神经网络自组织模糊控制器的设计及应用
- 格式:doc
- 大小:11.55 KB
- 文档页数:1
机器人控制系统设计中的模糊控制器调参方法机器人控制系统中,模糊控制器是一种重要的控制方法,它能够处理模糊和不确定性的问题。
然而,模糊控制器的性能很大程度上取决于其参数的调节。
在本文中,我们将探讨机器人控制系统设计中模糊控制器的调参方法。
在机器人控制系统中,模糊控制器的调参方法旨在使其在不同工况下实现良好的控制性能,包括快速响应、精确跟踪、抗干扰能力等。
首先,最常用的模糊控制器调参方法是试错法。
试错法基于经验和实践,通过不断地调节模糊控制器的参数,观察系统的响应,从而逐步达到最优的控制效果。
试错法的关键是对模糊控制器的参数进行合理的调整,可以使用一些性能指标来衡量控制效果,并根据系统的要求进行适当调整。
其次,基于神经网络的模糊控制器调参方法也被广泛应用于机器人控制系统中。
通过训练神经网络来学习模糊控制器的参数,可以提高模糊控制器的自适应能力。
具体而言,首先需要确定神经网络的结构和参数,然后使用已知的控制策略和训练数据对神经网络进行训练。
训练完成后,可以将训练得到的参数应用于模糊控制器,并通过迭代优化来进一步提高控制性能。
此外,进化算法也是一种有效的模糊控制器调参方法。
进化算法基于生物进化的原理,通过自然选择和优胜劣汰的机制,从一个初始的种群中逐步演化得到最优解。
在机器人控制系统中,可以将模糊控制器的参数看作染色体,并使用进化算法对参数进行优化。
具体实施时,首先需要确定适应度函数,然后根据适应度函数对种群进行选择、交叉和变异,最终得到最优的模糊控制器参数。
最后,专家经验法也是一种常用的模糊控制器调参方法。
该方法基于专家的经验和知识,通过提取和总结专家的经验,将其转化为调参规则和策略,进而指导模糊控制器的调参过程。
根据不同的控制系统和任务需求,可以制定相应的专家经验法进行参数调节。
总结起来,机器人控制系统设计中,模糊控制器调参方法多种多样。
根据不同的应用场景和任务需求,我们可以选择试错法、基于神经网络的调参方法、进化算法或专家经验法等方法进行调参。
模糊控制理论模糊控制理论是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
模糊控制作为以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,它已成为目前实现智能控制的一种重要而又有效的形式尤其是模糊控制与神经网络、遗传算法及混沌理论等新学科的融合,正在显示出其巨大的应用潜力。
实质上模糊控制是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
本文简单介绍了模糊控制的概念及应用,详细介绍了模糊控制器的设计,其中包含模糊控制系统的原理、模糊控制器的分类及其设计元素。
“模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。
“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。
模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量与模糊逻辑推理为基础的一种计算机数字控制技术。
模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
在1968~1973年期间Zadeh·L·A先后提出语言变量、模糊条件语句与模糊算法等概念与方法,使得某些以往只能用自然语言的条件语句形式描述的手动控制规则可采用模糊条件语句形式来描述,从而使这些规则成为在计算机上可以实现的算法。
1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器, 并把它应用于锅炉与蒸汽机的控制,在实验室获得成功。
这一开拓性的工作标志着模糊控制论的诞生并充分展示了模糊技术的应用前景。
模糊控制实质上是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
模糊控制与神经网络控制模糊控制和神经网络控制是现代控制领域中的两个重要研究方向,它们通过不同的方法和理论来解决复杂系统的控制问题。
本文将就这两种控制方法进行介绍和对比,并探讨它们在实际应用中的优劣势。
一、模糊控制模糊控制是一种基于模糊逻辑理论的控制方法,它通过将输入和输出之间的关系进行模糊化来实现系统的控制。
模糊控制器的设计通常包括模糊化、规则库的建立、推理机制以及解模糊化等步骤。
在模糊控制中,输入和输出以模糊集形式表示,通过一系列的模糊规则进行推理得到控制信号。
模糊规则库中存储了专家知识,根据实际问题的需求可以设计不同的规则。
推理机制使用模糊规则进行推理,最后通过解模糊化将模糊输出转化为具体的控制量。
模糊控制的优点之一是适用于非线性和不确定性系统,它能够通过模糊化处理来处理实际系统中的不确定性和模糊性。
此外,模糊控制能够利用专家经验进行控制器的设计,无需准确的系统数学模型。
然而,模糊控制也存在一些局限性。
首先,模糊控制的规则库和参数通常需要由专家进行手动设计,这对专家的经验和知识有一定的要求。
其次,模糊控制的性能也会受到模糊规则的数量和质量的影响,如果规则库设计不当,控制性能可能无法满足要求。
二、神经网络控制神经网络控制是一种基于人工神经网络的控制方法,它通过将系统模型表示为神经网络结构来实现控制。
神经网络是一种模仿生物神经系统结构和功能的计算模型,具有自适应学习和适应性处理的能力。
在神经网络控制中,神经网络被用作控制器来学习系统的映射关系。
通过输入和输出的样本数据,神经网络根据误差信号不断调整权重和阈值,使得输出逼近于期望输出。
神经网络控制通常包括网络的结构设计、学习算法的选择和参数调整等步骤。
与模糊控制相比,神经网络控制具有更好的自适应性和学习能力。
它能够通过学习过程来建立系统的非线性映射关系,并且对于未知系统具有较好的鲁棒性。
此外,神经网络控制不需要准确的系统模型,对系统的数学模型要求相对较低。
用人工神经网络(ANN)实现模糊控制康赐荣(华侨大学电子工程系,泉州362011)摘要:讨论模糊控制及用人工神经网络实现模糊控制的有关问题,并给出了仿真实例,仿真结果表明,用ANN 实现模糊控制是可行的。
关键词:人工神经网络;模栩控制Abstract:Some issues which relate to fuzzy control and implementation of fuzzy control with ANN are discussed. Some simulative examplesa reg iven.S imulative results show that fuzzy control using ANN is available.Keyw ords:ar tificialn euraln etwork;fuzzyc ontrol模糊控制把人们对生产过程的控制经验归纳成模糊控制规则集,属于语言控制,它不需要知道过程的数学模型,且鲁棒性强。
人工神经网络(ANN)具有处理的并行性、信息存贮的分布性、自学习和容错性等拟人特性。
本文用人工神经网络实现模糊控制,仿真结果表明本方法的有效性。
1 模糊控制模糊控制系统组成如图1所示+[1执行精确量图1 模糊控制系统的组成框图由图可见,控制系统的计算可分为四步:(1 )计算现时误差及误差变化率(精确量);(2) 把它们转换成模糊量,即模糊化;(3) 按推理的合成规则计算出决策模糊量;(4 )计算调整该过程所需的确定输人,即去模糊。
·将精确量转换成模糊量将精确量离散化,把它分为若干档,每一档对应一个模糊子集,它们可用模糊语言表示如下:NB(负大),NM(负中),NS(负小),ZE(零),PS(正小),PM(正中),PB(正大)。
某个精确量属于某个模糊子集的程度用隶属度表示,而隶属度可由隶属函数计算得到,隶属函数可取等腰三角形:T(x,,u,a)一1一含Ix一,}此处,1为中或高斯函数心值,2。
神经网络自组织模糊控制器的设计及应用
本文设计了一种神经网络自组织模糊控制器,并将它用在对电液位置伺服系统的控制中,为解决系统的不确定性、复杂性和非线性提供了一条有效的途径。
首先,建立了电液位置伺服系统的数学模型,并以此模型作为控制器的设计依据,分析了它的非线性和时变性。
从神经网络和模糊控制的控制原理入手,对它们结合的机理进行了详细地分析,讨论了神经网络和模糊控制结合的几种可行性方案。
其次,提出了神经网络自组织模糊控制器,它采用了预测网络期望输出的方法,并且提出了一个全新的离线估计以前时刻控制输出的算法,从而使神经网络的训练样本具有了完整的形式。
最后,通过计算机仿真实验证明,在对电液位置伺服系统的控制中,应用神经网络自组织模糊控制器较之常规的模糊控制器的位置响应曲线超调更小,振荡幅度更小,动态性能也得到了很好的改善,具有较强的鲁棒性。