考点:立方根.2.(2015甘肃省武威市)中国航空母舰“辽宁号”的满载排水量为67500吨,将数67500用科学记数法可表示为()A.0.675×105B.6.75×104C.67.5×103D.675×102【答案】B【解析】试题分析:67500=6.75×104 ,故选B.考点:科学记数法.3.(2015贵州省安顺市)|-2015|等于()1A.2015 B.-2015 C.±2015 D.2015【答案】A【解析】试题分析:由于一个负数的绝对值是它的相反数.所以:|-2015|=2015,故选:A考点:绝对值4.(2015内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A.-3℃B.15℃C.-10℃D.-1℃【答案】C【解析】试题分析:有理数的大小比较法则:0大于负数;0小于正数;正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.考点:有理数的大小比较.5.(2015黔西南州)下列各数是无理数的是( )A .4B .31-C .πD .1-考点:无理数的判定.6、(2015贵州省安顺市)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A .5×109千克B .50×109千克C .5×1010千克D .0.5×1011千克考点:科学记数法7.(2015贵州六盘水)下列说法正确的是( )A .22-=-B .0的倒数是0C .4的平方根是2D .-3的相反数是3【答案】D.【解析】试题分析:选项A 根据绝对值的代数意义可得|﹣2|=2,错误;选项B 根据倒数的定义可得0没有倒数,错误;选项C 根据平方根的定义可4的平方根为±2,错误;选项D 根据相反数的定义可得﹣3的相反数为3,正确,故答案选D.考点:平方根;相反数;绝对值;倒数.8.如图3,表示7的点在数轴上表示时,所在哪两个字母之间( )A .C 与DB .A 与BC .A 与CD .B 与C9.(2015贵州六盘水)下列运算结果正确的是( )A .7221)83(87=-⨯-B .1042.768.2-=--C .66.411.777.3-=-D .103102102101-<-10.(2015贵州六盘水)2014年10月24日,“亚洲基础设施投资银行”在北京成立,我国出资500亿美元...,这个数用科学记数法表示为 美元..【答案】5×1010.【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.50000000000用科学记数法表示时,其中a=5,n 为所有的整数数位减1,即n=10.即500亿美元=5×1010美元. 考点:科学记数法.11、(2015贵州省安顺市)91的平方根是 .【答案】13±【解析】 试题分析:∵(13±)2=91,∴91的平方根是13±. 故答案为:13± 考点:平方根 12、(2015贵州省安顺市)计算:2013)3(-·=-2011)31( .13.(2015黔西南州)42500000用科学记数法表示为 .【答案】4.25×107【解析】试题分析:科学计数法是指:a ×10n ,且1≤a <10,n 为原数的整数位数减一.考点:科学计数法.14.(2015内蒙古 呼 和 浩 特 )某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为__________元【答案】4.1×106【解析】试题分析:科学计数法是指a ×10n ,且1≤a <10,n 为原数的整数位数减一.考点:科学计数法15.(2015甘肃省武威市)(4分)计算:(π-5)0+4+(-1)2015-3tan60°. 【答案】-1【解析】试题分析:先计算0次幂,平方根,乘方,三角函数,然后按顺序进行即可.试题解析:原式=1+2-1-3×3 =2-3=-1.考点:实数的运算.16.(1) (5分)(2015内蒙古 呼 和 浩 特 )计算:63--11()3-+24 【解析】试题分析:首先根据绝对值、二次根式、负指数次幂的计算法则将各式进行计算,然后再进行实数的加减法计算;试题解析:(1)、原式=3-6-3+26=617.(2015贵州六盘水)(本小题8分)计算:201)2()3()21(30tan 323---+︒+--π.18.(2015黔西南州)(1)计算:8)21(45tan )20143(10+-︒-+--【解析】试题分析:首先根据零次幂、负指数次幂、三角函数、二次根式和绝对值的计算法则求出各式的值,然后进行实数的加减法计算;.试题解析:(1)、解:原式=1+1-2+22=2219.(1)(2015甘肃兰州)计算:21)2015(60tan 3201-+-+︒--π; 试题分析:(1)针对负整数指数幂,特殊角的三角函数值,零指数幂,绝对值、二次根式计算5个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)原式=2113321++⨯-=-1. 【答案】(1)-1;20、(2015贵州省安顺市)(本题8分) 计算: 45sin 221)14.3(2102--+--⎪⎭⎫ ⎝⎛--π。
2015—2016学年度第一学期九年级数学月考卷一、选择题(每题3分,共24分):1.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形2.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AC=8,BD=6,则菱形的边长AB 等于( )A .10B .7C . 6D .53.已知关于x 的一元二次方程x 2-kx -4=0的一个根为2,则另一根是( )A .4B .1C .2D .-24.某城市2007年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2009年底增加到363公顷。
设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .363)1(300=+xB .363)1(3002=+xC .363)21(300=+xD .300)1(3632=-x5.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球在放回去,再摸出1个球,那么这两个球上的数字之和为奇数的概率为( )A .32B .95C .94 D .31 6.如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为( )A .2∶3B .2∶5C .4∶9 D.2∶ 37.菱形的周长等于40㎝,两对角线的比为3∶4,则两对角线的长分别是( )A .2㎝,16㎝B .6㎝,8㎝C .3㎝,4㎝D .24㎝,32㎝8.将方程x 2+4x+1=0配方后,原方程变形为( )A .(x+2)2=3B .(x+4)2=3C .(x+2)2 = -3D .(x+2)二.填空题(每题3分,共21分)9.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是________cm 2.10.如图ABCD 中,E 、F 分别为BC 、AD 边上的点,要使BF=DE 需添加一个条件: .第10题 图 第11题图,11.如图,矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =_________。
2015~2016学年度第一学期阶段性测试初三数学试题卷 成绩考试时间:120分钟 试卷满分:130分一、选择题(每题3分,共30分).下列关于x 的方程中,一定是一元二次方程的是 ( )A .ax 2+bx +c =0 B .x 2-2=(x +3)2C .x 2+3x-5=0D .x 2-1=0.一元二次方程x 2+px -2=0的一个根为2,则p 的值为 ( )A .1B .2C .-1D .-2.下列说法中,不正确的是 ( ) A.直径是弦, 弦是直径 B.半圆周是弧C.圆上的点到圆心的距离都相等D.在同圆或等圆中,优弧一定比劣弧长 .用配方法解一元二次方程x 2+4x -5=0时,此方程可变形为 ( )A .(x +2)2=9B .(x -2)2=9C .(x +2)2=1D .(x -2)2=1 .一元二次方程x 2-2x -1=0的解是 ( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 2 .下列关于x 的方程有实数根的是 ( )A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=0.⊙O 的半径为R ,圆心到点A 的距离为d ,且R 、d 是方程x 2-6x+8=0的两根,则点A 与⊙O 的位置关系是 ( ) A .点A 在⊙O 内部 B .点A 在⊙O 上 C .点A 在⊙O 外部 D .点A 不在⊙O 上 .若关于x 的一元二次方程(k -1)x 2+2x -2=0有实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2︰1,如果要使彩条所占面积是图案面积的1975,则竖彩条宽度( )A .1cmB .2cmC .2cm 或19cmD .1cm 或19cm(第9题图).已知,⊙O 的半径为1,点P 与O 的距离为d ,且方程x 2―2x+d=0无实数根,则点P 在⊙O ( )A .内B .上C .外D .无法确定二、填空题(每空2分,共16分).若关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0有一个根为0,则a =______。
第一期:实数本期分四个专题复习:有理数及其运算、实数及其运算、二次根式及科学计数法与有效数字中考对这部分内容的考查一般以选择题、填空题及简单的解答题出现,大多都比较简单,但近几年出现了一些设计新颖的创新试题.由于这部分试题的概念较多,且逻辑性较强,命题者又对这部分内容常常设置一些易混、易错的题目,因此同学们在复习这部分知识时,一定要理解有关概念、运算法则及运算律等,着重训练基本运算方法与技能.例3 : 计算:22-5×51+2-.思路点拨 :本题是有理数的混合运算,除了要熟练掌握有关运算法则,还要注意运算顺序.解:原式=4-1+2 =3+2 =5. 练习:1. 如果向东走80 m 记为80 m ,那么向西走60 m 记为( ) A.-60 m B.︱-60︱m C.60 m D.601m 2. )下面的几个有理数中,最大的数是( ) A .2 B .13 C .-3 D .15- 3. 如果2()13⨯-=,则“”内应填的 数是( ) A .32B .23C .23-D .32-4. A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( ) A .3-B .3C .1D .1或3-5. 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 _______元.6. 计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.答案: 1.A 2.A 3.D 提示:1÷(32-)=-234.A 提示:-1-2=-35.96 提示:120×80%=966.解:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭463=-+1=.最新考题1. 如果向东走80 m 记为80 m ,那么向西走60 m 记为A .-60 mB .︱-60︱mC .-(-60)mD .601m 2. 实数a 在数轴上对应的点如图所示,则a ,a -,1-的大小关系是( )A .1a a -<<-B .a a a -<-<C .1a a <-<-D .1a a <-<-3. 计算:12345314,3110,3128,3182,31244,+=+=+=+=+=,归纳各计算结果中的个位数字的规律,猜测200931+的个位数字是()A. 0B. 2C. 4D. 84.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”和“15cm”分别对应数轴上的 3.6-和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <13 答案:1. A 2. C 3. C 4.C学而思教研主任韩春成老师温馨提示:1.北京中考第1题相反数、倒数、绝对值考一个,4分!2.北京中考第2题考察科学计数法,4分!3.对二次根式非负性的考察是北京中考的必考内容。
实数一.选择题(共30小题)1.(2015•大庆)a2的算术平方根一定是()A.a B.C.D.﹣a 考点:算术平方根.分析:根据算术平方根定义,即可解答.解答:解:.故选:B.点评:本题考查了对算术平方根定义的应用,能理解定义并应用定义进行计算是解此题的关键,难度不是很大.2.(2015•酒泉)64的立方根是()A.4 B.±4 C.8 D.±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.3.(2015•河北)下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数考点:立方根;相反数;倒数;无理数.分析:根据相反数、倒数、立方根,即可解答.解答:解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.点评:本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.4.(2015•新疆)下列各数中,属于无理数的是()A.B.﹣2 C.0 D.考点无理数.:分析:根据无理数的三种形式求解.解答:解:是无理数,﹣2,0,都是有理数.故选A.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.(2015•长沙)下列实数中,为无理数的是()A.0.2 B.C.D.﹣5 考点:无理数.分析:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.解答:解:∵﹣5是整数,∴﹣5是有理数;∵0.2是有限小数,∴0.2是有理数;∵,0.5是有限小数,∴是有理数;∵是无限不循环小数,∴是无理数.故选:C.点评:此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.6.(2015•泰州)下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()0考点:无理数;零指数幂.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无理数,故选:C.点评:本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.7.(2015•绥化)在实数0、π、、、﹣中,无理数的个数有()A.1个B. 2个C. 3个D. 4个考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:π,是无理数,故选:B.点评:本题考查了无理数,无理数是无限不循环小数.8.(2015•福州)a的相反数是()A.B.C.﹣a D.考点:实数的性质.分析:根据相反数的概念解答即可.解答:解:a的相反数是﹣a.故选:C.点评:本题考查了相反数的意义,只有符号不同的两个数互为相反数,0的相反数是0.一个数的相反数就是在这个数前面添上一个“﹣”号.9.(2015•成都)实数a,b在数轴上对应的点的位置如图所示,计算﹣的结果为()A.B.a﹣b C.b﹣a D.﹣a﹣b 考点:实数与数轴;绝对值.分析:根据绝对值的意义:非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数,即可解答.解答:解:由数轴可得:a<0<b,>,∴a﹣b<0,∴﹣﹣(a﹣b)﹣a,故选:C.点评:此题主要考查了实数与数轴的之间的对应关系及绝对值的化简,应特别注意:根据点在数轴上的位置来正确判断出代数式的值的符号.10.(2015•金华)如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D考点:实数与数轴;估算无理数的大小.分析:先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.解答:解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.11.(2015•温州)给出四个数0,,﹣1,其中最小的是()A .0 B . C .1D . ﹣1考点:实数大小比较. 分析: 正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣1<0<,∴四个数0,,﹣1,其中最小的是﹣1.故选:D .点评: 此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(2015•北京)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A .a B .b C. c D . d考点:实数大小比较.分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a ,b ,c ,d 的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答: 解:根据图示,可得3<<4,1<<2,0<<1,2<<3, 所以这四个数中,绝对值最大的是a .故选:A .点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a ,b ,c ,d 的绝对值的取值范围. 13.(2015•威海)已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .<1< B . 1<﹣a <b C . 1<<b D . ﹣b <a <﹣1考点:实数大小比较;实数与数轴.分析:首先根据数轴的特征,判断出a 、﹣1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可. 解解:根据实数a ,b 在数轴上的位置,可得答:a<﹣1<0<1<b,∵1<<,∴选项A错误;∵1<﹣a<b,∴选项B正确;∵1<<,∴选项C正确;∵﹣b<a<﹣1,∴选项D正确.故选:A.点评:(1)此题主要考查了实数与数轴,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.(2)此题还考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.14.(2015•新疆)估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间考点:估算无理数的大小.分析:先估计的整数部分,然后即可判断﹣2的近似值.解答:解:∵5<<6,∴3<﹣2<4.故选C.点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.15.(2015•天津)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间考点:估算无理数的大小.专题:计算题.分析:由于9<11<16,于是<<,从而有3<<4.解答:解:∵9<11<16,∴<<,∴3<<4.故选C.点评:本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.16.(2015•嘉兴)与无理数最接近的整数是()A. 4 B. 5 C. 6 D. 7考点:估算无理数的大小.分析:根据无理数的意义和二次根式的性质得出<<,即可求出答案.解答:解:∵<<,∴最接近的整数是,=6,故选:C.点评:本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和6之间,题目比较典型.17.(2015•资阳)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A.上B.上C.上D.上考点:估算无理数的大小;实数与数轴.分析:根据估计无理数的方法得出0<3﹣<1,进而得出答案.解答:解:∵2<<3,∴0<3﹣<1,故表示数3﹣的点P应落在线段上.故选:B.点评:此题主要考查了估算无理数的大小,得出的取值范围是解题关键.18.(2015•六盘水)如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C考点:估算无理数的大小;实数与数轴.专题:计算题.分析:确定出7的范围,利用算术平方根求出的范围,即可得到结果.解答:解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选A点评:此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.19.(2015•安徽)与1+最接近的整数是()A.4 B. 3 C. 2 D. 1考点:估算无理数的大小.分析:由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+最接近的整数即可求解.解答:解:∵4<5<9,∴2<<3.又5和4比较接近,∴最接近的整数是2,∴与1+最接近的整数是3,故选:B.点评此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法:.20.(2015•南京)估计介于()A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间考点:估算无理数的大小.分析:先估算的范围,再进一步估算,即可解答.解答:解:∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间,故选:C.点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.21.(2015•杭州)若k<<1(k是整数),则()A. 6 B. 7 C. 8 D. 9考点:估算无理数的大小.分析:根据=9,=10,可知9<<10,依此即可得到k的值.解答:解:∵k<<1(k是整数),9<<10,∴9.故选:D.点评:本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.22.(2015•衡阳)计算(﹣1)0﹣2|的结果是()A.﹣3 B. 1 C.﹣1 D. 3考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1+2=3.故选D.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(2015•北海)计算2﹣1+的结果是()A.0 B. 1 C. 2 D.2考点:实数的运算;负整数指数幂.专题:计算题.分析:原式利用负整数指数幂法则计算,计算即可得到结果.解答:解:原式1,故选B点评:此题考查了实数的运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.24.(2015•潍坊)在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.考点:实数大小比较;零指数幂;负整数指数幂.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|﹣2|,20,2﹣1的值是多少,然后根据实数比较大小的方法判断即可.解答:解:|﹣22,20=1,2﹣1=0.5,∵,∴,∴在|﹣2|,20,2﹣1,这四个数中,最大的数是|﹣2|.故选:A.点评:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.25.(2015•常州)已知,,,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b 考点:实数大小比较.专题:计算题.分析:将a,b,c变形后,根据分母大的反而小比较大小即可.解答:解:∵,,,且<<,∴>>,即a>b>c,故选A.点评:此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.26.(2015•武汉)在实数﹣3,0,5,3中,最小的实数是()。