计量经济学第五章协整与误差修正模型
- 格式:ppt
- 大小:120.50 KB
- 文档页数:28
协整和误差修正模型一、协整理论 1. d 阶单整序列对不平稳时间序列{}t Y 进行d 阶差分如下(d =1,2,…n):1t t t Y Y Y -∆=- 一阶差分21()t t t t Y Y Y Y -∆=∆∆=∆-∆ 二阶差分……1111()d d d d t t t t Y Y Y Y ----∆=∆∆=∆-∆ d 阶差分若{}t Y 进行d 阶差分后成为平稳序列, 则称{}t Y 为d 阶单整序列。
记为{}~()t Y I d2. 协整定义如果时间序列{}{}{}(1)(2)(),,...,r tttY Y Y 都是d 阶单整序列,即,{}~(),1,2,...,jtY I d j r =,且存在12,,...,rβββ使得(1)(2)()12...~()r t t r t Y Y Y I d b βββ+++-其中b>0, 称序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在(d,b) 阶协整关系。
3. 协整的意义若序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在协整关系,则它们之间存在长期稳定关系,对它们进行回归,可排除伪回归现象。
4. 协整检验EG 两步法( see p.275)二、误差修正模型 ECM 方法:若{}{},t t X Y 都是1阶单整序列,它们存在协整关系,建立自回归模型 012131t t t t t Y X Y X ββββμ--=++++ (1) 整理得:011t ttt Y X e ββγμ-∆=+∆++ (2) 其中t e 为残差序列, 1t e -为误差修正项。
(1) 或(2) 称为ECM模型,用于短期分析。
它们的Eviews命令分别为:LS Y C X Y(-1) X(-1),或:GENR T=Y-Y(-1)GENR H=X-X(-1)GENR e= residLS T C H e(-1)三、实例根据下表,讨论时间序列的平稳性、协整关系以及它们的误差修正模型。
协整与误差修正模型的研究第一部分协整理论概述 (2)第二部分误差修正模型介绍 (4)第三部分协整与误差修正关系 (7)第四部分模型构建与检验方法 (9)第五部分实证分析应用案例 (13)第六部分结果解释与经济含义 (16)第七部分模型局限性与改进方向 (18)第八部分研究展望与未来趋势 (22)第一部分协整理论概述协整理论概述在经济学和金融学中,我们常常遇到时间序列数据之间的长期均衡关系。
然而,在实际经济活动中,这种均衡关系并不总是能够得到严格的保持,而是存在着一定程度的波动和偏差。
为了解决这一问题,经济学家们提出了协整理论。
协整理论是指两个或多个非平稳的时间序列之间存在一种长期稳定的关系。
换言之,即使各时间序列本身是随机游走的过程,它们之间也可能存在一个稳定的线性组合,使得这个组合呈现出平稳性质。
协整理论的发展为研究经济变量之间的长期动态关系提供了一个强有力的工具。
协整理论的核心思想是由 Engle 和Granger 于1987 年提出的。
他们认为,如果两个非平稳的时间序列之间存在协整关系,则这两个时间序列可以通过一个线性组合达到长期均衡状态,且这个线性组合具有零均值、有限方差和恒定自相关等特性。
在这个意义上,我们可以将协整关系看作是一种长期均衡关系的表现形式。
为了检验两个时间序列之间是否存在协整关系,Engle 和 Granger 提出了一种两步法:首先检验每个时间序列是否为非平稳过程;然后,如果这两个时间序列都是非平稳过程,再通过回归分析来检验它们之间是否存在协整关系。
这种方法被称为 Engle-Granger 两步协整检验。
除了 Engle-Granger 两步协整检验之外,还有许多其他的方法可以用来检验协整关系,例如 Johansen 检验和 Pedroni 检验等。
这些方法都可以有效地帮助我们确定不同时间序列之间的协整关系。
协整理论不仅用于检验不同时间序列之间的长期均衡关系,还可以用于构建误差修正模型。
协整与误差修正模型有些时间序列,虽然他们本身非平稳,但是其线形组合确实平稳。
这个线形组合反映了变量之间的长期稳定的比例关系,称为协整关系。
第一节协整的定义与协整检验1、协整的定义如果时间序列nt t t y y y ,,21都是d 阶单整,即)(d I ,存在一个向量),(21n αααα =,使得)(~b d I y -'α,这里),,(21nt t t t y y y y =,0≥≥b d ,则称序列nt t t y y y ,,21是),(b d 阶协整的,记为),(~b d CI y t ,α为协整向量。
本部分只是介绍两个时间序列的协整关系,关于三个以上变量的协整关系将在另外一章予以讨论。
关于两个变量t x 和t y 是否协整,Engle 和Granger 于1987年提出了两步检验法,称为EG 检验。
序列t x 和t y 若都是d 阶单整的,用一个变量对另一个变量进行回归,即有t t t u x y ++=βα用αˆ和βˆ表示回归系数的估计值,则模型残差估计值为 tt t x y u βαˆˆˆ--= 若)0(~ˆI u,则t x 和t y 具有协整关系,且)ˆ(β-I 为协整向量,上式即为协整回归方程。
实例待定误差修正模型误差修正模型是由Davidsom 、Hendry 、Srba 和Yeo 于1978年提出的,称为DHSY 模型。
对)1,1(ADL 模型t t t t t x y x y αββββ++++=--131210移项后整理可得t t t t x y x y αββββββ+⎪⎪⎭⎫ ⎝⎛-+--+∆+=∆-12312101)1( 该方程即为ECM ,其中x y 2311βββ-+-是误差修正项,记为ecm 。
模型解释了因变量t y 的短期波动t y ∆是如何被决定的。
一方面,它受到自变量短期波动t x ∆的影响,另一方面,取决于ecm 。
如果变量t x 和t y 间存在着长期均衡关系,即有x y α=,式中的ecm 可以改写为x y 2311βββ-+= 可见,ecm 反映了变量在短期波动中偏离它们长期均衡关系的程度,称为均衡误差。
协整检验及误差修正模型设随机向量t X 中所含分量均为d 阶单整,记为t X I(d )。
如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为tX CI(d ,b ),向量β被称为协整向量。
特别地,t y 和t x 为随机变量,并且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。
用收入{ln 1(1open —(2)用”;都有明显0.05的显图8-3 序列ln t x 的ADF 检验结果图8-4 序列ln t y 的ADF 检验结果于是尝试对其一阶差分序列采用带常数项的模型进行ADF 检验,首先点击主菜单Quick/Generate series ,出现图8-5的对话框,在方程设定栏里分别输入dlnxt=lnxt-lnxt(-1)和dlnyt=lnyt-lnyt(-1),产生ln t x 和ln t y 的一阶差分序列,为了方便,简记为ln t x ∇和ln t y ∇,一阶差分能初步消除增长的趋势,于是可以对其进行只带常数项的ADF 检验,检验结果见图8-6和图8-7:图8-5图8-6 序列ln t x ∇的ADF 检验结果图8-7 序列ln t y ∇的ADF 检验结果由图8-6和图8-7,得出两个一阶差分序列在=0.05α下都拒绝存在单位根的原假设的结论,说明ln t x ∇和ln t y ∇序列在=0.05α下平稳,即ln (0)tx I ∇,ln (0)t y I ∇,也就是ln (1)t x I ,ln (1)t y I ,这样我们就可以对二者进行协整关系的检验。
2、协整检验:首先用变量ln t y 对ln t x 进行普通最小二乘回归,在命令栏里输入ls lnyt c lnxt ,得到回归方程的估计结果:8-8,在0.051阶单整3。
协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。
当两个变量之间存在协整关系时,它们的线性组合将是平稳的。
协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。
协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。
2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。
3)如果线性组合是平稳的,那么就可以认为存在协整关系。
协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。
但是,协整分析不能提供因果关系,只能提供关联关系。
2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。
它是在协整分析的基础上发展而来的。
误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。
因此,误差修正模型可以用来分析变量之间的动态行为。
基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。
α、β和γ分别表示模型的截距和参数。
误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。
2)构建误差修正模型,通过估计模型参数来描述长期关系。
3)进行模型检验,包括参数显著性检验、拟合优度检验等。
4)根据模型结果进行解释和预测。
误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。
同时,误差修正模型还可以用于预测和政策分析等方面。
但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。
综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。
“协整与误差修正模型”基本内容Abstract本部分我们要介绍时间序列计量经济学模型中的“协整与误差修正模型”内容。
对于时间序列数据而言,若其为非平稳的,那么我们无法使用经典的回归模型,而若变量之间是协整关系(即它们之间有着长期稳定的关系),那么经典的回归模型方法仍然是valid。
简单差分未必能解决非平稳时间序列的所有问题,因此误差修正模型也就应运而生了。
Problem:对于时间序列数据,如果通过平稳性检验为非平稳序列,能否建立经典计量经济学模型?Answer:需要对模型采用的非平稳时间序列进行协整检验。
一、长期均衡关系与协整经济理论指出,某些经济变量间确实存在着长期均衡关系这种均衡关系意味着经济系统不存在破坏均衡的内在机制。
假设和之间的长期“均衡关系”由下式描述:其中,是随机干扰项。
值得注意的是,在期末,存在下述三种情形之一:(1) 等于它的均衡值,即.(2) 小于它的均衡值,即.(3) 大于它的均衡值,即.注意到,如果正确地提示了与之间的长期稳定的"均衡关系",则意味着对其均衡点的偏离从本质上来说是"临时性"的,这个时候自然假设随机干扰项必须是平稳序列。
另外,非平稳的时间序列,它们的线性组合也可能成为平稳的。
Definition3.1一般地,如果序列都是阶单整的,存在向量,使得,其中,则认为序列是阶协整,记为,为协整向量。
注:(1)如果两个变量都是单整变量,只有它们的单整阶相同时,才有可能协整;(2)三个以上的变量,如果具有不同的单整阶,有可能经过线性组合构成低阶单整变量。
阶协整的经济意义:两个变量,虽然具有各自的长期波动规律,但是如果它们是阶协整的,则它们之间存在着一个长期稳定的比例关系。
二、协整的检验1.两变量的Engle-Granger检验(1987年恩格尔和格兰杰提出的两步检验法/EG检验法)(1,1)阶协整最令人关注,EG检验法正是为了检验两个均呈现1阶单整的变量是否为协整的。
一、长期均衡关系与协整二、协整检验三、误差修正模型第三节协整与误差修正模型12一、长期均衡关系与协整0、问题的提出•经典回归模型(classical regression model)是建立在稳定数据变量基础上的,对于非稳定变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。
•由于许多经济变量是非稳定的,这就给经典的回归分析方法带来了很大限制。
•但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration ,则是可以使用经典回归模型方法建立回归模型的。
•例如,中国居民人均消费水平与人均GDP变量的例子中:因果关系回归模型要比ARMA模型有更好的预测功能,其原因在于,从经济理论上说,人均GDP 决定着居民人均消费水平,而且它们之间有着长期的稳定关系,即它们之间是协整的(cointegration )。
31、长期均衡经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。
假设X 与Y 间的长期“均衡关系”由式描述Y t =α0+α1X t +μt式中:μt是随机扰动项。
该均衡关系意味着:给定X 的一个值,Y 相应的均衡值也随之确定为α0+α1X 。
4在t-1期末,存在下述三种情形之一:(1)Y 等于它的均衡值:Y t-1= α0+α1X t ;(2)Y 小于它的均衡值:Y t-1< α0+α1X t ;(3)Y 大于它的均衡值:Y t-1>α0+α1X t ;在时期t ,假设X 有一个变化量ΔX t ,如果变量X 与Y 在时期t 与t-1末期仍满足它们间的长期均衡关系,则Y 的相应变化量由式给出:ΔY t =α1ΔX t +v t式中,v t =μt -μt-1。
5实际情况往往并非如此如果t-1期末,发生了上述第二种情况,即Y 的值小于其均衡值,则Y 的变化往往会比第一种情形下Y 的变化ΔY t 大一些;反之,如果Y 的值大于其均衡值,则Y 的变化往往会小于第一种情形下的ΔY t 。
五 单位根检验、协整与误差修正模型【实验目的与要求】1.准确掌握单位根检验方程的形式和检验原理。
2.准确掌握单整、协整和误差修正模型的概念和形式。
3.学会利用单位根检验方法对样本序列进行协整关系检验。
4.熟练掌握运用误差修正模型对样本序列间的短期、长期关系进行分析。
5. 在老师的指导下独立完成实验,得到正确的结果,并完成实验报告。
【实验准备知识】在上个实验中,我们学习了如何运用相关分析图判断随机过程是否平稳,但这种方法比较粗略。
检验随机过程是否平稳的一种比较正式的方法就是单位根检验。
在介绍单位根检验之前,我们有必要认识几种典型的非平稳随机过程。
1. 几种典型的非平稳随机过程(1) 随机游走过程t t t u y y +=-1,t u ~ IID(0, 2σ) (5.1)随机游走过程上个实验已经介绍,这里不再赘述。
图5—1为一个00=y ,t u ~ IID(0, 1)的随机游走过程的序列图。
-8-6-4-2图5—1 一个随机游走过程的序列图(2) 随机趋势过程t t t u a y y ++=-1,t u ~ IID(0, 2σ) (5.2) 其中a 称作位移项或漂移项。
将上式作如下迭代变换:∑=---++==++++=++=t i it t t t t t u y at u a u a y u a y y 10121)( (5.3)可知,t y 由时间趋势项at 和∑=+t i i uy 10(可看作截距项)组成。
在不存在任何冲击t u 的情况下,截距项为0y 。
而每个冲击t u 都表现为截距的移动。
每个冲击u t 对截距项的影响都是持久的,导致序列的条件均值发生变化,所以称这样的过程为随机趋势过程或有漂移项的随机游走过程。
图5—2为一个t t t u y y ++=-3.01,00=y ,t u ~ IID(0, 1)的随机趋势过程的序列图。
图5—2 一个随机趋势过程的序列图图5—2表明,虽然总趋势不变,但该过程围绕趋势项上下游动。
时间序列的协整检验与误差修正模型时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
协整检验是在时间序列数据中,判断变量之间是否存在长期平衡关系的一种方法。
误差修正模型是在协整关系已经验证的基础上,建立起变量之间的因果关系,对短期的偏离进行修正的模型。
协整检验的原理是基于单位根检验的思想,判断时间序列是否为平稳序列。
平稳序列是指序列的均值和方差不随时间发生变化。
如果两个变量都是非平稳序列,但它们的线性组合是平稳序列,那么可以认为这两个变量是协整的。
常用的协整检验方法有Engle-Granger方法和Johansen方法。
Engle-Granger方法是一种直观简单的协整检验方法。
它的步骤如下:首先,分别对两个变量进行单位根检验,确认它们是否为非平稳序列。
然后,对两个变量进行线性回归,得到残差序列。
接下来,对残差序列进行单位根检验,确认它是否为平稳序列。
最后,如果残差序列是平稳序列,则可以判断两个变量之间存在协整关系。
协整检验完成后,接下来可以建立误差修正模型。
误差修正模型是基于协整关系的基础上建立起来的,以短期的偏离修正为核心。
它的核心假设是,在长期平衡关系的约束下,两个变量之间的短期偏离可以通过一个修正项来消除。
误差修正模型的基本形式是多元线性回归模型,其中包含自变量、因变量以及一个误差修正项。
误差修正模型的估计和推断可以使用最小二乘法或最大似然法等统计方法进行。
通过对误差修正模型的估计和推断,可以对变量之间的因果关系进行分析。
同时,误差修正模型还可以用于预测和决策分析。
综上所述,时间序列的协整检验与误差修正模型是分析变量之间长期关系的重要工具。
协整检验可以判断变量是否具有长期平衡关系,而误差修正模型则可以分析变量之间的短期调整过程。
这些方法在经济学、金融学、管理学等领域都有广泛的应用。
时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
协整与误差修正模型在处理时间序列数据时,我们还得考虑序列的平稳性。
如果一个时间序列的均值或自协方差函数随时间而改变,那么该序列就是非平稳的。
对于非平稳的数据,采用传统的估计方法,可能会导致错误的推断,即伪回归。
若非平稳序列经过一阶差分变为平稳序列,那么该序列就为一阶单整序列。
对一组非平稳但具有同阶的序列而言,若它们的线性组合为平稳序列,则称该组合序列具有协整关系。
对具有协整关系的序列,我们算出误差修正项,并将误差修正项的滞后一期看做一个解释变量,连同其他反映短期波动关系的变量一起。
建立误差修正模型。
建立误差修正模型的步骤如下:首先,对单个序列进行单根检验,进行单根检验有两种:ADF (Augument Dickey-Fuller )和DF(Dickey-Fuller)检验法。
若序列都是同阶单整,我们就可以对其进行协整分析。
在此我们只介绍单个方程的检验方法。
对于多向量的检验参见Johensen 协整检验。
我们可以先求出误差项,再建立误差修正模型,也可以先求出向量误差修正模型,然后算出误差修正项。
补充一点的是,误差修正模型反映的是变量短期的相互关系,而误差修正项反映出变量长期的关系。
下面我们给出案例分析。
案例分析在此,我们考虑从1978年到2002年城镇居民的人均可支配收入income 与人均消费水平consume 的关系,数据来自于《中国统计年鉴》,如表8.1所示。
根据相对收入假设理论,在一定时期,人们的当期的消费水平不仅与当期的可支配收入、而且受前期的消费水平的影响,具有一定的消费惯性,这就是消费的棘轮效应。
从这个理论出发,我们可以建立如下(8.1)式的模型。
同时根据生命周期假设理论,消费者的消费不仅与当期收入有关,同时也受过去各项的收入以及对将来预期收入的限制和影响。
从我们下面的数据分析中,我们可以把相对收入假设理论与生命周期假设理论联系起来,推出如下的结果:当期的消费水平不仅与当期的可支配收入有关,而且还与前期的可支配收入、前两期的消费水平有关。