西安交通大学《高等数学上》全部作业答案及解析
- 格式:pdf
- 大小:7.97 MB
- 文档页数:17
高数上册习题答案5-2高数上册习题答案5-2高等数学是大学数学的一门重要课程,它是理工科学生必修的一门课程。
在高数上册中,第五章是关于极限与连续的内容。
本文将为大家提供高数上册习题答案5-2,帮助大家更好地理解和掌握这一章节的知识。
1. 求极限(a) $\lim\limits_{x \to 0} \dfrac{\sin 2x}{\tan 3x}$解:根据极限的性质,我们可以将$\sin 2x$和$\tan 3x$分别求极限。
$\lim\limits_{x \to 0} \sin 2x = \sin 0 = 0$$\lim\limits_{x \to 0} \tan 3x = \tan 0 = 0$所以,$\lim\limits_{x \to 0} \dfrac{\sin 2x}{\tan 3x} = \dfrac{0}{0}$,这是一个不定式,我们可以尝试使用洛必达法则求解。
令$f(x) = \sin 2x$,$g(x) = \tan 3x$,则原式可以转化为$\lim\limits_{x \to 0} \dfrac{f(x)}{g(x)}$。
根据洛必达法则,我们有$\lim\limits_{x \to 0} \dfrac{f'(x)}{g'(x)} = \lim\limits_{x \to 0} \dfrac{2\cos2x}{3\sec^2 3x} = \dfrac{2}{3}$所以,$\lim\limits_{x \to 0} \dfrac{\sin 2x}{\tan 3x} = \dfrac{2}{3}$。
(b) $\lim\limits_{x \to \infty} \dfrac{x^3 + 3x^2 - 2}{2x^3 - 5x^2 + 4x}$解:根据极限的性质,我们可以将$x^3 + 3x^2 - 2$和$2x^3 - 5x^2 + 4x$分别除以$x^3$。
$\lim\limits_{x \to \infty} \dfrac{x^3 + 3x^2 - 2}{2x^3 - 5x^2 + 4x} =\lim\limits_{x \to \infty} \dfrac{1 + \dfrac{3}{x} - \dfrac{2}{x^3}}{2 - \dfrac{5}{x} + \dfrac{4}{x^2}}$当$x \to \infty$时,$\dfrac{3}{x}$和$\dfrac{2}{x^3}$的值趋近于0,$\dfrac{5}{x}$和$\dfrac{4}{x^2}$的值也趋近于0。
1909高起专药学之高等数学上西交大考试题库及答案函数以一,满足拉格朗日中值定理条件的区间是【】A、[1.2]B、[-2,2]C、[-2,]D、[0.1]正确答案:A学生答案:x2、设/(x)=x+1,则f(r(x)+1)-[】A、xB、x+1C、x+2D、x+3正确答案:D学生答案:X3、;'-e?-x-a【】A、eB、e C1D、1正确答案:B学生答案:x4、下列函数中,不是基本初等函数的是【】Ay-U B.y=lnx*C、,sinx cOsx D.y=师正确答案:B5、r、Jr-1xso()={r T30,则熙(0-[】设函数A、1B、-1C、0D、不存在正确答案:D学生答案:x6.j是示血一-[】A.-2xB.-M-2x+C C、-46-2x D.-2-2x+C正确答案:B学生答案:?7、设函数(x)=(x-1xx-2Xx-3),则方程f(x)=0有[】A、一个实根B、两个实根C、三个实根D、无实根正确答案:B学生答案:x x0?二重极限8**[】A、等于0B、等于1C._!D、不存在正确答案:D利用变量替换x,一定可以把方程xy化为新的方程【】Az,前B、,z,第-‘Ov“8u正确答案:A学生答案:?10、设y=tan'x,则的=[】A.2tan xsec'xdk B、2sin xcos'xxC.2secxtan2xdx D、2cosxsin'xx正确答案:A学生答案:X1.f-u A0D、!正确答案:A学生答案:?12、定积分属如流=】B、2sin2C、2cos2D、2正确答案:A13、y=xtanx-3secx,则y”=[]A、tanx-3secxtanx B.tanx+xsec'x C、xsec1x-3secxtanxD.tanx+xsec'x-3secxtanx正确答案:D学生答案:X14、im'-23若x-a,则a=[】A.1B、2C、3D、4正确答案:D学生答案:x15、满足不等式/x-AIK6(c,4为常数,G>0)的所有x的区间表示为[】A、(4-6,4+6)B、[4-6,d+]C、(-6,s)D、[-s,s]正确答案:A学生答案:x16、1.1-cos2x期sin3”[】A、1B.!正确答案:C17、设()提连续函数且F(x)="/(0d,测F()=1A-e"f(e")-f(x)B.-e7f(e")+f(x)C、e5f(e7)-f(x)D.e"f(e2)+f(x0正确答案:A学生答案:x设(x)在x=0的某个邻域内连续,且f(0)-0,2n'g,则在点x=0处/()是[】A.不可导B.可导,且广(0=0C、取得极大值D、取得极小值正确答案:D学生答案:x19、设/(G)在=处间断,则有[】A.f(x)在x=处一定没有意义B./(co-00*f(x+0)r0lim f(x)*lim f(x),C.m/(o不左在或nf(x)=0D.若f(x)在*=如处有定义,则x→x0时,f(x)-f(o)不是无穷小正确答案:D学生答案:X20.in[111?11极限-L1x2*2?”3x417X(n+D]A.1B.0C、2D、3正确答案:A21、设f(x)=x(x+1)(x+2)(x+100,则/(0)=[】A101!B.99!C、100!D、0正确答案:C学生答案:?--4画数()-x-的间断点为x=【】A、-1B、2C-2D、1正确答案:D学生答案:?23、无穷大量减去无穷小量是【】A、无旁小量B、零C、常量D、未定式正确答案:D学生答案:?24、画数-h(-+y户-2)+、V-x一的定义域为[】A2+9*2B.X+y?4C、x'+y户22D.2<x+y's4正确答案:d< p="">25、设函数y=arcsin(x-2),它的定义域是[】A.Ixl<1B、1<x≤2c、1<x≤3d、lxis3正确答案:c学生答案:x< p="">26、:tanx-sinx期“[】A、0B.1C.!D.I正确答案:D学生答案:x27、im'-3x+2期子-x-2[】A、1B、1C、1D.g正确答案:C学生答案:?28、I南【】A.arcsinx2+cB.Jrone+cC.1M-了+c D、-1i-X+C正确答案:B29.海“(1A.1n(1+2)+cB.2+cC.ln(2+x2)+cD.i+e正确答案:A学生答案:x30、函数y=司x-1+2的极小值为【】A.0B.-1C、1D、不存在正确答案:B学生答案:X二、判断题(70分)31、在区间/上,若函数F(x)可导,且F”(x)=f(x),则F (x)称为f(x)的一个原函数。
第1页/共8页第一章 函数、极限与连续1.1 映射与函数1. (1))(x f 与 )(x h 相同; )(x g 与)(),(x h x f 不同. (2))(x f 与 )(x ψ相同相同)(x ϕ与)(),(x x f ψ不同. (3) )(x f 与 )(x g 相同. 2. (1) [ππ)(12,2+n n ],,2,1,0 =n (2) 21≤a 时[]a a −1,;21>a 为空集. 3. (1)3arctan 213arctan 21xy y x ==;(2)xx y y y x −=−=1ln 1ln; 5.(2),224,216==−)()(πϕπϕ02=)(ϕ. 6. (1)奇 , (2)奇 , (3) 偶. 7..22332+∞<<−h r r h h hr ,)(π1.2 数列的极限1.(1)3⎯⎯→⎯∞→n n x .(2).0⎯⎯→⎯∞→n n x(3)无极限. (4) 无极限. 1.3 函数的极限2. (1) 极限不存在. (2) 极限不存在. (3),2arctan π−⎯⎯→⎯−∞→x x∞→x 时,x arctan 的极限不存在. (4),11⎯⎯→⎯++∞→−x x e ∞→x 时,x e −+1的极限不存在. (5) 极限不存在. 1.4 无穷小与无穷大3.无界,非无穷大. 1.5 极限运算法则1. 2; 2. 0; 3. -1/5; 4. -1; 5. 2x ;6. 2; 7. 0; 1.6 极限存在准则 两个重要极限1.(1) e1; (2) a ; (3) 0 ; (4) x ; (5) 1; (6)2−e ; (7) 1−e ; (8) 3; (9) e . 2. 2 ; 3. 0 1.7 无穷小的比较1. (1)x x ~arctan . (2)e a =时等价; e a ≠时同阶. (3) 同阶. (4) 同阶. 2 (1)6=n ; (2) 1=n ; (3) 8=n . 1.8 函数的连续性与间断点1.(1)2=x ,第一类可去,补充定义-4; 3=x ,第二类无穷. (2),,20ππ+==k x x 第一类可去, 分别补充定义1,0; )(0≠=k k x π为第二类无穷. (3) 0x =第一类跳跃第一类跳跃 (4)0x =第二类无穷第二类无穷2. ),),(,),(,(∞+−−∞−1122.3112∞⎯⎯→⎯−⎯⎯→⎯→−→x x x f x f )(,)(3.)()(,)(0100100f f f =−=+=−, ,0=x 第一类跳跃.4.1±=x ,第一类跳跃.1.9 连续函数的运算与初等函数的连续性1..34==b a ,2. (1)112ln ++e ; (2) 0 ; (3) 1/2 ; (4)-1/56 ; (5) 1/2 ;(6) 0 ; (7) 2−e ; (8) 0 ; (9) ;x sin − (10) 1−e . 第二章 导数与微分 2.1 导数概念1、(1)-20 (2)12、(1)(0)f ′ (2)0()f x ′−(3)02()f x ′3、2,-14、1,1y x y x −=−=−2.2 函数的求导法则1、(1)′=++y x xln ln 2222 (2)′=−+⋅y x x x x x 332155222cos sin sec () (3)2-1(1)y x x =+(4)2cos sin x x x y x −= (5)(2)(3)(1)(3)y x x x x =−−+−−(1)(2)x x +−−(6)21cos sin (1cos )x xy x ++=+ (7)()22224sin1cos (1)x x x y x x ⎡⎤++⎣⎦=+(8)x x chx shx e y x tan sec )(3−+=′ 2、(1)-2 (2)2(1)42π+ 3.(1)38(25)y x =+(2)3sin(43)y x =− (3)22xy a x−=− (4)2sin 4y x =(5)2sec (12)y x x =−−(6)()arctan 21x e y x x =+ (7)211y x=+(8)12(1)y x x =− (9)sec y x =(10)csc y x =(11)()11sin cos sin sin cos n n n n y n x x x x x x −−=+(12)211y x =−− (13)()1ln ln ln y x x x =(14)′=++−y x x x xx xx 3222212123ln ()ln cos4.22()()()()()()f x f xg x g x f x g x ′′++5.445(3),5x x −6.(1)()-241xy exx =−++(2)-24()t ty e e =+或21(ch) (3)24arctan 24xy x =+ (4)arcsin 2x y =(5)4218x x x x y x x x x x x+++=+++ 7.122.3 高阶导数1. (1)214-x (2)()23222aa x −− (3)232(1)x y x −=+2.(1)!n (2) ().xx n e +(3)-1-12sin(2).2n n y x π=+3. (1)4cos xe x −(2)21225(sin 250cos 2sin 2)2x x x x x −++5022.4隐函数及由参数方程所确定的函数的导数1 (1)22.ay x y ax −− (2)′=++−+y y x x y x x y sin cos()cos cos()2.(1)222.y x y −(2)22.e3.sin 11cot 2(1)x xx x x e e x x e ⎡⎤−+−⎢⎥−⎣⎦24.(1)cos sin 1sin cos θθθθθθ−−− (2)sin cos cos sin t t t t +−5.(1)231t t +− (2)1()f t ′′2.5函数的微分1 (1)22)sin 2).xxx e x e dx ++(((2)231(1)dx x + (3)2ln 1)1x dx x −−−((4)42.1xdx x −+2.dx3.提示:利用()(0)(0)f x f f x ′≈+第三章 微分中值定理与导数的应用3.1 微分中值定理1.提示:首先验证函数满足Lagrange 定理的条件,并可求得63(1,2)3ξ−=∈, 使(2)(1)()21f f f ξ−′=−.2.11ln()xe x x θ−=3.方程()0f x ′=有且仅有三个实根,它们分别在区间(0,1),(1,2),(2,3)内.4.提示:利用反证法.5.提示:作辅助函数()x ϕ=(1)10xx e −+>,利用Lagrange 中值定理.3.2 洛必达法则1.32 2. 12 3. 3. 11 4. 12 5. 5. 1 6. 1 6. 0 0 7. 528. 8. 1 1 9. ∞ 10. 13.3 泰勒公式 1.21()ln 2()()244f x x x ππ=−−−−− 232sec tan ()34x πξξ−− ,ξ在,4x π之间.2.2311()2!(1)!xn n xe x x x x o x n =+++++− 3.4 函数的单调性与曲线的凹凸性2. 1(,),(1,)2−∞+∞单调增加,1(,1)2上单调减少.3.2(,),(,)3a a −∞+∞单调增,2(,)3a a 上单调减.4.22[,]33−单调增, 2(,]3−∞−,2[,)3+∞单调减.7. 凸区间(,1]−∞,凹区间[1,)+∞, 拐点11(1,)9−3.5 函数的极值与最大值最小值1.2[1,]e 单调增,(0,1],2[,)e +∞单调减,极小值(1)0f =,极大值224()f e e=2.2,05x x ==3. 极大值213xy ==,极小值312.5x y ==.4. 3,0,1a b c =−==5. 0()f x 是极小值是极小值6.最大值为2,最小值为 -2.7.最小值212x y =−=8.0163x =, max 16()151.73S =9.422,33h R r R == 3.7 曲率1. 曲率2K =,曲率半径12ρ=. 2. 2x π=处曲率最大,为1.高等数学期中自测试题一、DDCDD二、1、[1,2] 2、1/2 3、-14、(1)(1)(0)(0)f f f f ′′>−>5、1t =三、1、(22)n n πππ+,(012)n =±± ,,,2lim ln sin 0x x π→=2、1/43、04、36、(]0−∞,单调减,[)0+∞,单调增单调增五、提示:利用反证法,由零点定理推出矛盾。
2014届高联高级钻石卡基础阶段学习计划《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6)(8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第二天3h1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5) (8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。
第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。
一、选择题(每小题3分,共21分)。
1、当0→x 时,1cos -x 是x 的 ( C )A 、等价无穷小B 、同阶无穷小C 、高阶无穷小D 、低阶无穷小 2、函数x y sin =在0=x 处的导数是 ( D )A 、1B 、-1C 、0D 、不存在 3、下面结论正确的是( C )。
A .e x x x =⎪⎭⎫ ⎝⎛-∞→11limB .e x xx =⎪⎭⎫ ⎝⎛+-∞→11limC .e x xx =⎪⎭⎫ ⎝⎛--∞→11lim D .e x xx =⎪⎭⎫⎝⎛+∞→211lim 4.函数11)(2--=x x x f ,在1=x 是函数)(x f 的 ( A )A 、可去间断点B 、可去间断或无穷间断点C 、跳跃间断D 、无穷间断点 5、已知1yy xe=-,则dy =( B )A. 1yye xe -+B. 1yye dx xe-+ C. 1yye xe -D.1yye dx xe - 6、函数()arctanf x x =在[0,1]上使拉格朗日中值定理结论成立的ξ是( C )A、、-、7、设函数⎰+=Φ221)(x dt t x ,则)('x Φ=( D )A .212x x +B . 21x +C . 41x +D .412x x + 二、填空题(每小题3 分,共15分) 1. 设3)(lim20=→x x f x ,则=→xx f x )(lim 0 0 。
2.+⎰dx x x 221 arctan x x c -+ 。
3.曲线y =1x =处的切线方程是2133y x =+ 。
4.当0x →时,要使无穷小1cos x -与2sin a x 等价,则a =___12_____ 5.当 3xπ=时,函数1()sin sin33f x a x x =+取得极值,则常数a =__2______6. 设常数0a >则定积分 (aax a --=⎰32a π-三、计算题(每小题7分,共42分)1. 计算32lim 1xx x →∞⎛⎫- ⎪⎝⎭()(6)21lim 12xx x --→∞⎛⎫ ⎪=+ ⎪ ⎪-⎪⎝⎭()261lim 12x x x --→∞⎡⎤⎛⎫⎢⎥ ⎪⎢⎥=+ ⎪⎢⎥ ⎪⎢⎥-⎪⎝⎭⎢⎥⎣⎦6e -=2. 计算极限2152lim -∞→⎪⎭⎫⎝⎛++x x x x 。
文案大全第一章 函数与极限作业参考答案第一节 函数(作业一)一、1. C .2.A .3.B .4. B .5.A .6. B .7.A . B .9.B .10. D .二、填空:11.322333a a b ab b +++;12.(12)xxa +;13.sin cos cos sin x y x y +;;14.1;15.2sec x ; 16.22()()a b a ab b -++;17.(1)(21)6n n n ++.三、18.(1) (,0)-∞;(2) [4,][0,]ππ-; (3) ]0,1[-和1=x ;(4)]11,2[]2,11[ --.第一节 函数(作业二)一、1.D .2.C .3.D .4.A .5.A .6.D .7.D .8.B .9.A .10.D . 二、11.1[sin()sin()]2x y x y ++-; 12.1[cos()cos()]2x y x y ++-;13.2sin cos x x ; 14.22cos sin x x -;15...222x x ++; 18.[,]66ππ-; 19.2cos y x =;20.内点.三、计算题:21.πk x x f 2)(-=,当ππ)12()12(+<≤-k x k 时,Z k ∈.22.⎩⎨⎧><+-=.0,0,,)(22x x x x x x x f 23.(1) 3u y =,υu sin =,x v 1=;(2) u y 2=,υarcsin =u ,2x υ=;(3)u y lg =,υu lg =,ωυlg =,21xω=;(4)u y arctan =,υe u =,x cos =υ.第二节 数列的极限(作业一 )一、1. D .2.C .3.C .4.A .5.B .二、6.0;7.1;8.12; 9.0;10.1;11.0;12.0;13.1n;14.1;15.1. 三、计算题:17. (1) 0 ; (2)1;(3) 2 ;(4)13.第二节 数列的极限(作业二 )一、1.A .2.A .3.D .4.B .5.C .6.D .7. B .二、计算下列各题:8;9.1 ;10.12 ;11.32;12. e . 三、计算题:13.(1) 1; (2) ,1;31,1;1,1;1,1-=-=-<>x x x x 发散.14. (1)正确;(2)不正确,如nn a )1(-=;(3)正确;(4)正确;(5)不正确,如!1n a n =,0lim =∞→n n a ,但10lim1≠=+∞→nn n a a ;(6)正确.设A A a a n n n n =⋅=⋅=>∞→∞→ααααα1)1(lim lim ,0.119第三节 函数的极限(作业一)一、1.A .2.A .3. D .4.B .D .6. A .π- 二、计算下列各题:7.27;8; 9.1;10.32;11.3;12.13;13.0;14.1.三、计算题:15.3)(lim 3=-→x f x ,8)(lim 3=+→x f x ;16.不存在;17. 7. 第三节 函数的极限(作业二)一、单项选择题 :1.B .2.B .3.C .4.C .5.C .二、计算下列各题:6.32;7.1;8.94; 9.ln 2;10.1;11.(1)2n n +12.12;13.2;14.3;15.1;16.2e ;17.2;18.1;19.3e -.三、计算题:.第四节 无穷小量与无穷大量一、单项选择题 :1. B .2.A .3.C .4.C .5.B .6.D .7.A .8.B .9.B .二、10.0;11.1;12.29;13.1;14.ae ;15.12;16.12 ;17.1;18.cos a ;19.1;20.0. 三、22.∞→x 时是无穷小,3→x 时是无穷大.23.x ,sin x ,2tan x ,1)-是等价无穷小量.24.1x e -,ln(1)x +1-是与x 同阶的无穷小量.cos 1x -, 2sin x ,2(sin )x 是比x 更高阶的无穷小量.第五节 函数的连续性与间断点(作业一)一、单项选择题 :1.B .2.A .3.A .4.B. 二、填空:5.0;6.0;7.1;8.0;9.12e-.三、10. )(x f 在0=x 不连续;11.1=K ;12.⎪⎩⎪⎨⎧≥<≤<≤=150,6.015050,7.0500,8.0x x x x x x yy 不是x 的连续函数;13.s=332.01.第五节 函数的连续性与间断点(作业二)一、单项选择题:1. B .2.D .3.B .4.D .二、计算下列各题:5.0;6.3;7.1-;8.12e -;9.2π.三、10.(1) 2=x ,无穷型 (2) 1=x ,可去型,2=x ,无穷型 (3) 0=x ,可去型 (4)1-=x ,2-=x ,无穷型 .12.1=a ,1-=b . 13. 可去型.14.无界,非无穷大.第一章 综合练习题1.01=)(f ,02=-)(f ,224=⎪⎭⎫⎝⎛πf ,224=⎪⎭⎫ ⎝⎛-πf ;2.(1) 偶,π=T ; (2) 1=T ;文案大全(3) 偶;3.(1) ↓-∞)0,(,↓+∞),0(,无界; (2) ↑+∞-∞),(,有界; (2) ↑+∞-),1(,无界;(4) ↑-]0,[a ,↓],0(a ,有界;.4.(1))1,0(,1log 2∈-=x xx y ;(2) 0),(21≥-=-x e e y x x;5.)1arcsin()(2x x -=ϕ; 6.21)(2-=x x f ;7..4,0,0,4,,1,ln ))((2>=≠≤⎪⎩⎪⎨⎧=x x x x x x x f ϕ;8.2. 10. 求下列各极限.(1) 1;(2) 3 ;(3) 61;(4) 1;(5) 201032; (6) 0;(7) 1;(8) 0;(9) 4e ;(10)23 ;(11) 43;(12) 1;(13) 25;(14) 4; (15) 2;(16) x ;(17)16-;(18) 1-; (19) 2e -;(20) 2e ;(21) e ;(22) 3e -;(23) 2e -;(24) 16e - ;(25) 4e -(26) 2-. 11.(1) 1=x ,可去型 (2) 1=x ,跳跃型.第二章 导数与微分作业参考答案第一节 导数概念一、单项选择题 :1. B .2.B .3.D .4.C .5.B .C .6.D .7.C . 8.C .9.B .二、填空10.11ln 2xx +;11.2ln 2x xe +;12.cos sin x x -; 1321x-;14. ln x y y ;15.1x xy -;16.1-;17. 2cos a -;18.2ln 2x -;19.()()f a a ϕ'=.三、20. 连续、可导 0)0(='f ; 21. 连续、可导 1)0(='f ;22. 连续、不可导;3. 连续、不可导.第二节 导数的计算 (四则运算)一、 1.D .2.C .3.A .4.B .二、5. 23464y x x '=++;6.323(3y x '=++ 7. 566cos sin y x x x x '=- ;8. (sin cos )sin x x y e x x x xe x '=-+; 9. 2tan sec 3sec tan y x x x x x '=+-;10.1421123333341cos sin cot cos csc cos cos 33y x x x x x x x x x x x x -'=--++; 11. 52323322y x x x --'=--;12.y '=.222121x x y x +-'=+(); 14.22(sin cos )(1tan )sin sec 1tan x x x x x x xy x ++-'=+(); 15. 32322(1)sec tan 6sec 1x x x x xy x +-'=+();12116.2222(1)(2(ln )(2ln 22)2x x x x x x x x x y x x ++-++'=+)(). 17.6x y π='=213+,4x y π='=2 ;18.(0)f '=253,(2)f '=1517;19.4x y π='=8)2(2+π三、 20.切线方程02=-y x ,法线方程02=+y x . 21.ea 21=,切线方程为:022=--e y e x ,法线方程为:01222=+-+)(e y x e .第二节 导数的计算 (复合函数求导法)一、单项选择题 1. C . 2.D .3.B .4.C . 二、5.'tan y x =-;6.2'y =;7.'2sec2tan 2y x x =;8.22222sin 2cos 2sin sin 'cos x x x x x y x +=;9.2211'secy x x =- ;10.'cot y x =; 11.2'2csc 2y x =-;12.'3csc3cot 3y x x =-;13.1'ln (ln 1)x n x y a a nx x x -=+++;14.2'y =;15.'y =;16.y '=412x x+;17.y '=212arcsin xx x x -+; 18.y '=xx x 2ln 1ln arcsin 2-;19.y '=xx e x)1(2arctan+;20.y '=x arccos ;21.y '=x x x 22sec tan 3sin 1+;22.y '=211x +-; 23. y '=xx --1854; 24. y '=x x x x x xxln ln ln 1ln 1ln 22ln 2ln --⋅⋅;25.y '=211x+; 26.y '=x e xe x xx⋅⋅---2ln 2)ln 1(21;27. y '=211x +-;28.y '=22111xx -+-; 29.y '=x e x x1sin 222sin 1-;30.y '=222cos sin 2sin 2sin x x x x x +.第三节 高阶导数一、单项选择题:1.D .2.D .48.3.A .二 填空:4.sin(),1,2,2n x n π+= ; 5.1(1),1,2,n n n x --= ;6.0 ; 7.cos(),1,2,2n x n π+= ;8.,1,2,x e n = ;9.1 . 10. 2cos 2cos sin ln x y x x x x '=-⋅+ ,y ''=22cos 2sin 2ln 2cos 2x xx x x x ---;文案大全11.2y '=+,y ''=252)1(3--x x ;12.y '=,y ''=23222)(x a a --;13.221x y x -'=-,y ''=222)1()1(2x x -+-; 14.2arctan 1y x x '=+,y ''=212arctan 2xxx ++ ; 15.y '=,y ''=232)1(x x +-; 16.2323(1)x y x -'=+,y ''=333)1()12(6+-x x x ; 17. )sin (sin )sin ()cos 1(2x x f x x x f x +'⋅-+''+;18. )()]([)()(22x f x f x f x f '-'';19.322222)](1[)]()([)(1)]()()]([[)(1)()(2x f x f x f x x f x f x f x f x x f x f x f +'-+''+'++'; 20.)()(3)(32xx x x x x e f e e f e e f e ''+'+.三、 21. )(n x e x+; 22.)2(!)2()1(1≥---n x n n n ; 23.n m x n m m m m -++---1)1)(11()21)(11(1 , 24.)212sin(21π-+-n x n .第四节 其他形式下函数求导问题一、1.B .2. B .3. D .4. B .5. C .6.C . 7.A . 二、8.切线方程0222=-+y x ,法线方程0142=--y x ;9.线方程01234=-+y x ,法线方程0643=+-y x三、10.t tan - ; 11. 23-; 12.;2- ;13. π3232e -.四、 14. xy x y xy --; 15.12-y xy ;16. yx y x -+ ; 17.)sin()sin(1xy x xy y +-.第五节 函数的微分一、1.C .2.C .3. C . 4. C .5. C .6. C . 7. C .8. B .9.C . 10.A .二、11.2111sec tan dy dx x x x=-;12.22tan sec dy x xdx =;13.111(sin cos )dy dx x x x =- 14.211dy dx x =-+;15.dy = ;16.22sec ()1sec ()x y dy dx x y +=-+;17.33(2)12t t dy dx t -=-; 18.dy =;19.0t dy dx ==;20.(2sin cos )cos sin t t t t dy dx t t t+=-.三、 21.dx x x x dy )2cos 22(sin += ;22.dx x x e dy x)]3sin()3[cos(----=-;12323. ⎪⎪⎩⎪⎪⎨⎧<<--<<--=10101122x xdx x x dx dy ;24.dx x x x dy )21(sec )31tan(123222+⋅+=;25.dx x dy 232)1(-+=; 26.dx x x x dy 232)1(1)11(32++--=-.第六节 导数在经济分析中的应用1.边际成本5, 边际收入x 02.010-,边际利润x 02.05-;2. 300(单位);3.bp -;4. ⑴ 边际成本x +3,边际收入x50,边际利润x50x --3 ⑵ 1-.5.⑴ 当6190<<p 时,低弹性,当4619<<p 时,高弹性;⑵ 当30ap <<时,低弹性,当a p a<<3时,高弹性; 6. ⑴边际利润 xx 120310--;⑵ 收益的价格弹性p p --10310; 7. ⑴利润函数⎪⎩⎪⎨⎧<<-≤≤--=646402213)(2x x x x x x L ;⑵边际利润⎩⎨⎧<<-≤≤-='641403)(x x x x L . 第二章 综合练习题一、1. D .2. D . 二、3. ⑴ )(0x f '- ⑵)0(f ' ⑶)(20x f ';4. ⑴ t g gt ∆--21100; ⑵ 010gt -; 5. )(x f 在α=x 处可导,且)()(αϕα='f 6. )0(-'f 存在,且='-)0(f )0(+'f ;7.)(0x N ',当劳动力为0x 时,增加一个劳动力时该商品增加)(0x N '(劳动生产率); 8.96%,1.6%;9. 切线方程032=-+y x ,法线方程012=--y x ;10. (1) )111(ln )1(x x x x x x ++++; (2) ])2(3251[25512532+--+-x xx x x ; (3)]1534)2(21[)1()3(254+---++-+x x x x x x ;(4)])1(2sin cos 1[1sin 21x x x e e x x x e x x --+-.11.⑴ 32)2()3(y y e y -- ;⑵ )(cot )(csc 232y x y x ++-; 14.⑴3-t ; ⑵αθθ3csc sec 4;15. )/(1442s m π;文案大全16.当11181==∆=∆dy y x 时, 当0.1 1.161, 1.1x y dy ∆=∆==时,当0.010.110601,0.11x y dy ∆=∆==时.17. 21x y +;18. ⑴ 87476.0;⑵74300' ; ⑶ 9867.9; ⑷ 0052.2 ; ⑸ 96509.0-; ⑹2600'.21. )()(a f a f e '.22. 不一定成立,例⎪⎩⎪⎨⎧>≤=1132)(23x xx xx f ,⎩⎨⎧>≤≠'1212)(2x xx xx f ,⎪⎩⎪⎨⎧>=<='12112)(2x xx x x x f 不存在. 23. R a b A ∈==00;24. 12=±=b a ,.25. x x f xx f ln 1==')(,)(. 26. 0=-y x .27. 111=-=-=c b a .28. 08215=+-y x .29.122-x .30.+---)!3()1(21n n +---)!2()1(21n n )!1()1(1---n n .31. ⑴5.0 当价格4=p 时,如果价格上涨%1,收益增加%5.0⑵64.0- 当价格6=p 时,如果价格上涨%1,收益减少%636.0;如果价格下降%1,收益增加%636.0,应下调价格至16.5.第三章 微分中值定理与导数的应用作业参考答案第一节 微分中值定理一、1. D .2. B . 3. A .4. A .5. B .6.C .7. A .8.C .9.A .10. B .第二节 洛必达(L ’Hospital )法则一、 1. B . 2. B .3. C .4.A .5. B .6. C .二、7.2- ;8.13; 9.a ; 10.0;11.2(3)f '-;12.24a π-;13.12;14.16;15.216.32;17.1 ;18.1;19.31;20.0;21 ∞ ;22.61-e ;23.0;24 π2-e ;19.21;25.a ;26. 21-e;27. 1-e ;28.31e ;29. 41-;30. 21; 31. 2e- .第三节 泰勒(Taylor )公式一、⑴31,⑵ 21-. 二、⑴ ])1[()1()1()1(11332+++-+-+--=x o x x x x;⑵])4[()4(5121)4(641)4(412332-+-+---+=x o x x x x ;125⑶ )(31tan 33x o x x x ++=;⑷ )(21132sin x o x x e x +++= 三、4523)(cos 3]2)()[sin sin(31tan x x x x x x x θθθ+++=, 10<<θ.四、)()!1(!232n n x x o n x x x x xe +-++++= . 五、⑴ 10724.3303≈; 51088.1-⨯≤E ; ⑵ 1827.02.1ln ≈; 4104-⨯≤E第四节 函数性态的研究一、1. B .2. D .3.A .4. B .5. B .6.B .7.C .. B . 9.A .10. B .二、11. 4;12.2-;13.单调增加;14.'(0)0f =,"(0)0f <;15.'0y ≥;16.1p =; 四、19.1)2(=极大y ;20.4)2(-=-极大y ,0)0(=极小y ;21.205101)512(=极大y ;22.无极值. 第五节 函数作图一、1. D .2.C .3. C .4.A .5. C .6.A .7. B .8. C .9.C .10.A . 二、11.0,1y x ==;12. (,0)π; 13.(22-;14.有一个拐点;15.2π+=x y ,2π-=x y ; 16.22049x y -=;17.y x =. 第六节 最大最小值问题及在经济管理中的应用一、⑴ 0)0(=最大y , 16)4(-=最小y ⑵ 45)43(=最大y , 56)5(-=-最小y 二、设半径为32πVr =, 高为34πV h =时, 表面积最小三、产量140=x , 平均成本104=c , 边际成本104='c 四、出售3000=x 件时,收益最高.五、101=p (元), 3920=Q , 167080=最大L (元)第三章 综合练习3.(1)↓)2,0(↑∞+),2(;(2)11(,),(,)22-∞↓+∞↑; (3)↓-∞)0,(↓)21,0(↑)1,21(↓∞+),1(;(4)↑-∞)32,(a ↓),32(a a ↑∞+),(a .4.(提示: 设那条直线为b kx y +=).5. (提示: 设()()nF x x f x =) ;6.2-<a , 无根; 2-=a ,唯一根2-=x ; 2->a ,在),(a -∞和),(∞+a 内各有一根.文案大全7. ⎪⎩⎪⎨⎧=-''≠+-+'='--0,21)0(0,)()()(2x g x x e x g xe x g x x f xx , )(x f '在),(∞+-∞处处连续.9. 驻点1=x , 1)1(=极小y .10. 设)1,0(∈x ,证明:22(1)ln (1)x x x ++<. 11.2)0(=极大f , 21()e f e e--=极小.12.当n 为奇数时, 在0x 无极值,当n 为偶数时, f 在0x 有极值 13.一段为ππ+4a , 另一段为π+44a. 14.当)(0bc a cbp -<<时, 随单价p 的增加,相应的销售额也增加; 当)(bc a c bp ->时, 随单价p 的增加,相应的销售额减少; 当)(bc a c bp -=时, 销售额最大, 2max )(bc a R -=15.定价a b p 2185+=(元)时, 的最大利润: 2)45(16a b bcL -=(元).第四章 不定积分作业参考答案第一节 不定积分的概念及性质一、1. B . 2. D .3. B .4. C .5.C .6.A .7. B .8. C . 9. C .二、10.3tan x c +;11.2arctan x c +;12.ln(x c++;13.tan x x c -+;14.ln x c ++;15.31ln 3x x e c ++;16.cot tan x x c --+;17.1arctan x c x-++; 18.2sincot x x c ++;19.3arcsin x c +;20.ln(x c ++;21.cot x x c --+;22.2ln 2x xe c ++;23.sin cos x x c -+;24.sin 2x xc -+;25.sin x c +; 26.1(sin cos )2x x x c --+;27.1(tan )2x x c ++;28.tan cot x x c -+.第二节 基本积分法 (换元积分法)一、1. C .2.B .3. B .4. B . 5. C . 6.A . 7.A . 8. D .二、9.c x ++)1ln(2;10.212x e c --+;11.c u +-232)5(31; 12.c e x +-1;13.c x x +-arcsin )(arcsin 515;14.c x x +-ln 1;15.1arccos ||c x +;16.c x x +-sec sec 313;12717.c x x ++3tan 31tan ;183arcsin 2x c ++;19.c x x +-⋅9912; 20.c x a a x ++222;21.c x x ++-+2325)1(32)1(52;22.2c +; 23.11cos cos5210x x c -+;24.ln |c -+;25.arcsin x c -; 26.2ln |tan c +.第二节 基本积分法(分部积分法)一、 1.A .2.A . 3.A . 4.A . 二、5.2(22)x e x x c -++;6.c x ex+-)1(2;7.2sin 2cos 2sin x x x x x c +-+.8.ln x x x c -+;9.21arccot(2)ln(14)4x x x c -++;10.2(arccos )2x x x x c +++. 118ln(3x c -++;12.1(sin 22cos 2)5x e x x c --++; 13. 1211cos sin n n n n I x x I n n---=+.第三节 有理函数的积分一、单项选择题: 1. B .2. C .3. D .4. B . 5. A .二、6.c x x +--2)1(; 7.c x x x ++-++33)23ln(2;8.c xx x x ++++2)1(ln 1;9.c x x ++1ln2; 10.21arctan 22(1)x x c x +++;11c +. 122xc +;13.ln |1tan |2x c ++;14.cos 1ln |tan |2sin 22x x c x -++; 15.1ln |sin cos |2x x x c -++..16.1)c +;17.ln ||c +;18.1)x c -+.第四节 不定积分在经济领域的应用1.12212-+=x x y ;2.23252s t t =-+;3.()100()50100,()50C x C x x C x x x =+==+; 4.2()50100P t t t =+; 5.10000.5pQ =⋅文案大全第四章 综合练习一、单项选择题 :1. D . 2. C . 二、3.323c +;4.1ln |cos |c x+;5.c x +;6.137ln |5|ln |2|33x x c ---+; 7.13ln |1|2ln |2|ln |3}22x x x c -+++-++;8.11ln |sec tan |c x x -++;9.1x x e c ++;10.1x x xe c -+;11.12(ln |23|)923x c x++++.三、12.c x x e x +++--)22(2; 13.c x x x ++-2sin 412cos 21;14.3311()ln 39x x x x x c +--+; 15.ln(1)1x xx e c e ---+++; 16.21tan ln |cos |2x x x x c -+++; 17.11cos 2sin 248x x x c -++;18.(cosln sin ln )2x x x c ++; 19.321(ln 3ln 6ln 6)x x x c x-++++.五、23|c -++;24.2(1)arcsin 22x x c -++; 25.11ln ||x c x x ---+;26.c x x ++)ln (2122;27.c e e x x ++-ln ;28.c x++-tan 11;29.ln(1)x x e c -++;30.c x x x ++-cos 2sin ln 2; 31.1(arcsin 2x c -+;32.c x x ++-+4549)32(53)32(91;33.1c +;34.c x x++-)1(ln 1;35.c x f x xf +-)()(';36.c x x x x +-sin 2cos ;37.26ln 11x c x x ++++;38.c x x x x +-++-+312arctan 33)1()1(ln 6122;39.x x c +;40.1x x c ++.41、22(21)x x e c --++.42、()2ln(1)x dx x x c ϕ=-++⎰.43、2211,122max(1,||)0111122x c x x dx x cx x cx ⎧--+<⎪⎪=+≤≤⎨⎪⎪++>⎩⎰. 第五章 定积分及其应用作业参考答案129第一节 定积分的概念与性质一、1. B . 2. C . 3. D . 4.C . 5.A . 6.A .7.C . 二、8.3;9. 3;10.12;11.1;12. 2π;13.76;14. 4. 三、15.⎰⎰>202sin ππxdx xdx ; 16.⎰⎰<-55dx e dx e x x ;17.⎰⎰>20422sin sin ππxdx xdx ; 18.⎰⎰<-202sin sin ππxdx xdx .四、19.a dx eaeaax a 2222≤≤⎰---; 20.ππππ2)sin 1(4542≤+≤⎰dx x ;21.2ln sin 2124≤≤⎰ππdx x x; 22.2arctan 8333ππ≤≤⎰xdx x .第三节 微积分学基本定理一、1. C . 2. B . 3.A .4. B . 5. D . 6. B . 7.A . 8. B . 二、9. (())()f x x ϕϕ';10.2221x x x -++;11.()sin 2x d p x e x dx =; 12.sin cos xx e x e ---;13.1()sin 2sin(2)x x e x d p x e x e e dx--+=-.14.2e ;15.12;16.1;17.1;18.0;19.13-.20.3;21.32;22.3ln 22-;23.2021ln 21;24.23e -.第四节 定积分的换元积分法与分部积分法一、1. B . 2.A . 3.A .34.4. C . 5. C . 6. C . 二、7.0;8.0;9.1;10.8-;11.4ln 3;12.43;13.2;14.21(1)4e --;15.4π;16.51(1)5e -;17.43;18.1596π;19.32π;20.24π.第五节 反常积分初步与Γ函数一、1. D .2.A .3. B .4. D . 5. C . 6. C . 7.A . 8. C .9.A . 10.A .二、11.2;12.4π;13.2π;14.ln 2;15.2;16.0. 17. 18 ;18. π52;19.)1(1n n Γ, (0>n ) ;20.)21(21+Γn 21->n .三、21.0α≥ 发散;0α< 收敛于 1α-; 22.1α≥- 发散;1α<- 收敛于11α-+;文案大全23.1α≥- 发散;1α<- 收敛于11α-+; 24.1α≥- 发散;1α<- 收敛于2)1(1+α;25.2π; 26.发散;27.83;28.1-. 第六节 定积分的几何应用一、单项选择题 1. D .二、2.1132; 3.1132;4.1172; 5.1; 6.1; 7.1132;8.2a π;9.232a π三、10.=x V 2pa π; 11.=x V 312a π;12.=x V π; 13.=x V 24π;14.=x V e e π)52(-;15.=x V 2(1)4e π- =y V 310π; 16.=x V 1287π, =y V π8.12.第七节 定积分的经济应用1.585585058505≈⨯+-e;2.10100QR Qe-=;3.1999331666=;4.(1)9950;(2)19600;5.(1)400台(2)5000元.第五章 综合习题一、1.21;2.22π-;3.2arctan 2-;4.1;5.2ln 27+;6.105584;7.8π;8.13;9.14;10.2;11.1(1ln 2)2-;12.14π-; 14.π-4;15.122;16.154;17.2(1ln 2)-;18.ln 2;19.απsin 2;20.1718-;21.2ln 264π-;22.23;23.8π;24.23ln 211+;25.21(1)2e +;26.21ln 28-;27.21)π;28.9655;29.62ln 2-;30.2;31.2ln 32ln 3-;32.12ln 2-;33.ln 222π+-;34.214e -;35.8(2)e -;36.214e -;37.)1(10-e e .三、不一定;四、16;五、最大值为:3ln 32-;最小值为:0 .六、 1x =为极大值点,2x =为极小值点.七、 ()cos sin f x x x =-.十、在)1,(-∞单减,在),1(∞+单增,在)251,(--∞),251(∞++ 上凸,在)251,251(+-上凹。
西安交通大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1. ( ).
A、
B、
C、
D、
【答案】D
2.设函数,则.
A、正确
B、不正确
【答案】A
3.设函数,则().
A、
B、
C、
D、
【答案】A
4.定积分.
A、正确
B、不正确
【答案】B
5.是偶函数.
A、正确
B、不正确
【答案】B
6.设函数,则().A、
B、
C、
D、
【答案】B
7.设函数,则().A、
B、
C、
D、
【答案】A
8.不定积分().
A、
B、
C、
D、
【答案】C
9.函数的单调减少区间是().
A、
B、
C、
D、
【答案】D
10.微分方程的通解是().
A、
B、
C、
D、
【答案】A
一、一选择题
11.是微分方程.
A、正确
B、不正确
【答案】B
12.函数的图形如图示,则是函数的
( ).
A、最大值点
B、极大值点
C、极小值点也是最小值点
D、极小值点但非最小值点
【答案】C
13.不定积分( ).
A、
B、
C、
D、
【答案】B
14.函数的定义域为.
A、正确
B、不正确
【答案】A
15.不定积分.
A、
B、
C、
D、
【答案】B。
《高等数学》(专升本)(2017)秋试卷总分:100? ? ? ?测试时间:--一、单选题(共?40?道试题,共?80?分。
)1.??如题:A. AB. BC. CD. D2.??如题:A. AB. BC. CD. D3.??如题:A. AB. BC. CD. D4.??如题:A. AB. BC. CD. D5.??如题:A. AB. BC. CD. D6.??如题:A. AB. B7.??如题:A. AB. BC. CD. D8.??如题:A. AB. BC. CD. D9.??如题:A. AB. BC. CD. D10.??如题:A. AB. BC. CD. D11.??如题:A. AB. BC. CD. D12.??如题:A. AB. BC. CD. D13.??如题:A. AB. BC. CD. D14.??如题:A. AB. BC. CD. D15.??如题:A. AB. BC. CD. D16.??如题:A. AB. BC. CD. D17.??如题:A. AB. BC. CD. D18.??如题:A. AB. BC. CD. D ??????满分:2??分19.??如题:A. AB. BC. CD. D20.??如题:A. AB. BC. CD. D21.??如题:A. AB. BC. CD. D ??????满分:2??分22.??如题:A. AB. BC. CD. D ??????满分:2??分23.??如题:A. AB. BC. CD. D ??????满分:2??分24.??如题:A. AB. BC. C25.??如题:A. AB. BC. CD. D ??????满分:2??分26.??如题:A. AB. BC. CD. D ??????满分:2??分27.??如题:A. AB. BC. CD. D ??????满分:2??分28.??如题:A. AB. BC. CD. D ??????满分:2??分29.??如题:A. AB. BC. CD. D ??????满分:2??分30.??如题:A. AB. BC. C31.??如题:A. AB. BC. CD. D ??????满分:2??分32.??如题:A. AB. BC. CD. D ??????满分:2??分33.??如题:A. AB. BC. CD. D ??????满分:2??分34.??如题:A. AB. BC. CD. D ??????满分:2??分35.??如题:A. AB. BC. CD. D ??????满分:2??分36.??如题:A. AB. BC. C请同学及时保存作业,如您在20分钟内不作操作,系统将自动退出。
第一章 函数与极限本章要点:1.函数极限的概念(对极限的N -ε、δε-定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求。
)2.极限四则运算法则。
3.两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
4.无穷小、无穷大,以及无穷小的阶的概念。
会用等价无穷小求极限。
5.函数在一点连续的概念。
6.间断点的概念,并会判别间断点的类型。
7.初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理.)本章目标:1.理解函数的概念的理解复合函数的概念,了解反函数的概念。
2.了解函数的奇偶性、单调性、周期性和有界性。
3.掌握基本初等函数的性质及其图形。
4.会建立简单实际问题中的函数关系式。
5.理解极限的概念(对于给出ε求N 或δ不作过高要求。
)6.掌握极限的四则运算法则。
7.了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
8.了解无穷小、无穷大,以及无穷小的阶的概念。
会用等价无穷小求极限。
9.理解函数在一点连续的概念。
10.了解间断点的概念,并会判别间断点的类型。
11.了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理。
) 本章重点:1.函数极限的概念,会求一些简单函数的极限。
2.函数在一点连续的概念,会判断一些简单函数间断点的类型。
本章难点1.两个极限存在准则;2.判别间断点的类型。
第一章 总结本章主要介绍了极限的概念、极限存在的判定准则,极限的求法以及连续函数的定义与性质. 利用极限的定义证明函数(或数列)以某确定常数为极限,是本章的难点之一。
极限存在性问题是本章的重点,也是难点.一般地,常用以下方法判定一个极限是否存在:(1)利用单调有界准则;(2)利用夹逼准则;(3)利用柯西准则;(4)利用左右极限是否存在且相等;(5)利用子数列或部分极限。
掌握好求极限的方法是学好高等数学所必须的,这是本章的重点内容。
目前为止,我们可以(1)利用定义验证极限;(2)利用极限四则运算法则求极限;(3)利用重要极限求极限;(4)利用无穷小量等价代换求极限;(5)利用夹逼准则求极限;(6)利用单调有界数列必有极限准则求极限;(7)利用函数连续性求极限等等.在后面的章节中,我们还会陆续介绍其它一些求极限的方法。
西交《高等数学(上)》(一)第一章函数极限与连续性一、函数定义的两个要素是什么?“如果自变量 x 在允许范围 X 内任取一个数值时,变量 y 是按一定的规则总有确定的数值和它对应,则称 y 是 x 的函数,常记为. ”我们称之为函数的“依赖关系”定义。
这个定义的关键特征为:—— x 的允许范围,即函数的定义域;——对应规则,即函数的依赖关系 .可以说函数概念有两个基本要素:定义域、对应规则。
只有当两个函数的定义域与对应规则完全相同时,才能认为它们是同一函数。
读者仔细分析教材就可以发现,“对应规则”是本章的一条知识线,它串起了许多概念。
由于函数的定义中并没有限制“对应规则”与 y的取值特点,因此可能出现:(1)当自变量 x 的值变动时,变量 y 的取值并不一定随 x 的变化而变化, y 可能总取一值。
如 y = 3 表示不论 x 取什么值,所对应的 y 的值总是 3 ,因此它符合函数的定义,可以说 y = 3 是函数。
通常称 y = c 为常量函数。
(2)函数对应规则的形式没有限制。
① 如果函数对应规则是解析表达式,可称函数为显式形式。
② 如果函数对应规则是方程,可称 y为 x的隐函数。
③ 如果函数对应规则在自变量的不同范围是由几个不同的解析表达式而表示的,例如则称为分段函数。
注意这里不可以说是三个函数,应该说是定义域为的一个函数,在不同的范围它是由三个不同解析表达式来表达而已。
④ 如果对应规则是由表格或图形表示出来,那么常称这种表示为函数的表格法或图形表示法。
⑤ 如果 x 与 y 通过第三个变量 t 而联系起来,如则称这种函数关系为参数方程表示的函数 .二、研究函数的单调性、有界性能否离开自变量的范围?不能。
如当时为单调减少函数;当时为单调增加函数;在(-1,1)内为非单调函数。
同样,在(0,1)内有界函数,在内为无界函数。
如果说函数为单调函数或有界函数,而没有指明其范围,通常要理解为是在其定义域内而言。
习题1—71.指出下列各函数的间断点以及所属的类型。
如果是可去间断点,则重新定义函数值使函数在该点连续(1)23x -x 1-x y 22+=解:1x 023x -x 2=→=+,2x =22-x 1x lim 23x -x 1-x lim y lim 1x 221x 1x -=+=+=→→→,y lim 2x →不存在 所以1x =,是函数的第一类间断点,且是可去间断点 定义当1x =,-2y =可使函数在1x = 点连续。
2x =是函数的第二类间断点(2)2x x xy 2-+=解:→⎩⎨⎧≥=-+0x 02x x 21x =,y lim 1x →不存在,所以1x =是函数的第二类间断点 (3)x x 1x -1limy 2n2nn +=∞→ 解:1x >时,x x 1x11x 1lim x x 1x -1limy 2n 2nn 2n2nn -=+-=+=∞→∞→1x =时,0x x 1x -1limy 2n 2nn =+=∞→ 1x <时,x x x 1x -1limy 2n2nn =+=∞→ -1y lim 01x =+→,1y lim 01x =-→,0y 1x ==,所以1x =是函数的第一类间断点-1y lim 01x =+-→,1y lim 01x =--→,0y 1x =-=,所以1x -=是函数的第一类间断点(4)x 1x)1(y +=解:e x )1(lim y lim x10x 0x =+=→→,0x =时,x1无意义,x 1x)1(y +=无意义,所以0x =是函数的第一类间断点。
定义0x =时,e y =可使函数在0x =处连续 2.写出函数在点x 0连续的ε—δ定义。
解:设函数x)(f 在点x 0的某邻域内有定义,0>∀ε,0>∃δ,x ∀:δ<0x -x ,使ε<)x (-(x)0f f 成立,则x)(f 在点x 0处连续3.(1)函数x)(f 在点x 0连续,而函数x)(g 在点x 0不连续,问此两函数之和在点x 0是否连续?那么此两函数的积呢?(2)在点x 0,x)(f 与x)(g 都不连续,则两函数的积是否必不连续? 解:(1)①(x)x)(g f +在x 0处不连续证明:设(x)x)(g f +在x 0处连续,则0>∀ε,01>∃δ,x ∀:10x -x δ<,2/)x ()x (-(x)x)(00ε<-+g f g f2/)x ()x (-(x )x )(2/00εε<-+<-g f g f)]x (-x )([2/)x ((x ))]x (-x )([2/000f f g g f f -<-<--εε由于x)(f 在x 0处连续,所以0>∀ε,02>∃δ,x ∀:20x -x δ<,2/)x (-x)(0ε<f f ,2/)x (-x )(2/0εε<<-f fεεεε=--<-<-]2/[2/)]x (-x )([2/)x ((x )00f f g g εεεε-=-->-->-2/2/)]x (-x )([2/)x ((x )00f f g g故: ε<-)x ((x)0g g所以0>∀ε,},m in{21δδδ=∃,x ∀:δ<0x -x ,使ε<-)x ((x)0g g 成立。
第一学期高等数学(一)作业(四) 三、计算下列极限班级: 姓名: 学号: 1、xx xx x x x --+→e sin lim 20一、填空题1、函数x x f x 2e )(2-=在区间 内单调增加.2、极限=+-→201e lim x x x x . 3、函数x x xf 3)(3-=极大值为 .4、极限()=+-→xx xx 101ln 1lim . 5、极限=+++∞→21)e (1ln lim xx x .二、单项选择题1、设)(x f 在),(∞+-∞上连续,且0)()()(lim 2000>=--→k x x x f x f x x ,则 . (A) )(0x f 是)(x f 的最小值; (B) )(0x f 是)(x f 的极大值;(C) )(0x f 是)(x f 的极小值; (D) )(x f 在0x 的某邻域内单调增加.2、方程13=+x x有 个实根.(A)0; (B)1; (C)2; (D)3.3、若函数)(x f y =在点0x x =处取得极大值,则必有 . (A )0)(0='x f ; (B )0)(0<''x f ;(C )0)(0='x f 且0)(0<''x f ; (D )0)(0='x f 或)(0x f '不存在.4、极限=⎪⎪⎭⎫ ⎝⎛+-→)1(ln 11lim 0x x x . (A)0; (B)21; (C)21-; (D)2-.5、设193)(23+--=x x x x f ,则)(x f 的极小值为 .(A)30-; (B)26-; (C)10-; (D)6.2、()xxx x 130e lim+→.3、xxx x 3sin 0sin e e lim -→.4、100102e lim xxx -→.5、设)(x f 具有二阶导数,且0)0()0(='=f f ,6)0(=''f 时,求420)(sin limx x f x →.四、证明不等式1、当1>x 时,x x e e >.2、当0>x 时,x x xx<<+arctan 12.五、解答下列各题1、试比较πe 与eπ的大小.2、设)(x f 在],[b a 上连续,在),(b a 内可导,证明:至少存在一点),(b a ∈ξ,使得)()()()(ξξξf f ab a af b bf '+=--.3、设)(x f 在]1,0[具有二阶导数,且0)1(=f ,设)()(2x f x x F =,证明:存在一点)1,0(∈ξ,使得0)(=''ξF .参考答案一、 1、),0[∞+; 2、21-; 3、2)1(=-f ; 4、21; 5、1. 二、 1、(C); 2、(B); 3、(D); 4、(C ); 5、(B ). 三、 1、 1; 2、 4e ; 3、61; 4、0; 5、3. 五、 1、e ππe >,提示:令x x x f ln )(=,比较e e ln 与ππln 的大小.。
大学高等数学上册教材答案导言:大学高等数学上册是一门重要的数学课程,对于大学生学习数学以及发展逻辑思维具有重要意义。
在学习过程中,答案是一个必不可少的辅助工具,能够帮助学生检验学习的掌握程度。
本文将为大学高等数学上册教材中的部分习题提供答案与解析,有助于学生查漏补缺,提高数学能力。
1. 第一章:函数与极限1.1 概念与性质1.1.1 【例1】已知函数f(x)=2x^2-3x+1,求函数f(x)在x=2处的极限值。
答案:首先将x=2代入函数f(x),得到f(2)=2(2)^2-3(2)+1=9。
因此,函数f(x)在x=2处的极限值为9。
1.2 函数的极限1.2.1 【例2】求函数f(x)=3x^2-2x+5在x趋于无穷大时的极限。
答案:当x趋于无穷大时,可以使用“洛必达法则”来求解极限。
根据洛必达法则,对于f(x)=3x^2-2x+5,在x趋于无穷大时,求导得到f'(x)=6x-2。
因此,函数f(x)在x趋于无穷大时的极限为正无穷。
2. 第二章:导数与微分2.1 导数的概念与性质2.1.1 【例3】已知函数f(x)=2x^3-4x+1,求函数f(x)的导数。
答案:对函数f(x)=2x^3-4x+1求导数,即对各项依次求导。
得到f'(x)=6x^2-4。
2.2 基本初等函数的导数2.2.1 【例4】求函数f(x)=sin(3x)的导数。
答案:根据基本初等函数的导数性质,对于函数f(x)=sin(3x),其导数为f'(x)=3cos(3x)。
3. 第三章:微分中值定理与导数应用3.1 微分中值定理3.1.1 【例5】应用微分中值定理证明: 函数f(x)=x^3-4x在开区间(-2,2)内至少有一个零点。
答案:根据微分中值定理,对于函数f(x)=x^3-4x,当x在(-2,2)内取到两个不同的值时,必然存在某个c,使得f'(c)=0。
因此,函数f(x)=x^3-4x在开区间(-2,2)内至少存在一个零点。
《高等数学(上)》——学习指南一、选择题1.函数lg(1)y x =-的反函数是【 】A. 1x y e =+B. 101x y =+C.101y x =-D. 101y x -=+ 参考答案:B对等式两边做e 的指数,得到101y x =-,变换一下因变量和自变量得到:101x y =-。
即:101x y =+2.极限1111lim 122334(1)n n n →∞⎡⎤++++=⎢⎥⨯⨯⨯⨯+⎣⎦【 】 A. 1 B. 0 C.23 D. 32参考答案:A由题目知通项n S 有如下的形式:()1111+12233411111111122334111111111223341111n S n n n n n n n =+++⨯⨯⨯⨯+⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭=-+-+-++-+=-+ ()11111lim +lim 1112233411n n n n n →∞→∞⎡⎤⎡⎤+++=-=⎢⎥⎢⎥⨯⨯⨯⨯++⎣⎦⎣⎦3.若33222lim 3x x x a→-=-,则a =【 】 A. 1 B. 2 C. 3 D. 4参考答案:D()()()332233222222lim 3lim 230lim 383223834x x x x x ax x a x x a a a →→→-=-⇔---=⇔-=-⇒-=-⇒=4.当1x →时,21()1f x x =-【 】 A. 极限不存在 B. 是无穷大量 C. 是无穷小量 D. 是未定式参考答案:B当x 趋向于1时,分母趋向于0,任意常数除以0都是无穷大量。
所以原式是一个无穷大量。
5.设函数2sin(2)()32x f x x x +=-+, 那么函数的所有间断点是【 】A. 0B. 1和2C.2-D.1-和3参考答案:B()()()()()2sin 2sin 23212x x f x x x x x ++==-+--,当1x =或者2时,分式的分母等于零,方程没有意义。
高等数学上教材习题答案1. 习题1.11. 求下列函数的导数:(1) f(x) = 2x^3 + 5x^2 - 4x + 3解:f'(x) = 6x^2 + 10x - 4(2) g(x) = sin(x) + cos(x)解:g'(x) = cos(x) - sin(x)2. 求函数f(x) = x^3 - 3x在区间[-2, 2]上的极值点。
解:首先求得f'(x) = 3x^2 - 3,在区间[-2, 2]上解方程f'(x) = 0,得到x = -1, 1。
然后计算f(-2) = -2,f(-1) = 2,f(1) = -2,f(2) = 2。
所以在x = -1处取得极小值2,在x = 1处取得极大值-2。
2. 习题1.21. 求下列函数的不定积分:(1) ∫(3x^2 + 2x - 1)dx解:∫(3x^2 + 2x - 1)dx = x^3 + x^2 - x + C,其中C为常数。
(2) ∫(e^x + sin(x))dx解:∫(e^x + sin(x))dx = e^x - cos(x) + C,其中C为常数。
2. 计算定积分∫[0, π/2](sin(x) + cos(x))dx。
解:∫[0, π/2](sin(x) + cos(x))dx = [-cos(x) + sin(x)]|_0^(π/2) = 2。
3. 习题1.31. 求下列函数的级数展开式:(1) f(x) = 1 / (1 - x)解:f(x) = 1 + x + x^2 + x^3 + ...(2) g(x) = ln(1 + x)解:g(x) = x - x^2/2 + x^3/3 - x^4/4 + ...2. 判断级数∑(n=1 to ∞) (1/2)^n的收敛性。
解:根据等比数列求和公式,我们知道当|x| < 1时,级数∑(n=1 to ∞) (1/2)^n收敛。
由于(1/2)^n的绝对值小于1,所以该级数收敛。