(完整版)选修2-3第2章正态分布经典题型知识点
- 格式:docx
- 大小:53.51 KB
- 文档页数:4
2.4 正态分布1.正态曲线(1)函数______________,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数.我们称φμ,σ(x )的图象为正态分布密度曲线,简称________.(2)随机变量X 落在区间(a ,b ]的概率为P (a <X ≤b )≈__________,即由正态曲线,过点(a,0)和点(b,0)的两条x 轴的垂线,及x 轴所围成的平面图形的面积,就是X 落在区间(a ,b ]的概率的近似值.预习交流1(1)正态曲线φμ,σ(x )中参数μ,σ的意义是什么?(2)设随机变量X 的正态分布密度函数φμ,σ(x )=12πe -(x +3)24,x ∈(-∞,+∞),则参数μ,σ的值分别是( ).A .μ=3,σ=2B .μ=-3,σ=2C .μ=3,σ= 2D .μ=-3,σ= 22.正态分布一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=__________,则称X 服从________.正态分布完全由参数μ和σ确定,因此正态分布常记作________,如果随机变量X 服从正态分布,则记为________.3.正态曲线的特点(1)曲线位于x轴____,与x轴______;(2)曲线是单峰的,它关于直线____对称;(3)曲线在____处达到峰值______;(4)曲线与x轴之间的面积为__;(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“____”,表示总体的分布越集中;σ越大,曲线越“____”,表示总体的分布越分散,如图②.预习交流2设随机变量X~N(μ,σ2),且P(X≤C)=P(X>C),则C=().A.0B.σC.-μD.μ4.正态总体在三个特殊区间内取值的概率若X~N(μ,σ2),则对于任何实数a>0,概率P(μ-a<X≤μ+a)=__________.特别地有P(μ-σ<X≤μ+σ)=______,P(μ-2σ<X≤μ+2σ)=______,P(μ-3σ<X≤μ+3σ)=______.5.3σ原则正态变量在(-∞,+∞)内的取值的概率为1,正态总体几乎总取值于区间(μ-3σ,μ+3σ)之内,而在此区间以外取值的概率只有0.002 6,通常认为这种情况在一次试验中几乎不可能发生,因此在实际应用中通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值,简称为________.预习交流3(1)如何求服从正态分布的随机变量X在某区间内取值的概率?(2)正态总体N(4,4)在区间(2,6]内取值的概率为__________.答案:1.(1)φμ,σ(x)=12πσ22()2exμσ--正态曲线(2)∫b aφμ,σ(x)d x预习交流1:(1)提示:参数μ反映随机变量取值的平均水平的特征数,即若X~N(μ,σ2),则E(X)=μ.同理,参数σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.(2)提示:写成标准式φμ,σ(x)=12π2 e∴μ=-3,σ= 2.2.∫b aφμ,σ(x)d x正态分布N(μ,σ2)X~N(μ,σ2)3.(1)上方不相交(2)x=μ(3)x=μ1σ2π(4)1(6)瘦高矮胖预习交流2:提示:正态分布在x=μ对称的区间上概率相等,则C=μ.4.∫μ+aμ-aφμ,σ(x)d x0.682 60.954 40.997 45.3σ原则预习交流3:(1)提示:首先找出服从正态分布时μ,σ的值,再利用3σ原则求某一个区间上的概率,最后利用在关于x=μ对称的区间上概率相等求得结果.(2)提示:由题意知μ=4,σ=2,∴P(μ-σ<X≤μ+σ)=P(2<X≤6)=0.682 6.一、正态曲线的图象应用如图所示的是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.思路分析:给出一个正态曲线就给出了该曲线的对称轴和最大值,从而就能求出总体随机变量的期望、标准差以及解析式.如图是正态分布N(μ,σ21),N(μ,σ22),N(μ,σ23)(σ1,σ2,σ3>0)相应的曲线,那么σ1,σ2,σ3的大小关系是().A.σ1>σ2>σ3 B.σ3>σ2>σ1 C.σ1>σ3>σ2D.σ2>σ1>σ3(1)用待定系数法求正态变量概率密度曲线的函数表达式,关键是确定参数μ和σ的值,并注意函数的形式.(2)当x=μ时,正态分布的概率密度函数取得最大值,即f(μ)=12πσ为最大值,并注意该式在解题中的应用.二、利用正态曲线的对称性求概率已知随机变量X服从正态分布N(2,σ2),P(X<4)=0.84,则P(X≤0)=().A.0.16 B.0.32 C.0.68 D.0.84思路分析:画出正态曲线,结合其意义及特点求解.若随机变量ξ服从正态分布N(0,1),已知P(ξ<-1.96)=0.025,则P(|ξ|<1.96)=().A.0.025 B.0.050 C.0.950 D.0.975充分利用正态曲线的对称性及面积为1的性质求解.①熟记正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等.②P(X<a)=1-P(X≥a);P(X<μ-a)=P(X>μ+a).三、正态分布的应用在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110]内的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100]间的考生大约有多少人?思路分析:正态分布已经确定,则总体的期望μ和标准差σ就可以求出,这样就可以根据正态分布在三个常见的区间上取值的概率进行求解.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中属于正常情况的人数是().A.997 B.954 C.819 D.683求正态变量X在某区间内取值的概率的基本方法:(1)根据题目中给出的条件确定μ,σ的值;(2)将待求问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化;(3)利用上述区间求出相应的概率.答案:活动与探究1:解:从给出的正态曲线可知该正态曲线关于直线x=20对称,最大值是12π,所以μ=20,12πσ=12π,则σ= 2.所以概率密度函数的解析式是f(x)=12π2(20)4ex--,x∈(-∞,+∞).总体随机变量的期望是μ=20,方差是σ2=(2)2=2.迁移与应用:A活动与探究2:A解析:由X~N(2,σ2),可知其正态曲线如图所示,对称轴为x=2,则P(X≤0)=P(X≥4)=1-P(X<4)=1-0.84=0.16.迁移与应用:C解析:由已知正态曲线的对称轴为x=μ=0,∴P(ξ<-1.96)=P(ξ>1.96)=0.025.∴P(|ξ|<1.96)=1-P(ξ≥1.96)-P(ξ≤-1.96)=0.950.活动与探究3:解:∵ξ~N(90,100),∴μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ]内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110]内的概率就是0.954 4.(2)由μ=90,σ=10得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ]内取值的概率是0.682 6,所以考试成绩ξ位于区间(80,100]内的概率是0.682 6.一共有2 000名考生,所以考试成绩在(80,100]间的考生大约有2 000×0.682 6≈1 365(人).迁移与应用:D解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ<X≤μ+σ)=0.682 6,从而属于正常情况的人数是1 000×0.682 6≈683.1.正态曲线关于y轴对称,则它所对应的正态总体的均值为().A.1 B.-1 C.0 D.不确定2.设随机变量X ~N (1,22),则D ⎝⎛⎭⎫12X =( ).A .4B .2 C.12D .1 3.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ).A .0.447B .0.628C .0.954D .0.9774.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为__________.5.一批灯泡的使用时间X (单位:小时)服从正态分布N (10 000,4002),则这批灯泡使用时间在(9 200,10 800]内的概率是__________.答案:1.C 解析:由正态曲线关于y 轴对称,∴μ=0,均值为0.2.D 解析:因为X ~N (1,22),所以D (X )=4,所以D ⎝⎛⎭⎫12X =14D (X )=1.3.C 解析:∵随机变量ξ服从标准正态分布N (0,σ2),∴正态曲线关于x =0对称.又P (ξ>2)=0.023,∴P (ξ<-2)=0.023.∴P (-2≤ξ≤2)=1-2×0.023=0.954.4.0.8 解析:易得P (0<ξ<1)=P (1<ξ<2),故P (0<ξ<2)=2P (0<ξ<1)=2×0.4=0.8.5.0.954 4 解析:μ=10 000,σ=400,P (9 200<X ≤10 800)=P (10 000-2×400<X ≤10 000+2×400)=0.954 4.。
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
正态分布知识点总结正态分布(Normal distribution)是统计学中最为重要和常见的概率分布之一、其分布特点为钟形曲线,对称分布,均值为中心点,标准差决定了曲线的分散程度。
正态分布在实际应用中非常广泛,特别适用于描述大量独立随机变量之和的分布情况。
一、正态分布的定义和性质1.定义:若随机变量X服从一个均值为μ,标准差为σ的正态分布(记作X∼N(μ,σ)),则其概率密度函数为f(x)=1/(σ√(2π))*e^(-(x-μ)²/(2σ²))2.性质:a.对称性:正态分布是关于均值对称的,即平均值左右两侧的曲线是对称的。
b.中心极限定理:大量独立随机变量的和趋向于正态分布,即使原始数据并不服从正态分布,样本量足够大时,样本均值的分布也会接近正态分布。
c.峰度与偏度:正态分布的峰度为3,即其曲线边际趋于水平而不陡。
偏度为0,即左右两侧的概率密度完全对称。
d.累积分布函数:正态分布的累积分布函数可以用标准正态分布表查找,标准正态分布表给出了标准正态分布的累积概率,从而可以计算出任意正态分布的累积概率。
二、正态分布的参数1.均值(μ):正态分布的均值决定了分布曲线的中心位置。
在标准正态分布中,均值为0。
2.标准差(σ):正态分布的标准差决定了分布曲线的宽度和分散程度。
标准差越小,曲线越尖锐;标准差越大,曲线越平缓。
三、标准正态分布1. 定义:均值为0,标准差为1的正态分布称为标准正态分布(Standard Normal Distribution),记作Z∼N(0,1)。
2.标准化:通过标准化转换,将任意正态分布转化为标准正态分布。
转换公式为Z=(X-μ)/σ,其中X为原正态分布的随机变量,μ为原正态分布的均值,σ为原正态分布的标准差。
3.标准正态分布表:存储了标准正态分布的累积概率值,可用于求解任意正态分布的累积概率。
4.逆标准化:通过标准正态分布表,可以将给定累积概率对应的Z值逆向计算,得到对应的原始分布值。
第二章概率2. 4 正态分布学习目标:1 •了解正态分布的意义.2.能借助正态曲线的图象理解正态曲线的性质•(重点)3.了解正态曲线的意义和性质4会利用(p(x), F(x)的意义求正态总体小于X的概率.(难点)教材整理/正态曲线及正态分布阅读教材P65〜P66,完成下列问题.1.正态变量的概率密度函数正态变量概率密度曲线的函数表达式为1 (乂一”「齐jER其中“,o是参数,且。
>0, —00〈“< + 00, “和。
分别为正态变量的数学期望和标准差.笞案2.正态分布的记法期望为“、标准差为。
的正态分布通常记作N®,/).3.正态曲线正态变量的概率密度函数的图象叫做正态曲线.4.标准正态分布数学期望为标准差为丄的正态分布叫做标准正态分布,记做MOJ).----------- 0微体验0 ----------判断(正确的打“厂,错误的打“X”)⑴正态变量函数表达式中参数“,。
的意义分别是样本的均值与方差.()(2)服从正态分布的随机变量是连续型随机变量.()(3)正态曲线是一条钟形曲线.()(4)离散型随机变量的概率分布规律用分布密度曲线描述,连续型随机变量的概率分布用分布列描述.()【解析】(l)x因为正态分布变量函数表达式中参数“是随机变量取值的平均水平的特征数,可以用样本的均值去估计,而。
是衡量随机变量总体波动大小的特征数,用样本的标准差去估计.(2)7(3)7由正杰分布曲线的形状可知该说法正确.(4)X因为离散型随机变量的概率分布规律用分布列描述,连续型随机变量的概率分布规律用分布密度曲线(函数)描述.【答案】(1)X (2)V (3)J (4)X 教材整理2正态曲线的性质及3。
原则阅读教材P66〜P67习题以上部分,完成下列问题.1.正态曲线的性质⑴曲线在迫的上方,并且关于直线汗卩对称;(2)曲线在时处于最高点,并由此处向左右两边延伸时,曲线逐渐降低,呈现“中间高,两边低”的形状;(3)曲线的形状由参数。
正态分布1.正态曲线及其性质对于正态分布函数:222)(21)(σμπσ--=x e x f ,x ∈(-∞,+∞)由于中学知识范围的限制,不必去深究它的来龙去脉,但对其函数图像即正态曲线可通过描点(或计算机中的绘图工具)画出课本图1-4中的图(1)、(2)、(3),由此,我们不难自己总结出正态曲线的性质。
2.标准正态曲线标准正态曲线N (0,1)是一种特殊的正态分布曲线,它是本小节的重点。
由于它具有非常重要的地位,已专门制作了“标准正态分布表”。
对于抽像函数)()(00x x p x <=-Φ,课本中没有给出具体的表达式,但其几何意义非常明显,即由正态曲线N (0,1)、x 轴、直线0x x =所围成的图形的面积。
再由N (0,1)的曲线关于y 轴对称,可以得出等式)(1)(00x x Φ-=-Φ,以及标准正态总体在任一区间(a ,b)内取值概率)()(a b P Φ-Φ=。
3.一般正态分布与标准正态分布的转化由于一般的正态总体),(2σμN 其图像不一定关于y 轴对称,所以,研究其在某个区间),(21x x 的概率时,无法利用标准正态分布表进行计算。
这时我们自然会思考:能否将一般的正态总体),(2σμN 转化成标准的正态总体N (0,1)进行研究。
人们经过探究发现:对于任一正态总体),(2σμN ,其取值小于x 的概率)()(σμ-Φ=x x F 。
对于这个公式,课本中不加证明地给出,只用了“事实上,可以证明”这几个字说明。
这表明,对等式)()(σμ-Φ=x x F 的来由不作要求,只要会用它求正态总体),(2σμN 在某个特定区间的概率即可。
4.“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,因为对于这类事件来说,在大量重复试验中,平均每试验20次,才能发生1次,所以认为在一次试验中该事件是几乎不可能发生的。
这种认识便是进行推断的出发点。
关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。
正态分布知识点归纳总结一、正态分布的概念正态分布是概率论和统计学中最重要的连续概率分布之一,具有许多重要的性质和应用。
它的密度函数表达式为:\[f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]其中,μ是分布的均值(也称为期望值),σ是分布的标准差,π是圆周率。
该密度函数描述了正态分布的概率密度曲线,呈钟形曲线,中心对称。
正态分布具有以下几个重要的性质:1. 对称性:正态分布是关于均值对称的,即以均值为中心呈对称分布。
2. 峰度:正态分布的峰度为3,表示分布的尾部平缓,数据集中在均值附近。
3. 位置参数和尺度参数:正态分布具有两个参数,均值μ用于描述分布的位置,标准差σ用于描述分布的离散程度。
4. 68-95-99.7法则:正态分布在均值附近有着特别的区间划分规律,约68%的数据落在均值附近一个标准差的范围内,约95%的数据落在两个标准差的范围内,约99.7%的数据落在三个标准差的范围内。
二、正态分布的特性正态分布具有一些独特的特性,使得它在统计学和概率论中广泛应用。
以下是一些正态分布的特性:1. 中心极限定理:若从任意总体中抽取样本,在样本容量足够大时,样本均值的分布将近似服从正态分布,这就是中心极限定理。
2. 独特的形状:正态分布的概率密度函数呈钟形曲线,两侧逐渐平缓衰减,分布的形状独特,使得其具有许多重要的性质。
3. 偏度和峰度:正态分布的偏度(skewness)为0,表示分布的对称性;峰度(kurtosis)为3,表示分布比较平缓。
4. 边缘分布:正态分布具有边缘分布的性质,在多维情况下,边缘分布为正态分布。
正态分布的这些特性使得它成为了统计学和概率论中极为重要的概率分布,被广泛应用于假设检验、置信区间估计、回归分析、贝叶斯分析等统计方法。
三、正态分布的应用正态分布在实际应用中具有广泛的意义,涉及到许多不同领域。
正态分布在频率分布直方图中,当样本点个数越来越大,分组数越来越多时(即组距无限缩小),频率分布直方图的顶边会无限缩小乃至形成一条光滑的曲线。
如图:随机变量X 在每个小区间内取值的频率,接近于X 在那个区间中取值的概率,因此,我们把这条曲线称为X 的概率密度曲线。
曲线呈现“中间高,两边低,左右大致对称”的特点,我们把具有这种特性的曲线叫作正态分布密度曲线,简称正态曲线,它的函数表达式为:),(πR x e x p x ∈=--222)(21)(σμσ其中μ和σ为参数,且0>σ,R ∈μ.)(x p 称为概率密度函数.此时,我们称随机变量X 服从参数为μ和2σ“的正态分布,简记为:)(~2σμ,N X 正态分布密度曲线具有如下特点:1.曲线位于x 轴上方,与x 轴不相交;2.曲线是单峰的,它关于直线μ=x 对称;3.)(x p 在μ=x 处达到最大值πσ21;4.当σ一定时,曲线随着μ的变化而沿x 轴平移;5.σ越大,正态曲线越扁平,σ越小,正态曲线越尖陡;6.曲线与x 轴之间所夹区域的面积等于1.特别地,当数学期望0=μ,方差12=σ时:),(πR x e x p x ∈=-2221)(此时,的正态分布称为标准正态分布,随机变量X 服从标准正态分布记作:)10(~,N X若)(~2σμ,N X ,则随机变量X 在μ的附近取值的概率较大,在离μ较远处取值的概率较小.随机变量X 的取值:落在区间][σμσμ+-,内的概率约为68.27%,落在区间]22[σμσμ+-,内的概率约为95.45%,落在区间]33[σμσμ+-,内的概率约为99.73%.【例题1】在某次数学考试中,假设考生的成绩服从正态分布N(90,100).(1)求考试成绩X 位于区间[70,110]上的概率;(2)若这次考试共有2000名考生,试估计考试成绩在[80,100]间的考生大约有多少人.【练习】1.某工厂制造的机械零件尺寸服从正态分布N(4,9/4),问:在一次正常的试验中,取1000个零件时,不属于区间(3,5)这个尺寸范围的零件大约有多少个?2.从某批材料中任取一件进行检测,测得材料的强度X 服从正态分布N(200,18).(1)计算取得的材料的强度不低于182的概率;(2)如果所用的材料要求以98%的概率保证强度不低于164,则这批材料是否符合这个要求?。
第2章 第2讲 连续性随机变量 正态分布.正态分布:若概率密度曲线就是或近似地是函数),(,21)(222)(+∞-∞∈=--x e x f x σμσπ的图像,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差. 则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线。
.基本性质:①曲线在x 轴的上方,与x 轴不相交.②曲线关于直线x=μ对称,且在x=μ时位于最高点.③当时μ<x ,曲线上升;当时μ>x ,曲线下降.并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近.④当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.⑤当σ相同时,正态分布曲线的位置由期望值μ来决定.⑥正态曲线下的总面积等于1.. 3σ原则:从上表看到,正态总体在 )2,2(σμσμ+- 以外取值的概率 只有 4.6%,在 )3,3(σμσμ+-以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.68.27,95.45.99.74 考点:1、概率的求解2、期望的求解3、正态分布概念标准正态分布,均值为,方差为1题型一【正态分布小题考察】15.已知随机变量X服从正态分布2-≤≤0.4P X(0),且(20)NσP X>=.=则(2)【题型二,大题训练】22.(本小题满分12分)某商场举行促销活动,有两个摸奖箱,A 箱内有一个“1”号球、两个“2”号球、三个“3”号球、四个无号球,B 箱内有五个“1”号球、五个“2”号球,每次摸奖后放回.消费额满100元有一次A 箱内摸奖机会,消费额满300元有一次B 箱内摸奖机会,摸得有数字的球则中奖,“1”号球奖50元、“2”号球奖20元、“3”号球奖5元,摸得无号球则没有奖金.(1)经统计,消费额X 服从正态分布)625,150(N ,某天有1000位顾客,请估计消费额X (单位:元)在区间(100,150]内并中奖的人数;附:若),(~2σμN X ,则6826.0)(=+<<-σμσμX P ,9544.0)22(=+<<-σμσμX P .(2)某三位顾客各有一次A 箱内摸奖机会,求其中中奖人数ξ的分布列;(3)某顾客消费额为308元,有两种摸奖方法,方法一:三次A 箱内摸奖机会;方法二:一次B 箱内摸奖机会.请问:这位顾客选哪一种方法所得奖金的期望值较大. 18. (本小题满分12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图所示的频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s 2(用频率估计概率,同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s 2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求E (X ).附:150≈12.2. 若Z ~N(μ,σ2),则p(μ-σ<Z<μ+σ)=0.6826, p(μ-2σ<Z<μ+2σ)=0.9544.【综合训练】19. (本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功。
高中数学选修2-3知识点总结Mathematics Elective 2-3 Chapter 1 Counting Principles Must-Know1.What is the principle of n n counting?Answer: To do something。
there are n ways to complete it。
In the first way。
there are m1 different methods。
in the second way。
there are m2 different methods。
in the nth way。
there are mn different methods。
Then there are N=m1+m2+。
+mn different ways to XXX.2.What is the principle of step-by-step n counting?Answer: To do something。
it requires n steps。
There are m1 different methods for the first step。
m2 different methods for the second step。
and mn different methods for the nth step。
Then there are N=m1×m2×。
×mn different ways to XXX.3.What is the n of n?Answer: Generally。
taking m (m≤n) different elements from n different elements。
XXX order。
is called a n of taking m elements from n different XXX.4.What is the n of n?Answer: Generally。
庖丁巧解牛知识·巧学一、正态曲线与正态分布曲线1.正态曲线如果随机变量X 的概率密度函数为φu ,σ(x)=222)(21σπσu x e --,x ∈(-∞,+∞)其中实数u 和σ(σ>0)为参数.我们称φu ,σ(x)的图象为正态分布密度曲线,简称正态曲线.要点提示 高尔顿板试验中,当试验次数越多,也就是放入小球的个数越多,实验就越接近正态曲线.2.正态分布一般地,如果对于任何实数a<b ,随机变量X 满足P(a<X≤b)=⎰ba dx x )(,σμϕ,则称X 的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N(μ,σ2).如果随机变量X 服从正态分布,则记为X —N(μ,σ2).参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.把μ=0,σ=1的正态分布叫做标准正态分布.方法归纳 一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.热点聚焦 正态分布是客观存在的规律,高尔顿板试验只不过是验证了这一规律而已.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦株高、穗长、单位面积产量等;正常生产条 件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等,一般都服从正态分布.所以,正态分布广泛存在于自然现象、生产和生活实际之中.3.正态曲线的特点(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的.它关于直线x=μ对称;(3)曲线在x=μ处达到峰值πσ21;(4)曲线与x轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x轴平移;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.特点(1):说明函数的值域为正实数集的子集,且以x轴为渐近线;特点(2):是曲线的对称性,关于直线x=μ对称;特点(3):说明函数x=μ时取得最大值;特点(4):说明正态变量在(-∞,+∞)内取值的概率为1;特点(5):说明当均值一定时,σ变化时总体分布的集中、离散程度.知识拓展 若标准正态分布N (0,1)总体取值小于x 0的概率用φ(x 0)表示,即φ(x 0)=P(x<x 0),则φ(x 0)+φ(-x 0)=1;对一般正态总体N (μ,σ2)来说,可通过线性代换y=σμ-x 转化为标准正态总体N (0,1).二、3σ原则1.正态分布在区间(μ-a,μ+a ]上的概率若X —N (μ,σ2),则对于任何实数a>0,概率P(μ-a<X≤μ+a)=⎰+-αμαμσμϕdx x )(,为直线x=μ-a,x=μ+a 与正态曲线和x轴所围成的图形的面积.对于固定的μ和a 而言,该面积随着σ的减少而变大.这说明σ越小,X 落在区间(μ-a,μ+a ]的概率越大,即X 集中在μ周围的概率越大.上述规律是通过正态曲线的形象直观地得到的,也就是通过定性分析得到的,事实上我们也可以利用定量计算得到,即通过对定积分⎰+-αμαμσμϕdx x )(,计算得到. 深化升华 几个特殊结论:P(μ-a<X≤μ+a)=0.682 6,P(μ-2a<X≤μ+2a)=0.954 4,P(μ-3a<X≤μ+3a)=0.997 4.2.3σ原则由于正态总体几乎总取值于区间(μ-3a,μ+3a)之内,而在此区间以外的取值的概率只有0.002 6,通常认为这种情况在一次试验中几乎不可能发生.在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X 只取(μ-3a,μ+3a)之间的值,并简称之为3σ原则.深化升华 从理论上可以证明,正态变量在(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)内,取值的概率分别约是68.3%,95.4%,99.7%.由于正态变量在(-∞,+∞)内取值的概率是1,容易得出,它在(μ-3σ,μ+3σ)之外取值的概率是0.3%.于是正态变量的取值几乎都在距x=μ三倍的标准差之内,这就是正态分布的3σ原则.问题·探究问题 1 在高尔顿板试验中,小球第一次与高尔顿板的底部接触时的坐标X 服从正态分布吗?思路:一个随机变量如果是众多的,互不相干的,不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.在高尔顿板试验中,小球到达底部的坐标X 是众多随机碰撞的结果,所以它近似服从正态分布.探究:判断一个变量是不是服从正态分布,就是看是否为随机变量,并且是否符合正态分布的定义及条件.尽管我们是利用高尔顿板试验近似地得到正态曲线,进而得到正态分布.但正态分布是客观存在的规律,这一试验只是验证了这一问题.而且当试验的次数越多,也就是放入的小于的个数越多,试验就越接近正态曲线.问题2 某厂生产的圆柱形零件的外直径X 服从正态分布N(4,0.52),质检人员从该厂生产的1 000件零件中随机抽查一件,测得它的外直径为5.7 cm,试求该厂生产的这批零件是否合格?思路:由X 服从正态分布N(4,0.52),由正态分布性质可知,正态分布N(4,0.52),在(4-3×0.5,4+3×0.5)之外的取值概率只有0.03,而5.7 (2.5,5.5).这说明在一次试验中,出现了几乎不可能发生的小概率事件,据此认为这批零件不合格.探究:解决此类问题可以用假设检验的思想方法来解决,其基本步骤可分为三步.一是提出统计假设,统计假设里的变量服从正态分布N (μ,σ2);二是确定一次试验中的取值σ是否落入范围(μ-3σ,μ+3σ);三是作出判断,如果a ∈(μ-3σ,μ+3σ),则接受统计假设,如果a (μ-3σ,μ+3σ)则拒绝统计假设.要注意小概率事件原理是假设检验的基础.运用小概率事件原理时须注意:这里的“几乎不可能发生”是针对“一次试验”来说的;运用“小概率事件原理”进行推断时,我们也有5%的犯错误的可能.典题·热题例1设ξ服从标准正态分布,则(1)P(ξ<1.8)=___________;(2)P(-1<ξ<1.5)=___________;(3)P(ξ>-1.5)=___________;(4)P(|ξ|<2)=___________.思路分析: 由标准正态分布的性质直接代入求解:(1)P(ξ<1.8)=φ(1.8)=0.964 1;(2)P(-1<ξ<1.5)=φ(1.5)-φ(-1)=0.993 2-1+φ(1)=0.993 2-1+0.841 3=0.774 5;(3)P(ξ>-1.5)=1-P(ξ≤-1.5)=1-φ(-1.5)=φ(1.5)=0.993 2;(4)P(|ξ|<2)=φ(2)-φ(-2)=2φ(2)-1=2×0.977 2-1=0.954 4.答案:(1)0.964 1 (2)0.774 5 (3)0.993 2 (4)0.954 4.方法归纳 利用公式φ(x)=1-φ(-x)及标准正态分布的几何意义(即其概率为相应的曲边多边形的面积),是将求服从正态分布的随机变量的概率转化为求φ(x 0)的值的关键,进而通过查标准正态分布表即可求出相关的概率.同样,利用公式P (X<x )=φ(σμ-x )可将非标准正态分布问题转化为标准正态分布问题,应熟练掌握.例2假设某省今年高考考生成绩ξ服从正态分布N(500,1002).现有考生25 000名,计划招生10 000名,试估计录取分数线.思路分析: 这是一个实际问题,通过数学建模可知,其本质就是一个“正态分布下求随机变量在某一范围内取值的概率”问题.解:设分数线为μ,那么分数超过μ的概率应为录取率,即P(ξ≥μ)=2500010000=0.4, 因为ξ—N(500,1002),所以P(ξ≥μ)=P(100500100500-≥-μξ=1-p(100500100500-<-μξ) =1-φ(100500-μ). 于是有φ(100500-μ)=1-P(ξ≥μ)=1-0.4=0.6. 从标准正态分布表中查得φ(0.25)=0.598 7≈0.6,故φ(100500-μ)≈0.6, 即μ≈525.由此可以估计录取分数线为525分.方法归纳 本题关键是由录取人数(计划招生人数)与考生总数之比求得录取率(即超过录取分数线的概率),从而成功地建立数学模型.例3正态总体N (0,1)的概率密度函数是f(x)=2221x e -π,x ∈R .(1)求证:f(x)是偶函数;(2)求f(x)的最大值;(3)利用指数函数的性质说明f(x)的增减性.思路分析: 对给出的标准正态分布的概率密度函数,可以利用函数的相关知识来研究它的相关性质.解:(1)对于任意的x ∈R ,f(-x)=2)(221x e --π=2221x e -πf(x).所以f(x)是偶函数;(2)令z=22x ,当x=0时,z=0,e x =1, ∵e x 是关于z的增函数,当x≠0时,z>0,e x >1,∴当x=0,即z=0时,22x e =e x 取得最小值,当x=0时,f(x)=2221x e -π取得最大值π21(3)任取x 1<0,x 2<0,且x 1<x 2,有x 12>x 22, ∴2222212221,2x x e e x x x --<-<- 所以2222212121x x e e --<ππ,即f(x 1)<f(x 2).这表明当x<0时,f(x)是递增的.同理可得,对于任取的x 1>0,x 2>0,且x 1<x 2,有f (x 1)>f(x 2),即当x>0时,f(x)是递减的.拓展延伸 已知正态总体的数据落在区间(-3,-1)里的概率和落在区间(3,5)里的概率相等,那么这个正态总体的数学期望为______________.思路分析: 正态总体的数据落在这两个区间的概率相等,说明在这两个区间上位于正态曲线正方的面积相等,另外,因为区间(-3,-1)和区间(3,5)的长度相等,说明正态曲线在这两个区间上是对称的,我们需要找出对称轴.由于正态曲线关于直线x=μ对称, μ的概率意义是期望,我们也就找到了正态分布的数学期望了.因为区间(-3,-1)和区间(3,5)关于x=1对称,所以正态分布的数学期望是1.答案:1深化升华 通过例题的解决总结标准正态分步的概率密度函数的一些性质并注意应用. 例4已知某车间正常生产某种零件的尺寸满足正态分布N(27.45,0.052),质量检验员随机抽查了10个零件,测量得到他们的尺寸如下:27.327.49 27.55 27.23 27.40 27.46 27.38 27.58 27.54 27.68,请你根据正态分布的3σ原则,帮助质量检验员确定哪些应该判定为非正常状态下生产的.思路分析: 正态变量的取值几乎都在距x=μ三倍标准之内,所以对落在区间(27.45-3×0.05,27.45+3×0.05)之外的零件尺寸做出拒绝接受零件是正常状态下生产的假说.解:有两个零件不符合落在区间(27.45-3×0.05,27.453×0.05)内,尺寸为27.23和尺寸27.68的两个零件,它们就是在非正常状态下生产的.深化升华 本例是统计中假设检验的一个实例,依据的准则是正态总体N(μ,σ2)在区间(μ-3σ,μ+3σ)之外取值的概率很小(大约只有0.3%),所以几乎不可能发生.此级HS5的大图若接排前加,若另面则不加。
正态分布教学目的:知识与技能:利用标准正态分布表求得标准正态总体在某一区间内取值的概率。
过程与方法:掌握正态分布与标准正态分布的转换。
情感、态度与价值观:了解正态总体的分布情况,简化正态总体的研究问题 。
教学重点:利用标准正态分布表求得标准正态总体在某一区间内取值的概率。
教学难点:非标准正态总体在某区间内取值的概率及总体在(-∞,a)(0a <) 的概率求法。
教具准备:多媒体、实物投影仪 。
教学设想:了解正态总体的分布情况,简化正态总体的研究问题 。
教学过程:学生探究过程:复习引入:1.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.2.正态分布密度函数: 22()2(),(,)x f x x μσ--=∈-∞+∞,(σ>0) 其中π是圆周率;e 是自然对数的底;x 是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为),(2σμN2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布3.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数)并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学4.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解新课:1.标准正态总体的概率问题:对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ,其中00>x ,图中阴影部分的面积表示为概率0()P x x <只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.52.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即 )()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ.3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可在这里重点掌握如何转化首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生 假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析 假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ)解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342 F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7%因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-=巩固练习:1.利用标准正态分布表,求标准正态总体在下面区间取值的概率(1)(0,1); (2)(1,3)解:(1)P =Φ(1)-Φ(0)=0.8413-0.5=0.3413(2)P =Φ(3)-Φ(1)=0.9887-0.8413=0.15742.若x ~N (0,1),求 P (x <-1).解:由公式Φ(-x )=1- Φ(x ),得P (x <-1)=Φ(-1)=1-Φ(1)=1-0.8413=0.15873.某县农民年平均收入服从μ=500元,σ=200元的正态分布(1)求此县农民年平均收入在500520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)内的概率不少于0.95,则a 至少有多大?解:设ξ表示此县农民年平均收入,则)200,500(~2N ξ520500500500(500520)()()(0.1)(0)0.53980.50.0398200200P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200a ∴Φ≥ 查表知: 1.96392200a a ≥⇒≥ 教学反思:小概率事件:正态总体在(μ-3σ,μ+3σ)以外的概率只有千分之三,这是一个很小的概率这样我们在研究问题时可以集中在(μ-3σ,μ+3σ)中研究,而忽略其中很小的一部分,从而简化了正态正态中研究的问题(1)小概率事件通常是指在一次试验中几乎不可能发生的事件一般情形下,指发生的概率小于5%的事件但要注意两点:一是几乎不可能发生的事件是针对一次试验来讲的,如果试验次数多了,该事件当然是可能发生的;二是利用“小概率事件在一次试验中几乎不可能发生”的思想来进行推断时,也有5%的犯错误的可能(2)正态分布的小概率事件说明正态总体中的绝大部分的数据99.7%落在平均值μ左右各偏3σ的范围内1.已知某车间正常生产的某种零件的尺寸满足正态分布N(27.45,0.052),质量检验员随机抽查了10个零件,测得它们的尺寸为:27.34 、27.49、27.55、27.23 、27.40、27.46、27.38、 27.58、 27.54、 27.68请你根据正态分布的小概率事件,帮助质量检验员确定哪些零件应该判定在非正常状态下生产的解:小概率事件是指在一次试验中几乎不可能发生的思想我们对落在区间(27.45-3×0.05,27.45+3×0.05)=(27.3,27.6)之外生产的零件尺寸做出拒绝接受零件是正常状态下生产的假设有两个零件不符合落在区间(27.3,27.6)之内;答:尺寸为27.23和尺寸为27.68的两个零件,它们是在非正常状态下生产的2.灯泡厂生产的白炽灯寿命ξ(单位:h),已知ξ~N (1000,302),要使灯泡的平均寿命为1000h的概率为99.7%,问灯泡的最低使用寿命应控制在多少小时以上?解:因为灯泡寿命ξ~N(1000,302),故ξ在(1000-3×30,1000+3×30)内取值的概率为99.7%,即在(910,1090)内取值的概率为99.7%,故灯泡的最低使用寿命应控制在910h以上进行假设检验的方法与步骤:(1)提出统计假设,具体问题里的统计假设服从正态分布N (μ,σ2);(2)确定一次试验a 值是否落入(μ-3σ,μ+3σ);(3)作出判断:如果)3,3(σμσμ+-∈a ,就接受假设;如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝假设,说明生产过程中出现了异常情况。
第2章第2讲连续性随机变量正态分布
,x (,)
0)是参数,分别表示总体的平均数与标准差
,f( x )的图象称为正态曲线。
②曲线关于直线x=对称,且在x= 时位于最高点•
③当时X ,曲线上升;当时X ,曲线下降•并且当曲线向左、右两边无限延伸时,
以x轴为渐近线,向它无限靠近.
④当一定时,曲线的形状由确定. 越大,曲线越“矮胖”,表示总体的分布越分散;
越小,曲线越“瘦高”,表示总体的分布越集中.
⑤当b相同时,正态分布曲线的位置由期望值卩来决定.
⑥正态曲线下的总面积等于 1.
.3原则:
从上表看到,正态总体在( 2 , 2 ) 以外取值的概率只有4.6%,在
(3 , 3 )以外取值的概率只有0.3%由于这些概率很小,通常称这些情况发生为小
概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.68.27, 95.45.99.74考点:1、概率的求解
2、期望的求解
3、正态分布概念
.基本性质:
若概率密度曲线就是或近似地是函数
f(x)賦
——e
(x )2
2 2
的图像,其中解析式中的实数、(
则其分布叫正态分布记作:N(,)
.正态分布:
标准正态分布,均值为,方差为1
题型一【正态分布小题考察】
15•已知随机变量X服从正态分布N(0, 2)且P( 2< X < 0) 0.4则P(X 2) _______________
【题型二,大题训练】
22.(本小题满分12分)
某商场举行促销活动,有两个摸奖箱,A箱内有一个“ 1”号球、两个“ 2”号球、三个“3”号球、四个无号球,B箱内有五个“ 1”号球、五个“ 2”号球,每次摸奖后放回•消
费额满100元有一次A箱内摸奖机会,消费额满300元有一次B箱内摸奖机会,摸得有数字的球则中奖,“ 1”号球奖50元、“2”号球奖20元、“3”号球奖5元,摸得无号球则没有奖金.
(1)经统计,消费额X服从正态分布N(150, 625),某天有1000位顾客,请估计消费额X(单位:元)在区间(100, 150]内并中奖的人数;
附:若X ~ N( , 2),则P( X ) 0.6826 ,
P( 2 X 2 ) 0.9544 .
(2)某三位顾客各有一次A 箱内摸奖机会,求其中中奖人数的分布列;
(3)某顾客消费额为308元,有两种摸奖方法,方法一:三次A箱内摸奖机会;方法二:一次B箱内摸奖机会•请问:这位顾客选哪一种方法所得奖金的期望值较大.
「18.(本小题满分12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质
量指标值,由测量结果得如图所示的频率分布直方图:
(1) 求这500件产品质量指标值的样本平均数x
和样本方差s2(用频率估计概率,同一组中的数据用
该组区间的中点值作代表);
(2) 由直方图可以认为,「这种产品的质量指标值
Z服从正态分布N(y,b 2),其中卩近似为样
2 2
本平均数,6 近似为样本方差s .
(i)利用该正态分布,求P(187.8<Z<212.2);
(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8 , 212.2)的产品件数,利用(i)的结果,求E (X) 附:.150 ~ 12.2. 若Z〜2),贝U p(卩—b <Z<u+b )= 0.6826 ,
p(卩一2 6 <Z<y + 2 6 )= 0.9544.
【综合训练】
19.(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球•
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功。
某人第一次
左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X 的分布列和数学期望•
★★★ 1.(本小题满分12分)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可以继续参加科目B的考试。
每个科目只允许有一次补考机会,两个科目成绩均
合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目A成绩合
2 1
格的概率均为-,每次考科目B成绩合格的概率均为丄。
假设他在这项考试中不放弃所有
3 2
的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为X。
(1)求X的分布列和均值;
(2)求该同学在这项考试中获得合格证书的概率。
★★★ 2 (本小题满分12分)
济南市有大明湖、趵突泉、千佛山、园博园4个旅游景点,一位客人浏览这四个景点的
概率分别是0.3 , 0.4 , 0.5 , 0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。
(1 )求=0对应的事件的概率;(2)求的分布列及数学期望。
★★★ 3.袋子中装有8个黑球,2个红球,这些球只有颜色上的区别。
(1)随机从中取出2个球,表示其中红球的个数,求的分布列及均值。
(2)现在规定一种有奖摸球游戏如下:每次取球一个,取后不放回,取到黑球有奖,
第一个奖100元,第二个奖200元,…,第k个奖k 100元,取到红球则要罚去前期所有奖金并结束取球,按照这种规则,取球多少次比较适宜?说明理由。