勾股定理专题复习
- 格式:ppt
- 大小:1.03 MB
- 文档页数:22
期中复习专题03勾股定理与逆定理【板块一勾股定理的应用】1、勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是(结果用含m 的式子表示).2、已知一个直角三角形的两直角边长分别为4和5,则这个三角形的第三边长是.3.已知直角三角形两边的长为3和4,则此三角形的第三边长为.4.如果直角三角形的两条边长为1,1-,第三边的长度是.5.在Rt △ABC 中,AC =5,BC =12,则AB 边的长是.6.如图,在数轴上表示1的点为A ,以OA 为边构造正方形AOCB ,以O 为圆心,OB 为半径画圆弧交数轴于点D ,则D 点表示的数为.7.如图,点A 在数轴上所对应的数为3,AB ⊥OA ,且AB =2,以原点O 为圆心,以OB 为半径作弧,则弧与数轴的交点C 表示的数为.8.如图,数轴上的点A 表示的数是1-,点B 表示的数是2,CB AB ⊥于点B ,且2BC =,以A 点为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数是9.如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为.10.如图,在数轴上C 点表示1,D 点表示﹣1,CA =CB ,∠BDC =90°,BD =1.则点A 所表示的数是.11.如图,阴影部分表示以Rt ABC △的各边为直径的三个半圆所组成的两个新月形,面积分别记作1S 和2S .若1230S S +=,13AB =,则ABC 的周长是12.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积分别为6,10,4,6,则最大正方形E 的面积是13.如图,阴影部分表示以Rt △ABC 的各边为直径的三个半圆所组成的两个新月形,面积分别记作S 1和S 2.若S 1+S 2=7,AB =6,则△ABC 的周长是14.如图,在Rt ABC △中,90C ∠=︒,以ABC 的三边为边向外作正方形ACDE ,正方形CBGF ,正方形AHIB ,连结EC ,CG ,作CP CG ⊥交HI 于点P ,记正方形ACDE 和正方形AHIB 的面积分别为1S ,2S ,若1144S =,2169S =,则:ACP BCP S S △△等于13.以直角三角形的三边为边长向外作正方形,其中两个正方形的面积如图所示,则正方形A 的面积为.14.如图,直线l 上有三个正方形a 、b 、c ,若a 、b 的面积分别为5和11,则c 的面积为15.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如右图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是()A . uu t cm2B . u tcm2C . uu t cm2D . u tcm 216.如图,由单位长度为1的4个小正方形拼成的一个大正方形网格,连接三个小格点,可得ABC ,则AC 边上的高是17.如图,边长为6的等边ABC 中,AD BC ⊥于D 点.(1)求AD 的长;(2)求ABC 的面积.18.如图,Rt △ABC 中,∠C =90°(1)若AB t ,AC t ,求BC 2(2)若AB =4,AC =1,求AB 边上高.19.等腰ABC 中,,120AB AC A =∠=︒,若ABC S = BC 的长度为()A .B .C .D .20.△ABC 中,AB =2AC ,CD 是的边AB 上的高,若AD =1, t ,则BC 边的长度是.21.在ABC 中,17,25AB AC ==,BC 边上的高为15,则ABC 的面积是.22.已知92ABC S =,AM 为ABC 的高且3,1AM CM ==,N 为AB 中点,则MN 的长度为.23,求这个三角形的周长。
第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为______mm.(2)如图2,直线l上有三个正方形a b c,,,若a c,的面积分别为5和11,则b的面积为()A.4 B.6C.16 D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180-60=120,由勾股定理得:AB2=902+1202=22500,所以AB=150(mm)(2)由勾股定理得:b=a+c=5+11=16,故选C.点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C++∠∠∠的度数.解:连结1801506060ABC图1abc图21A2A3A4A5A5E2E11114C1A2A3A4A5A5E2E11114C3C2C图332A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:224532215C E C E =+==,2245324117A E A E =+==,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠ 122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C )222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x ,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7.5米; (C )12米; (D )8米AB C4、下列说法中正确的有()(1)如果∠A+∠B+∠C=3:4:5,则△ABC是直角三角形;(2)如果∠A+∠B=∠C,那么△ABC是直角三角形;(3)如果三角形三边之比为6:8:10,则ABC是直角三角形;(4)如果三边长分别是221,2,1(1)n n n n-+>,则ABC是直角三角形。
1 / 10第一章勾股定理复习专题一、知识要点回顾:1、勾股定理:直角三角形两直角边的 等于斜边的 ;如果直角三角形两直角边分2、勾股定理的逆定理:如果三角形的三边长a,b,c 满足 ,那么这个三角形是___________.3、勾股数:满足a 2+b 2=c 2的三个 a,b,c,成为勾股数;写出常用的几组勾股数 , , 4.直角三角形斜边上的高为------------------。
二、典型例题解析与练习专题一:勾股定理例题1、在Rt △ABC ,∠C=90°则:⑴已知a=b=5,求c 2。
⑵已知a=1,c=2, 求b 2。
⑶已知c=17,b=8, 求a 。
⑷已知a :b=3:4,c=25, 求 b 。
例题2、已知直角三角形的两边长分别为5和12,求第三边。
练习:1、已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。
例题3、已知:如图,等边△ABC 的边长是6cm。
⑴求等边△ABC 的高。
⑵求S △ABC 。
例题4、 如图,有一个直角三角形纸片,两直角边AC=18cm ,BC=24cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出BD 的长吗?DBA2 / 10练习。
如图,在矩形ABCD 中,AB =5cm ,在边CD 上适当选定一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在边BC 上一点F 处,且△ABF 的面积是30cm 2.(1)求此时AD 的长. (2)求DE 的长。
2.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ).A .3B .4 CD .5例题5、一个直角三角形的周长为9,斜边为4,求这个三角形的面积。
练习:1.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 2.直角三角形的三边长为连续偶数,则这三个数分别为__________.3、图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是_________(3题图) (第4题图) (第5题图) (第6题图)4、如图,在△ABC 中,CE 是AB 边上的中线,CD ⊥AB 于D,且AB=5,BC=4,AC=6,则DE 的长为_______.5、如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是__________6、如图,等腰ABC △中,AB AC =,AD 是底边上的高,若5cm 6cm AB BC ==,,则AD = cm .7.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.AC DBll 2 l 3ACBABCFEDCBA专题二:勾股定理的逆定理例题1、判断由线段abc组成的三角形是不是直角直角三角形:(1)a=15,b=8,c=17 (2)a=13,b=14,c=15 (3)三边长之比为 3∶4∶5;练习: 1、试判断下列三角形是否是直角三角形:⑴a=9,b=41,c=40;⑵a=15,b=16,c=6;(3)a=5k,b=12k,c=13k(k>0)。
勾股定理复习一、要点精练 (一)勾股定理1、(填空题)已知在Rt △ABC 中,∠C=90°。
①若a=3,b=4,则c=________;②若a=40,b=9,则c=________;③若a=6,c=10,则b=_______; ④若c=25,b=15,则a=________。
2、(填空题)已知在Rt △ABC 中,∠C=90°,AB=10。
①若∠A=30°,则BC=______,AC=_______;②若∠A=45°,则BC=______,AC=_______。
3、 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )(A )1,2,3 (B )2,3,4 (C )3,4,5 (D )4,5,64、直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A )22d S d + (B 2d S d - (C )222d S d + (D )22d S d + 解:设两直角边分别为,a b ,斜边为c ,则2c d =,12S ab =. 由勾股定理,得222a b c +=.所以()222222444a b a ab b c S d S +=++=+=+. 所以22a b d S +=+所以a b c ++=222d S d ++. 故选(C )5、直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( )(A )61 (B )71 (C )81 (D )91 解:因为a b a a b +>>-.根据题意,有()()222a b a b a +=-+. 整理,得24a ab =.所以4a b =. 所以3,5a b b a b b -=+=.即该直角三角形的三边长是3,4,5b b b . 因为只有81是3的倍数.故选(C )6、在Rt ABC ∆中,3,5a c ==,则边b 的长为______.7、直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( )(A )61 (B )71 (C )81 (D )91(二)勾股定理的验证及其验证过程的相关应用1、下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内.①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少? ④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗?参考答案①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形,(2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形.②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2. ④图中(1)(2)面积之和等于(3)的面积. 因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面积之和与(3)的面积都等于(a +b )2减去四个Rt △ABC 的面积.由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.2、(1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72?参考答案(1)边长的平方即以此边长为边的正方形的面积,故可通过面积验证.分别以这个直角三角形的三边为边向外做正方形,如右图:AC =4,BC =3,S 正方形ABED =S 正方形FCGH -4S Rt △ABC=(3+4)2-4×21×3×4=72-24=25 即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2(2)如图(图见题干中图)S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×21×4×7=121-56=65=42+72 3、如图2,以三角形ABC ∆的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为_____.解:根据题意,有123S S S +=,即222111222222a b c πππ⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.整理,得222a b c +=.故此三角形为直角三角形.4、如图4,已知ABC ∆中,90ACB ∠=︒,以ABC ∆的各边为边在ABC ∆外作三个正方形,123,,S S S 分别表示这三个正方形的面积,1281,225S S ==,则3_____.S = 解:由勾股定理,知222AC BC AB +=,即123S S S +=,所以3114S =. 5.如图5,已知,Rt ABC ∆中,90ACB ∠=︒,从直角三角形两个锐角顶点所引的中线的长5,210AD BE ==,则斜边AB 之长为______. 解: AD 、BE 是中线,设,BC x AC y ==,由已知,图55,25AD BE ==,所以222240,25.22y x x y ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭两式相加,得()225654x y +=,所以2252213.AB x y =+==(三)勾股定理的应用1、在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个 直角三角形的面积是( )(A )30 (B )40 (C )50 (D )60解:由勾股定理知,另一条直角边的长为2213125-=,所以这个直角三角形的面积为1125302⨯⨯=.2、如图1,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移( ) (A)0.6米 (B)0.7米 (C)0.8米 (D)0.9米解:依题设11 2.5,0.7AB A B BC ===.在Rt ABC ∆中,由勾股定理,得 22222.50.7 2.4AC AB BC =-=-= 由12.4,0.4AC AA ==,得11 2.40.42AC AC AA =-=-=. 在11Rt A B C ∆中, 由勾股定理,得222211112.52 1.5B C A B AC =-=-= 所以11 1.50.70.8BB B C BC =-=-=故选(C)3、如图3,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.解:由勾股定理,知最短距离为()()222288210BD AC AB CD =+-=+-=.4、(四)直角三角形的判别图11、下列各组数中以a ,b ,c 为边的三角形不是Rt △的是A 、a=2,b=3,c=4B 、a=7,b=24,c=25C 、a=6,b=8,c=10D 、a=3,b=4,c=52、如果一个三角形的一条边是另一边的2倍,并且有一个角是ο30,那么这个三角形的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定 3、4、如图,在等腰直角ABC ∆的斜边上取异于C B ,的两点F E ,,使,45ο=∠EAF 求证:以CF BE EF ,,为边的三角形是直角三角形。
勾股定理专题复习1.如图,在边长为4的正三角形ABC中,AD BC于点D,以AD为一边向右作正三角形ADE。
(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明。
2.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.3.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.4.在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()B C D5、如图2,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )(A )34 (B )33 (C )24 (D )8 解析:由折叠可知,AE=AB=DC=6,在Rt △ADE 中AD=6,DE=3由勾股定理,得AD=33,设EF=x ,则FC=x -33, 在Rt △EFC 中由勾股定理求得x=32,则EF=32,在Rt △AEF 中,由勾股定理得AF=34。
故选A 。
6. 如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F.(1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.7.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=,求BF 的长. 解:由题意可知△ADE ≌△AFE .∴AF AD =,FE DE =.在矩形ABCD 中,16==AB CD ,CB AD =,︒=∠=∠=∠90D C B , ∵6=CE ,∴10=-==CE CD DE EF . 在Rt △CEF 中,822=-=CE EF FC .A BCDE F 图 2 F E D C B A。
天才教育学科教师辅导讲义学员编号: 年 级:八年级 课 时 数:2h 学员姓名: 辅导科目: 数学 学科教师: 沈授课类型 T(同步知识主题)C (专题方法主题) T (学法与能力主题)授课日期 及时段教学内容勾股定理复习一、同步知识梳理 【知识网络】【要点梳理】【高清课堂 勾股定理全章复习 知识要点】 要点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是: (1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算; (4)勾股定理在实际生活中的应用. 要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为c ; (2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形; 若222a b c +>时,△ABC 是锐角三角形; 若222a b c +<时,△ABC 是钝角三角形.2.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形. 要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数; 2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.二、同步题型分析类型一、勾股定理及逆定理的简单应用例1、 已知直角三角形的两边长分别为6和8,求第三边的平方长.【总结升华】题中未说明第三边是直角边还是斜边,应分类讨论,本题容易误认为所求的第三边为斜边. 举一反三:【变式】在△ABC 中,AB =15,AC =13,高AD =12.求△ABC 的周长. 例2、如图所示,△ABC 中,∠ACB =90°,AC =CB ,M 为AB 上一点.求证:2222AM BM CM +=.【总结升华】欲证明线段平方关系问题,首先联想勾股定理,从图中寻找或作垂线构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证. 举一反三:【变式】已知△ABC 中,AB =AC ,D 为BC 上任一点,求证:22AB AD BD CD -=⋅.类型二、勾股定理及逆定理的综合应用例3、(2014秋•黎川县期中)如图,在正方形ABCD 中,AB=4,AE=2,DF=1,请你判定△BEF 的形状,并说明理由.【总结升华】本题考查了正方形性质,勾股定理,勾股定理的逆定理的应用,解此题的关键是求出BE 2+EF 2=BF 2.例4、如图,P 是等边三角形ABC 内的一点,连结PA ,PB ,PC ,以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.【总结升华】本题的关键在于能够证出△ABP ≌△CBQ ,从而达到线段转移的目的,再利用勾股定理的逆定理判断三角形的形状.举一反三:【变式】如图所示,在△ABC中,D是BC边上的点,已知AB=13,AD=12,AC=15,BD=5,求DC 的长.【总结升华】勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中经常要用到.类型三、勾股定理的实际应用例6、如图①,一只蚂蚁在长方体木块的一个顶点A处,食物在这个长方体上和蚂蚁相对的顶点B处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A处爬到B处的最短路线长为多少?【总结升华】解本题的关键是正确画出立体图形的展开图,把立体图形上的折线转化为平面图形上的直线,再运用勾股定理求解.举一反三:【变式】(2014秋•郑州期末)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处.则问题中葛藤的最短长度是多少尺?三、课堂达标检测一.选择题1.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( )A.5mB.7mC.8mD.10m2.如图,从台阶的下端点B到上端点A的直线距离为( )A.15B.16C.17D.183. 放学以后,小红和小颖分手,分别沿着东南方向和西南方向回家,若两人行走的速度都是40m/min,小红用15min到家,小颖用20min到家,则小红和小颖家的距离为()A.600m B.800m C.1000m D.不能确定4. 如图所示,在△ABC中,AB=AC=5,BC=6,点E、F是中线AD上的两点,则图中阴影部分的面积是().A.6 B.12 C.24 D.305.下列三角形中,是直角三角形的是( ) A.三角形的三边满足关系a b c += B.三角形的三边比为1∶2∶3 C.三角形的一边等于另一边的一半 D.三角形的三边为9,40,416.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A.450a 元B.225a 元C.150a 元D.300a 元 7.(2015•江阴市模拟)如图,Rt △ABC 中,∠C=90°,AC=12,BC=5.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABDE 、ACFG 、BCIH ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4. 则S 1+S 2+S 3+S 4等于( )A.90B.60C.169D.1448. 已知,如图长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A.32cm B.42cm C.62cmD.122cm二.填空题9. 根据下图中的数据,确定A= ,B= ,x= .10.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______. 11.如图,B ,C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是______米.12.在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______. 13.(2015•杭州模拟)如图,圆柱形容器中,高为120cm ,底面周长为100cm ,在容器内壁离容器底部40cm 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为 cm .(容器厚度忽略不计)14.如图,平面上A 、B 两点处有甲、乙两只蚂蚁,它们都发现C 处有食物,已知点C 在A 的东南方向,在B 的西南方向.甲、乙两只蚂蚁同时从A 、B 两地出发爬向C 处,速度都是30cm /min.结果甲蚂蚁用了2 min ,乙蚂蚁2分40秒到达C 处分享食物,两只蚂蚁原来所处地点相距_______cm .15. 小明要把一根长为70cm 的长的木棒放到一个长、宽、高分别为50cm ,40cm ,30cm 的木箱中,他能放进去吗? (填“能”或“不能”). 16.如图,△ABC 中,∠ACB =90°,AC =BC =1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC 的BC 边重叠为止,此时这个三角形的斜边长为__________.三.解答题17.若直角三角形两直角边的比是3:4,斜边长是20,求此三角形的面积.18.(2014春•安次区校级月考)甲乙两船从位于东西走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C 岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.19.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.20.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B'处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.课后作业。
《勾股定理与折叠问题》复习专题一、知识回顾勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,那么a2+b2=c2即22b c a=-=-,22c a b=+,22a c b知道直角三角形三边中的两边,就能求出第三边;如果只知道直角三角形三边中的一边,能求出另外两条边吗?例1、在平静的湖面上,有一枝荷花,高出水面1米.一阵风吹过来,荷花被吹到一边,花朵齐及水面.已知荷花移动的水平距离为2米,问这里的水深多少米?例2、若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10B.11C.12D.131、一直角三角形的斜边比一直角边大2,另一直角边长为6,则斜边长是()A、8B、10C、12D、142、直角三角形有一条直角边为6,另两条边长为连续的偶数,则该三角形的周长为()A、20B、22C、24D、263、升旗仪式的时候,小明突发奇想,想知道学校旗杆的高度。
放学后,他观察到旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好与地面接触,则旗杆的高度为()A、11米B、12米C、13米D、14米4、小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,求河水的深度是多少?5、小东拿一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竹竿比城门高1米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竿长多少米?二、折叠问题解题心得:1、看见“折叠”、“翻折”就要想全等,把题目的数据标在图上2、设折叠的一条边为x(不要设折痕)3、根据勾股定理列方程,然后解答例1、有一块直角三角形纸片,两直角边AC=12cm,BC=16cm,现将直角边AC沿AD折叠,使它落在斜边AB上,且与AE重合,则DE的长度为_________例2、已知,矩形ABCD中,E在AB上,把△BEC沿CE对折。
期中复习专题02勾股定理(1)--应用题【板块一折竹抵地】1.《九章算术》是我国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:今有竹高一丈,末折抵地,去根五尺,问折高者尺)一阵风将竹子折断,某竹梢恰好抵地,抵几何?意思是一根竹子,原高一丈(一丈10地处离竹子底部5尺远,则折断处离地面的高度是()A.B.6.25尺C.4.75尺D.3.75尺2.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是()A.5.3尺B.6.8尺C.4.7尺D.3.2尺3.一木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处,则木杆折断前有米.4.如图,一竖直的大树在离地面3米处折断,树的顶端落在地面离大树底端4米处,大树折断之前的高度为()A.7米B.8米C.9米D.12米【版块二航线问题】1.如图,某港口P位于东西方向的海岸线上,“远航”号,“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口2小时后分别位于Q、R处,且相距40海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?2.如图,某天下午2时,两艘船只分别从港口O点处出发,其中快船沿北偏东30 方向以2海里/时的速度行驶,慢船沿北偏西60 方向以1海里/时的速度行驶,当天下午4时,两艘船只分别到达A,B两点,则此时两船之间的距离等于()C.D.A B3.甲、乙两人从同一地点出发,甲以40m/min的速度向北偏东40︒方向直行,乙以30m/min 的速度向南偏东50︒方向直行,若他们同时出发,则5min后他们相距()A.50m B.70m C.250m D.350m4.无人机目前广泛应用于各个行业,在某地有A,B,C三个无人机起降点(三个起降点在同一水平面上),其中A在C的北偏东54°方向上,与C的距离是800米,B在C的南偏东36°方向上,与C的距离是600米.(1)求点A与点B之间的距离;(2)若在点C的正上方高度为480米的空中有一个静止的信号源,信号覆盖半径为500米,每隔2秒会发射一次信号,此时在B点的正上方同样高度处有一架无人机准备沿直线向点A 飞行,无人机飞行的速度为每秒10米.①若计划无人机在飞往A处的过程中维持高度不变,飞行到点A的正上方后再降落,试求无人机在飞行过程....中,最多能收到多少次信号?(信号传播的时间忽略不计).②无人机在按原计划飞行12秒后,因紧急情况需要飞到C点处,请直接写出此时无人机飞到C点需要的最短时间为______秒.1.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距离O 点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路MN 上沿MN 方向以72千米/小时的速度行驶时,A 处受到噪音影响的时间为s .2.如图,一艘渔船正以3海里/小时的速度由西向东赶鱼群,在A 处看小岛C 在船北偏东60°,60分钟后,渔船行至B 处,此时看见小岛C 在船的北偏东30°.(1)求小岛C 到航线AB 的距离.(2)已知以小岛C 为中心周围20海里内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区的可能?若渔船进去危险区,那么经过多少分钟可穿过危险区?3.某海域有一小岛P ,在以P 为圆心,半径r 为(103+海里的圆形海域内有暗礁,一海监船自西向东航行,它在A 处测得小岛P 位于北偏东60︒的方向上,当海监船行驶里后到达B 处,此时观测小岛P 位于B 处北偏东45︒方向上.(1)若过点P 作PC AB ⊥于点C ,则:PC AC =;(2)求A ,P 两点之间的距离AP ;(3)若海监船由B 处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?请直接写出海监船由B 处开始沿南偏东至多︒的方向航行能安全通过这一海域.1.如图,圆柱的底面周长为32cm,高为24cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处做装饰(点B在点A的正上方),则这条丝线的最小长度为()A.30cm B.40cm C.50cm D.60cm2、如图是一个边长6厘米的立方体ABCD﹣﹣﹣EFGH,一只甲虫在棱EF上且距F点1厘米的P处.它要爬到顶点D,需要爬行的最近距离是厘米.3.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.【板块五测量问题】1.如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上一点,测得BC=60m,AC=20m,则A,B两点间的距离为m.2.如图,小彭同学每天乘坐地铁上学,他观察发现,地铁D出口和学校O在南北方向的街道的同一边,相距80米,地铁A出口在学校的正东方向60米处,地铁B出口离D出口100米,离A出口米.(1)求∠ABD的度数;(2)地铁B出口离学校O的距离为_________米.【板块六梯子滑动】1.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了()A.0.4米B.0.5米C.0.6米D.0.7米2.如图所示,一根长2.5米的木棍AB,斜靠在与地面垂直的墙上,此时墙角O与木棍B 端的距离为1.5米,设木棍的中点为P.此时木棍A端沿墙下滑,B端沿地面向右滑行.(1)木棍在滑动的过程中,线段OP的长度发生改变吗?说明理由;若不变,求OP的长;(2)如果木棍的底端B向外滑出0.9米,那么木棍的顶端A沿墙下滑多少距离?【板块七风吹莲动】1.如图,有一个水池,水面是边长为8尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度是()A.7.5尺B.8尺C.8.5尺D.9尺2.如图,有一个水池,水面是边长为10尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池的一边,它的顶端恰好到达池边的水面,这根芦苇的长度是()A.11尺B.12尺C.13尺D.14尺3.如图,一株荷叶高出水面1m,一阵风吹过,荷叶被风吹的贴着水面,这时它偏离原来位置有3m远,则荷叶原来的高度是m.【板块八其他】1.“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉'''',祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C D形成一个“方胜”图案,则点D,B'之间的距离为()A.1cm B.2cm C.-1)cm D.1)cm 2.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米?(假设绳子是直的,结果保留根号)3.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.。
专题复习一 勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。
如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。
2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。
常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=专题归类:专题一、勾股定理与面积1、、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则Rt ▲ABC 的面积S= 。
2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。
3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为4、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。
5、三条边分别是5,12,13的三角形的面积是 。
6、如果一个三角形的三边长分别为a,b,c 且满足:a 2+b 2+c 2+50=6a+8b+10c,则这个三角形的面积为 。
7、如图1,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?7、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm ,BC=15cm ,P 是到∆ABC 三边距离相等的点,求点P 到∆ABC 三边的距离。
8、有一块土地形状如图3所示,︒=∠=∠90D B ,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。
(添加辅助线构造直角三角形)9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形ABCD 的面积。
数学中考复习《勾股定理的应用》专题提升训练1.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A出发沿AB方向以1cm/s的速度向终点B运动,点Q从点B出发沿BC方向以6cm/s的速度向终点C运动,P,Q两点同时出发,设点P的运动时间为t秒.(1)求BC的长;(2)当t=2时,求P,Q两点之间的距离;(3)当AP=CQ时,求t的值?2.如图,在△ABC中,∠C=90°,AC=12,BC=5,BD平分∠ABC.动点P从点B出发,沿折线BA﹣AC以每秒1个单位长度的速度向点C运动,当点P不与点D重合时,连结P、B、D三点.设点P的运动时间为t秒.(1)线段AB的长为;(2)当DP⊥AB时,t=;(3)求线段BD的长;(4)当∠DBP与∠DPB相等时,直接写出t的值.3.已知,如图,AB为圆O直径,AC=FC,E为弧BD中点.(1)求证:AC为圆O切线;(2)若AB=4,AC=3,求DF的长.4.在下图中,直线l所对应的函数关系式为y=﹣x+5,l与y轴交于点C,O为坐标原点.(1)请直接写出线段OC的长;(2)已知图中A点在x轴的正半轴上,四边形OABC为矩形,边AB与直线l相交于点D,沿直线l把△CBD折叠,点B恰好落在AC上一点E处,并且EA=1.①试求点D的坐标;②若⊙P的圆心在线段CD上,且⊙P既与直线AC相切,又与直线DE相交,设圆心P的横坐标为m,试求m的取值范围.5.如图,一张矩形硬片ABCD宽AB=6,长AD=10,E是CD边上一点,现将矩形硬片沿BE折叠,点C的对应点F刚好落在AD边上的点F处,过点F作FG⊥AD于点F,交BE于点G,连接CG.(1)判断四边形CEFG的形状,并给出证明;(2)求四边形CEFG的面积.6.如图,将一张矩形卡片ABCD A、C重合,展开后折痕交BC于E,交AD 于F.(1)试判断四边形AECF是什么特殊的四边形,并说明理由;(2)若AB=4,BC=8,求AF的长.7.已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以所在的直线为x轴,y 轴,建立如图所示的平面直角坐标系,直线l经过C、E两点.(1)求直线l的函数表达式;(2)如图,将矩形OABC中,将△COE沿直线l折叠后得到△CFE,点F在矩形OABC 内部,延长CF交AB于G点.证明:GF=GA;(3)由上面的条件,求四边形AGFE的面积?8.如图,三角形纸片ABC中,∠ACB=90°,AC=8,BC=6,折叠△ABC使点A与点B 重合,DE为折痕,求DE的长.9.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.10.一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC等于45°,树干AC垂直于地面,那么此树在未折断之前的高度为多少米?(答案保留根号)11.学校的一棵大树被风吹断了,如图,距地面6m处折断,折断的树梢顶部落在距树干底部8m处,求此树原高是多少米?(图1)有两棵大树,一棵高8m,另一棵高2m,BC=6,一只小鸟从一棵树梢飞到另一棵树梢,至少飞多少米?(图2)一架长10m的梯子斜靠在墙上,梯子顶端距地面8m,现将梯子顶端沿墙面下滑2m,则梯子底端与墙面距离是否也增长2m?请说明理由(图3)12.如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.13.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?14.如图,△ABC为等边三角形,AB=6,D是AC的中点,E是BC延长线上的一点,且CE=CD,过点D作DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.15.已知△ABC中,AB=7,BC=5,AC=8,⊙O与△ABC三边所在的直线都相切,切点分别为D,E,F.(1)如图1,若点O在△ABC内部.①求S△ABC;②求⊙O的半径R的值;(2)如图2,若点O在△ABC⊙O的半径r的值.16.如图,长方体的底面是边长为1cm的正方形,高为3cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短为多少.17.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B 是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?18.如图所示,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿着圆柱侧面爬行的最短路程是多少?(π的值取3)19.如图1,我们把对角线相互垂直的四边形叫做垂美四边形.(1)概念理解,在四边形ABCD中,以下是垂美四边形的是.①平行四边形;②矩形;③菱形;④AB=AD,CB=CD.(2)性质探究,小美同学猜想“垂美四边形两组对边的平方和相等”,即,如图1,在四边形ABCD中,若AC⊥BD,则AB2+CD2=AD2+BC2.请判断小美同学的猜想是否正确,并说明理由.(3)问题解决:如图2.在△ABC中,BC=3,AC=4,D、E分别是AC、BC的中点,连接AE、BD.有AE⊥BD,求AB.20.如图,我把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.已知四边形ABCD中,AC⊥BD,垂足为O,求证:AB2+CD2=AD2+BC2.(2)解决问题:已知AB=5,BC=4,分别以△ABC的边BC和AB向外作等腰Rt△BCQ 和等腰Rt△ABP.①如图2,当∠ACB=90°,连接PQ,求PQ;②如图3,当∠ACB≠90°,点M、N分别是AC、AP中点连接MN.若MN=2,则S△ABC=.参考答案1.解:(1)在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,∴BC==24cm.(2)如图,连接PQ,BP=7﹣2=5,BQ=6×2=12,在直角△BPQ中,由勾股定理得到:PQ==13(cm);(3)设t秒后,AP=CQ.则t=24﹣6t,解得t=.答:P、Q两点运动秒,AP=CQ.2.解:(1)∵∠C=90°,AC=12,BC=5,∴AB===13.故答案为:13.(2)∵BD平分∠ABC,DP⊥AB,DC⊥CB,∴DC=DP.在Rt△DCB和Rt△DPB中,,∴Rt△DCB≌Rt△DPB(HL).∴BC=BP=5.∴t=BP÷1=5.故答案为:5.(3)∵BD平分∠ABC,∴.∴.解得:CD=.在Rt△CDB中,BD==.(4)①当点P在AB上时,∵∠DBP=∠DPB,∴DB=DP.过点D作DE⊥AB于点E,如图,由(2)知:Rt△DCB≌Rt△DEB,∴BE=BC=5.∵DB=DP,DE⊥AB,∴PE=BE=5.∴PB=2BE=10.∴t=BP÷1=10;②当点P在AC上时,∵∠DBP=∠DPB,∴DB=DP.由(3)知:BD=,CD=,∴PD=.∴P A=AC﹣CD﹣PD=.∴点P运动的距离为:AB+P A=.∴t=()÷1=.综上,t的值为:10或.3.(1)证明:如图1,连接BE,∵E为弧BD中点,∴=,∴∠DBE=∠BAE,∵AB为⊙O直径,∴∠AEB=90°,∴∠DBE+∠BFE=90°,∴∠BAE+∠BFE=90°,∵∠BFE=∠CF A,∴∠BAE+∠CF A=90°,∵AC=FC,∴∠CAF=∠CF A,∴∠BAE+∠CAF=90°,∴AB⊥AC,∵AB是⊙O的直径,∴AC为⊙O切线;(2)如图2,连接AD,过点作FG⊥AB于点G,由(1)知:∠BAC=90°,∴BC===5,∵AB为⊙O直径,∴∠ADB=90°,∴BC•AD=AB•AC,∴AD===,∴BD===,∵=,∴∠DAE=∠BAE,∵FD⊥AD,FG⊥AB,∴FD=FG,设FD=FG=x,∵S△ABD=S△ADF+S△ABF,∴××=×x+×4x,解得:x=,∴DF=.4.解:(1)OC=5;(2)①解法一:设D点的横坐标为m,由已知得,它的纵坐标为:﹣m+5∴BC=OA=m,CA=CE+AE=m+1,在Rt△OAC中,OA2+OC2=AC2,即m2+52=(m+1)2,解得m=12.∴,即D点的坐标为;解法二:设D点的横坐标为m,由已知得,它的纵坐标为:﹣m+5,∴AD=﹣m+5,DE=AB﹣AD=m,在Rt△ADE,EA2+ED2=AD2,即12+(m)2=(﹣m+5)2,解得m=12,∴﹣m+5=,即D点的坐标为(12,);解法三:设D点的横坐标为m,由已知得,它的纵坐标为:﹣m+5,在Rt△OAC和Rt△ADE中,∠AOC=∠AED=90°,∠ACO+∠OAC=90°,∠OAC+∠EAD=90°,∴∠ACO=∠EAD,∴Rt△OAC∽Rt△ADE,∴,即:,解得m=12,∴﹣m+5=,即D点的坐标为(12,);②由于△BCD和△CDE关于直线L对称,所以⊙P与直线AC相切,与DE相交相当于与直线BC相切,与BD相交,过点P作PM⊥OA,交OA于M,交BC于N;作PH⊥AB,交AB于H,由题意知:只要PN>PH即可,PN=MN﹣PM=,PH=12﹣m,即:>12﹣m,解得m>10,又P在线段CD上,所以m≤12,即m的取值范围是10<m≤12.5.解:(1)四边形CEFG为菱形,证明过程如下:由折叠性质可得:EF=CE,CG=FG,∠CEG=∠FEG,∵FG⊥AD,四边形ABCD为矩形,∴∠DFG=∠EDF=90°,∴FG∥CD,∴∠EGF=∠CEG,∴∠EGF=∠FEG,∴FG=EF=CE,∴四边形CEFG为菱形;(2)∵AB=6,AD=10,∴BF=BC=AD=10,CD=AB=6,在Rt△ABF中,AF=,即AF==8,∴DF=AD﹣AF=2,设EF=x,则CE=EF=x,∴DE=CD﹣CE=6﹣x,在Rt△DEF中,DE2+DF2=EF2,即(6﹣x)2+22=x2,解得:x=,∴CE=,∴四边形CEFG的面积为CE•DF=×2=.6.解(1)四边形AECF是菱形.理由如下:根据折叠的性质得OA=OC,EF⊥AC,EA=EC,∵AD//BC,∴∠F AC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OF=OE,∴四边形AECF是菱形;(2)设菱形的边长为x,则:BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,根据勾股定理得BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得:x=5,∴AF的长为5.7.(1)解:设直线l的解析式y=kx+b(k≠0).∵矩形OABC的边长OA=4,AB=3,E是OA的中点,∴OC=AB=3,OE=2,∴E(2,0),C(0,3).∴,解得,,∴直线l的解析式y=﹣x+3;(2)证明:如图2,连接EG.∵四边形OABC是矩形,∴∠COA=∠OAB=90°.又根据折叠是性质得到∠COE=∠CFE=90°,OE=EF,∴∠EFG=∠EAG=90°.又∵E是OA的中点,∴OE=EF,∴EF=EA,∴在Rt△EFG和Rt△EAG中,,∴Rt△EFG≌Rt△EAG(HL),∴GF=GA;(3)解:由(2)知,GF=GA,根据折叠的性质知OC=CF=3.∵BG=AB﹣AG=3﹣AG,CG=CF+GF=3+GA,AE=2,∴在直角△CBG中,由勾股定理得:CG2=BC2+BG2,即(3+AG)2=(3﹣AG)2+42,解得,AG=.∵由(1)知,Rt△EFG≌Rt△EAG,∴S Rt△EFG=S Rt△EAG,∴S四边形AGFE=2S Rt△EAG=2×AE•AG=2××2×=,即四边形AGFE的面积是.8.解:∵△DEB是由△DEA翻折,∴AE=EB,AD=DB,设AE=EB=x,∵AC=8,BC=6,∴EC=8﹣x,在RT△EBC中,EB2=EC2+BC2,∴x2=(8﹣x)2+62,∴x=,∵∠C=90°,∴AB==10,∴AD=DB=5,在RT△AED中,∵ED=,∴ED==.9.解:(1)在Rt△ABC中,由面积的两种算法可得:,解得:CD=.(2)在Rt△ABD中AD2=42﹣x2=16﹣x2,在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2,所以16﹣x2=﹣11+12x﹣x2,解得=.10.解;由题意得,在△ACB中,∠C=90°∵∠ABC=45°∴∠A=45°∴∠ABC=∠A∴AC=BC∵BC=4∴AC=4(3分)由AC2+BC2=AB2得AB=;所以此树在未折断之前的高度为(4+)米.11.(1)在直角三角形ABC中,AC2=AB2+BC2,所以AC==10m;∴此树原高=10+6=16m.(2)两点之间,直线最短,所以最短距离为直接从D点飞到A点,所以最短距离为:AD==m;(3)在直角三角形ABC中,AB=8m,AC=10m,则BC==6m,现将梯子顶端下移至D点,则BD=6m,DE=10m,所以在直角三角形BDE中,BE==8m,8m﹣6m=2m,因此梯子底端与墙面的距离增加了2m.12.解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x﹣1)m,故x2=42+(x﹣1)2,解得:x=8.5,答:绳索AD的长度是8.5m.13.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.14.(1)解:∵BD是等边△ABC的中线,∴BD⊥AC,BD平分AC,∵AB=6,∴AD=3,∴由勾股定理得,BD==3.(2)证明:∵BD是等边△ABC的中线,∴BD平分∠ABC,∴∠DBE=∠ABC=30°,又∵CE=CD,∴∠E=∠CDE,∠E=∠ACB=30°.∴∠DBE=∠E,∴DB=DE.∵DF⊥BE,∴DF为底边上的中线.∴BF=EF.15.解:(1)①过A作AH⊥BC于H,∵AB=5,AC=7,BC=8,∴AB2﹣BH2=AC2﹣CH2,∴52﹣(8﹣CH)2=72﹣CH2,解得:CH=5.5,∴AH==,∴S△ABC=8×=10;②连接OA,OB,OC,OD,OE,OF,设⊙O的半径为r,∵⊙O是△ABC的内切圆,∴OD=OE=OF=r,∴×5r+r r=10,∴r=;∴⊙O的半径为;(2)如图2中,连接OA,OB,OC,OD,OE,OF,设⊙O的半径为r,点O在△ABC外部OE﹣OD=OF=r,由S△ABC=S△AOC+S△ABO﹣S△BCO,可得10=×8×r+×7×r﹣×5×r,∴r=2,∴⊙O的半径为2.16.解:将长方体展开,连接AB,根据两点之间线段最短,AB==5(cm);∴所用细线最短为5cm.17.解:将台阶展开,如下图,因为AC=3×3+1×3=12,BC=5,所以AB2=AC2+BC2=169,所以AB=13(cm),所以蚂蚁爬行的最短线路为13cm.答:蚂蚁爬行的最短线路为13cm.18.解:展开圆柱的半个侧面是矩形.矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高12.根据两点之间线段最短,知最短路程是矩形的对角线AB的长,即AB===15厘米.19.解:(1)∵菱形的对角线互相垂直,∴菱形是垂美四边形,∵AB=AD,CB=CD,∴AC⊥BD,∴当AB=AD,CB=CD的四边形ABCD是垂美四边形,故答案为:③④;(2)猜想正确,理由如下:∵四边形ABCD中,AC⊥BD,∴∠AOB=∠COD=∠BOC=∠AOD=90°,∴AB2=OA2+OB2,CD2=OC2+OD2,BC2=OB2+OC2,AD2=OA2+OD2,∴AB2+CD2=OA2+OB2+OC2+OD2,BC2+AD2=OB2+OC2+OA2+OD2,∴AB2+CD2=AD2+BC2;(3)∵BC=3,AC=4,D、E分别是AC、BC的中点,∴AD=AC=2,BE=BC=,DE=AB,∵AE⊥BD,∴AB2+ED2=AD2+BE2,∴AB2=4+,∴AB=.20.解:(1)证明:如图1中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AB2+CD2=AD2+BC2;(2)①方法一:连接PC、AQ交于点D,如图2,∵△ABP和△CBQ都是等腰直角三角形,∴PB=AB,CB=BQ,∠ABP=∠CBQ=90°,∴∠PBC=∠ABQ,∴△PBC≌△ABQ(SAS),∴∠BPC=∠BAQ,又∵∠BPC+∠CP A+∠BAP=90°,即∠BAQ+∠CP A+∠BAP=90°,∴∠PDA=90°,∴PC⊥AQ,利用(1)中的结论:AP2+CQ2=AC2+PQ2即(5)2+(4)2=32+PQ2;∴PQ=.②连接PC、AQ交于点D,如图3,同①可证△PBC≌△ABQ(SAS),AQ=PC且AQ⊥PC,∵M、N分别是AC、AP中点,∴MN=PC,∵MN=2,∴AQ=PC=4.延长QB作AE⊥QE,则有AE2+BE2=25,AE2+QE2=48,∵EQ=4+BE,∴(4+BE)2﹣BE2=23,解得BE=,∴S△ABC=×BC×BE==.方法二:连接PC,AQ,PQ,延长PB使BH=AB,由①得,△BPC≌△BAQ,∴PC=AQ=2MN=4,PC⊥AQ,∴∠PBM=∠QBC=90°,∴∠PBQ+∠ABC=180°,即∠QBH=∠CBA,∵BQ=BC,AB=PB=BH,∴△BQH≌△BCA(SAS),∴S△ABC=S△PBQ=S△QBH,∴S△ABC===.故答案为:.。
专题21 勾股定理【考查题型】【知识要点】知识点一勾股定理勾股定理的概念:如果直角三角形的两直角边分别为,,斜边为,那么。
变式:,,,,.适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。
用拼图的方法验证勾股定理的思路是:1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理勾股定理的证明方法:方法一(图一):,,化简可证.方法二(图二):四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为,所以方法三(图三):,,化简得证图一图二图三知识点二勾股数勾股数概念:能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数常见的勾股数:如;;;等扩展:用含字母的代数式表示组勾股数:1)(为正整数);2)(为正整数)3)(,为正整数)注意:每组勾股数的相同整数倍,也是勾股数。
知识点三勾股定理的逆定理勾股定理的逆定理内容:如果三角形三边长,,满足,那么这个三角形是直角三角形,其中为斜边【注意】1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;2)定理中,,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,,满足,那么以,,为三边的三角形是直角三角形,但是为斜边3)勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点四直角三角形的性质与判定性质:1)直角三角形的两个锐角互余。