9协整与误差修正模型(精选)
- 格式:ppt
- 大小:2.43 MB
- 文档页数:62
协整检验及误差修正模型设随机向量t X 中所含分量均为d 阶单整,记为t X I(d )。
如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为tX CI(d ,b ),向量β被称为协整向量。
特别地,t y 和t x 为随机变量,并且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。
用收入{ln 1(1open —(2)用”;都有明显0.05的显图8-3 序列ln t x 的ADF 检验结果图8-4 序列ln t y 的ADF 检验结果于是尝试对其一阶差分序列采用带常数项的模型进行ADF 检验,首先点击主菜单Quick/Generate series ,出现图8-5的对话框,在方程设定栏里分别输入dlnxt=lnxt-lnxt(-1)和dlnyt=lnyt-lnyt(-1),产生ln t x 和ln t y 的一阶差分序列,为了方便,简记为ln t x ∇和ln t y ∇,一阶差分能初步消除增长的趋势,于是可以对其进行只带常数项的ADF 检验,检验结果见图8-6和图8-7:图8-5图8-6 序列ln t x ∇的ADF 检验结果图8-7 序列ln t y ∇的ADF 检验结果由图8-6和图8-7,得出两个一阶差分序列在=0.05α下都拒绝存在单位根的原假设的结论,说明ln t x ∇和ln t y ∇序列在=0.05α下平稳,即ln (0)tx I ∇,ln (0)t y I ∇,也就是ln (1)t x I ,ln (1)t y I ,这样我们就可以对二者进行协整关系的检验。
2、协整检验:首先用变量ln t y 对ln t x 进行普通最小二乘回归,在命令栏里输入ls lnyt c lnxt ,得到回归方程的估计结果:8-8,在0.051阶单整3。
“协整与误差修正模型”基本内容Abstract本部分我们要介绍时间序列计量经济学模型中的“协整与误差修正模型”内容。
对于时间序列数据而言,若其为非平稳的,那么我们无法使用经典的回归模型,而若变量之间是协整关系(即它们之间有着长期稳定的关系),那么经典的回归模型方法仍然是valid。
简单差分未必能解决非平稳时间序列的所有问题,因此误差修正模型也就应运而生了。
Problem:对于时间序列数据,如果通过平稳性检验为非平稳序列,能否建立经典计量经济学模型?Answer:需要对模型采用的非平稳时间序列进行协整检验。
一、长期均衡关系与协整经济理论指出,某些经济变量间确实存在着长期均衡关系这种均衡关系意味着经济系统不存在破坏均衡的内在机制。
假设和之间的长期“均衡关系”由下式描述:其中,是随机干扰项。
值得注意的是,在期末,存在下述三种情形之一:(1) 等于它的均衡值,即.(2) 小于它的均衡值,即.(3) 大于它的均衡值,即.注意到,如果正确地提示了与之间的长期稳定的"均衡关系",则意味着对其均衡点的偏离从本质上来说是"临时性"的,这个时候自然假设随机干扰项必须是平稳序列。
另外,非平稳的时间序列,它们的线性组合也可能成为平稳的。
Definition3.1一般地,如果序列都是阶单整的,存在向量,使得,其中,则认为序列是阶协整,记为,为协整向量。
注:(1)如果两个变量都是单整变量,只有它们的单整阶相同时,才有可能协整;(2)三个以上的变量,如果具有不同的单整阶,有可能经过线性组合构成低阶单整变量。
阶协整的经济意义:两个变量,虽然具有各自的长期波动规律,但是如果它们是阶协整的,则它们之间存在着一个长期稳定的比例关系。
二、协整的检验1.两变量的Engle-Granger检验(1987年恩格尔和格兰杰提出的两步检验法/EG检验法)(1,1)阶协整最令人关注,EG检验法正是为了检验两个均呈现1阶单整的变量是否为协整的。
第九讲 协整与误差修正模型一、协整的定义假设时间序列12,,...,t t ktxx x 都属于d 阶单整序列I(d),即各时间序列在差分d 次后将变为平稳序列。
如果一非零的常数向量12)(,,...,k a a a '使得:1212(),0...t t kt k x x x I d b b d a a a -<≤+++则称12,,...,t t ktxx x 之间存在阶数为(d,b )的协整关系,i a 是协整参数。
经济变量的单整阶数往往不会超过2。
在实践中经常出现的情况是,12,,...,t t ktx x x 都是一阶单整的,因此,如果12,,...,t t ktxx x 协整,则:1212(0)...t t kt k x x x I a a a +++二、关于协整的经济学含义当很多变量都含有单位根时,除非有一种机制把这些变量联系在一起,否则这些变量会不受约束的各自漫游。
问题是存在这种机制吗?经济学理论经常表明变量间存在某种长期均衡关系。
如果情况确实如此,那么各变量对这种长期均衡关系的偏离不会持久。
因此,经济学理论所表明的长期均衡关系往往暗示了一种把各变量联系在一起的内在机制。
这种机制就是变量间的协整关系。
例一:期货价格是对未来现货价格的预期。
在理性预期假设下,期货价格不会系统性地偏离未来现货价格,因此,期货价格与未来现货价格是协整的。
例二:购买力平价理论认为,本国物价p 与外国物价p *之比决定了名义汇率的均衡值。
名义汇率不应该长期偏离其均衡值,因此,e 与p/p *是协整的。
例三:按照定义,名义利率=实际利率+预期通胀率。
在长期均衡中,按照理性预期假设,预期通胀率将等于通胀率;按照费雪假设(Fisher hypothesis ),实际利率等于自然利率。
假定自然利率为一常数,则名义利率与通胀率的长期均衡关系是名义利率=常数+通胀率。
因此,名义利率与通胀率是协整的。
三、协整检验(一)协整参数已知例如,如果(1),(1)tt x I y I ,现在假设两变量协整,且协整参数为θ。
时间序列的协整检验与误差修正模型时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
协整检验是在时间序列数据中,判断变量之间是否存在长期平衡关系的一种方法。
误差修正模型是在协整关系已经验证的基础上,建立起变量之间的因果关系,对短期的偏离进行修正的模型。
协整检验的原理是基于单位根检验的思想,判断时间序列是否为平稳序列。
平稳序列是指序列的均值和方差不随时间发生变化。
如果两个变量都是非平稳序列,但它们的线性组合是平稳序列,那么可以认为这两个变量是协整的。
常用的协整检验方法有Engle-Granger方法和Johansen方法。
Engle-Granger方法是一种直观简单的协整检验方法。
它的步骤如下:首先,分别对两个变量进行单位根检验,确认它们是否为非平稳序列。
然后,对两个变量进行线性回归,得到残差序列。
接下来,对残差序列进行单位根检验,确认它是否为平稳序列。
最后,如果残差序列是平稳序列,则可以判断两个变量之间存在协整关系。
协整检验完成后,接下来可以建立误差修正模型。
误差修正模型是基于协整关系的基础上建立起来的,以短期的偏离修正为核心。
它的核心假设是,在长期平衡关系的约束下,两个变量之间的短期偏离可以通过一个修正项来消除。
误差修正模型的基本形式是多元线性回归模型,其中包含自变量、因变量以及一个误差修正项。
误差修正模型的估计和推断可以使用最小二乘法或最大似然法等统计方法进行。
通过对误差修正模型的估计和推断,可以对变量之间的因果关系进行分析。
同时,误差修正模型还可以用于预测和决策分析。
综上所述,时间序列的协整检验与误差修正模型是分析变量之间长期关系的重要工具。
协整检验可以判断变量是否具有长期平衡关系,而误差修正模型则可以分析变量之间的短期调整过程。
这些方法在经济学、金融学、管理学等领域都有广泛的应用。
时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
协整检验及误差修正模型设随机向量t X 中所含分量均为d 阶单整,记为t X I(d )。
如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为tX CI(d ,b ),向量β被称为协整向量。
特别地,t y 和t x 为随机变量,并且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。
更一般地,如果一些I(1)变量的线性组合是I(0),那么我们就称这些变量是协整的。
用Eviews5.1来分析1978年到2002年中国农村居民对数生活费支出序列{ln }t y 和对数人均纯收入{ln t x }序列之间的关系。
1、对两个数据序列分别进行平稳性检验:(1)做时序图看二者的平稳性首先按前面介绍的方法导入数据,在workfile 中按住ctrl 选择要检验的二变量,击右键,选择open —as group ,此时他们可以作为一个数据组被打开。
点击“View ”―“graph ”—“line ”,对两个序列做时序图见图8-1,两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。
但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,将他们变成一阶单整序列。
图8-1 ln t x 和ln t y 时序图(2)用ADF 检验分别对序列ln t x 和ln t y 进行单整检验双击每个序列,对其进行ADF 单位根检验,有两种方法。
方法一:“view ”—“unit root test ”;方法二:点击菜单中的“quick ”―“series statistic ”―“unit root test ”。
时间序列的协整和误差修正模型时间序列分析中,协整和误差修正模型是两个重要的概念。
协整是指两个或多个时间序列之间的长期关系,而误差修正模型是一种用来修正时间序列中的误差的模型。
协整是经济学家提出的一个概念,用来解决时间序列数据存在的非平稳性的问题。
在实际应用中,有很多时间序列数据是非平稳的,即其均值和方差不随时间变化而保持不变。
然而,这些非平稳的时间序列之间可能存在长期的关系,也就是说它们会随着时间变化而趋于稳定。
这种关系可以通过协整分析来检验和建模。
协整模型的一种常见形式是误差修正模型(Error Correction Model,ECM)。
误差修正模型是建立在协整模型的基础上的,它可以用来描述时间序列数据之间的长期关系,并且考虑了这些时间序列数据之间的短期变动。
在误差修正模型中,如果两个时间序列之间存在协整关系,那么它们之间的生成误差(随机扰动)会导致它们之间的偏离程度逐渐回归到长期均衡的水平。
因此,误差修正模型是通过引入误差修正项来解决协整关系中存在的短期波动的问题。
误差修正模型的基本思想是,当两个时间序列之间存在协整关系时,如果它们之间的误差超过一定的阈值,那么它们之间的误差就会被修正回长期均衡的水平。
这种修正过程可以通过引入一个误差修正项来实现,从而使得模型具备误差修正的能力。
总之,协整和误差修正模型是对时间序列数据进行建模和分析的重要工具。
协整可以用来检验和描述时间序列之间的长期关系,而误差修正模型则是在协整的基础上引入修正项,用来处理时间序列之间的短期波动。
这些方法在经济学和金融学等领域中具有广泛的应用价值。
协整和误差修正模型是时间序列分析中非常重要的概念。
协整是指两个或多个非平稳时间序列之间存在的长期关系,而误差修正模型则是通过引入误差修正项来描述时间序列的短期波动。
在实际应用中,许多经济和金融时间序列是非平稳的,即它们的均值和方差会随时间变化而发生变动。
这种非平稳性可能会导致误导性的统计结果,因为传统的统计方法要求时间序列数据是平稳的。