数学人教版九年级上册圆的切线证明与计算
- 格式:doc
- 大小:34.00 KB
- 文档页数:2
圆中的切线证明与计算题1、如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点.求证:AC 与⊙D 相切.2.如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线.3.如图,是⊙O 的直径,是弦,∠DAB=22.5°,延长到点,使得∠ACD=45°。
(1)求证:是⊙O 的切线;(2)若,求的长.4.如图,⊙O 的直径AB=4,∠ABC=30°,BC 交⊙O 于D ,D 是BC 的中点. (1)求BC 的长;(2)过点D 作DE ⊥AC ,垂足为E ,求证:直线DE 是⊙O 的切线.AB AD AB C CD 22AB BC OABPE C5.如图,已知A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于B 点,OC=BC,AC=OB 21. (1)求证:AB 是⊙O 的切线;(2)若∠ACD=450,OC=2,求弦CD 的长.6.如图,在Rt △ABC 中,∠B=90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE=DC ,以D 为圆心,DB 长为半径作⊙D ,AB=5,EB=3. (1)求证:AC 是⊙D 的切线; (2)求线段AC 的长.7.如图,在两个同心圆⊙O 中,大圆的弦AB 切小圆于点C. (1)求证:AC=BC;(4分)(2)若AB=8,求两圆之间圆环的面积(结果保留Π).(4分)8.如图,在⊙O中,弦BC⊥半径OA于点D,点F是CD上一点,AF交⊙O于点E,点P为BC延长线上一点,PF=PE.(1)求证:PE是⊙O的切线;(3分)(2)若AD=2,BC=8,DF=1,求PE的长.(5分)9.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.10.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于D,与边AC交于E,过D作DF AC于F.(1)求证:DF为⊙O的切线;(2)若DE AB=5,求AE的长.11.如图,在△ABC中,AB=AC,以边AB为直径作⊙O,交BC于D,过D作DE⊥AE. (1)求证:DE是⊙O的切线;(2)连接OC,若∠CAB=120︒,求DEOC的值.12.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M,与AB、AD分别相交于点E、F.求证:CD与⊙O相切.13.如图,AB为⊙O的直径,C为⊙O上一点,D是BC的中点,DE⊥AB于E,I是△ABD的内心,DI的延长线交⊙O于N.(1)求证:DE是⊙O的切线;(2)若DE=4,CE=2,求⊙O的半径和IN的长.14.如图,在△ABC中,AB=AC,I是△ABC的内心,⊙O交AB于E,BE为⊙O的直径. (1)求证:AI与⊙O相切;(2)若BC=6,AB=5,求⊙O的半径.=,点M为BC上一点,且CM=AC.15.如图,AB是⊙O的直径,AC CE(1)求证:M为△ABE的内心;(2)若⊙O的半径为5,AE=8,求△BEM的面积.16.如图,AB=AC,点O在AB上,⊙O过点B,分别交BC于D、AB于E,DF⊥AC. (1)求证:DF为⊙O的切线;(2)若AC切⊙O于G,⊙O的半径为3,CF=1,求AC.。
中考数学与圆的切线相关的证明与计算圆的切线:经过半径的外端并且垂直于这条半径的直线是圆的切线 .一、圆的切线的判定及相关计算1.如图,以△ABC 的边AB 为直径作⊙O,与BC 交于点D,点E 是弧BD 的中点,连接AE 交BC 于点F,∠ACB=2∠BAE .求证:AC 是⊙O 的切线.例题1图【分析】连接AD,利用等弧所对圆周角相等及∠ACB=2∠BAE 可得到∠BAD=∠BCA,再结合直径所对圆周角为直角即可得证.证明:如解图,连接AD.例题1解图∵点E 是弧BD 的中点,∴弧BE =弧DE,∴∠1=∠2 .∵∠BAD=2∠1, ∠ACB=2∠1,∴∠ACB=∠BAD.∵AB为⊙O 直径,∴∠ADB=∠ADC=90°.∴∠DAC+∠C=90°.∵∠C=∠BAD,∴∠DAC+∠BAD=90°.∴∠BAC=90°,即AB⊥AC. 又∵AB 是⊙O 的直径,∴AC 是⊙O 的切线.证明切线的常用方法:1.直线与圆有交点,“连半径,证垂直”.(1) 图中有90°角时,证垂直的方法如下:①利用等角代换:通过互余的两个角之间的等量代换得证;②利用平行线性质证明垂直:如果有与要证的切线垂直的直线,则证明半径与这条直线平行即可;③利用三角形全等或相似:通过证明切线和其他两边围成的三角形与含90°的三角形全等或相似得证.(2)图中无90°角时:利用等腰三角形的性质,通过证明半径为所在等腰三角形底边的中线或角平分线,再根据“三线合一”的性质得证.2.直线与圆无交点,“作垂线,证相等”.2.如图,在Rt△ABC 中,∠C=90°,⊙O 是△ABC 的外接圆,点D 在⊙O 上,且弧AD=弧CD , 过点D 作CB 的垂线,与CB 的延长线相交于点E,并与AB 的延长线相交于点F .(1) 求证:DF 是⊙O 的切线;(2) 若⊙O 的半径R=5,AC=8,求DF 的长.例题2图【解析】(1) 证明:如解图,连接DO 并延长,与AC 相交于点P.例题2解图∵弧AD = 弧CD,∴DP⊥AC.∴∠DPC=90°.∵DE⊥BC,∴∠CED=90°.∵∠C=90°.∴∠ODF=90°,而点D 在⊙O 上,∴DF 是⊙O 的切线;(2) 解:例题2解图∵∠C=90°,R=5,∴AB=2R=10.在Rt△ABC 中,根据勾股定理可得,BC=6 .∵∠DPC+∠C=180°,∴PD∥CE.∴∠CBA=∠DOF.∵∠C=∠ODF,∴△ABC ∽△FOD.∴CA / DF = BC / OD , 即8 / DF = 6 / 5 ,∴DF = 20 / 3 .类型二、切线性质的相关证明与计算3.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点B 作⊙O 的切线DE,与AC 的延长线交于点D,作AE⊥AC 交DE 于点E .(1) 求证:∠BAD=∠E;(2) 若⊙O 的半径为5,AC=8,求BE 的长.例题3图【解析】(1) 证明:∵⊙O 与DE 相切于点B,AB 为⊙O 的直径,∴∠ABE=90°.∴∠BAE+∠E=90°.又∵∠DAE=90°,∴∠BAD+∠BAE=90°.∴∠BAD=∠E;(2) 解:如解图,连接BC.例题3解图∵AB 为⊙O 的直径,∴∠ACB=90°,∵AC=8,AB=2 ×5=10 .∴在Rt△ACB 中,根据勾股定理可得BC = 6 .又∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC ∽△EAB .∴AC / EB = BC / AB , 即8 / EB = 6 / 10 ,∴BE=40 / 3 .4.如图,⊙O 的半径OA=6,过点A 作⊙O 的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B 作BC∥OA,并与⊙O 交于点C,连接AC、CD.(1) 求证:DC∥AP;(2) 求AC 的长.例题4图【解析】(1) 证明:∵AP 是⊙O 的切线,∴∠OAP=90°.∵BD 是⊙O 的直径,∴∠BCD=90°.∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO.∴DC∥AP;(2) 解:∵AO∥BC,OD=OB,例题4解图∴如解图,延长AO 交DC 于点E,则AE⊥DC,OE=1/2 BC,CE=1/2 CD.在Rt△AOP 中,根据勾股定理可得:OP=10.由(1) 知,△AOP∽△CBD,∴BD/OP = BC/OA = CD/AP , 即12/10 = BC/6 = DC/8 ,∴BC = 36/5 , DC = 48/5 .∴OE = 18/5 , CE = 24/5 , AE = OA + DE = 6 + 18/5 = 48/5 ,在Rt△AEC 中,根据勾股定理可得:AC = 24√5 / 5 .5.如图,AC 是⊙O 的直径,AB 是⊙O 的一条弦,AP 是⊙O 的切线.作BM=AB,并与AP 交于点M,延长MB 交AC 于点E,交⊙O 于点D,连接AD.(1) 求证:AB=BE;(2) 若⊙O 的半径R=5,AB=6,求AD 的长.例题5图【解析】(1) 证明:∵AP 是⊙O 的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEM+∠AME=90°. 又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE;(2) 解:如解图,连接BC.例题5解图∵AC 是⊙O 的直径,∴∠ABC=∠EAM=90°,在Rt△ABC 中,AC=10,AB=6,根据勾股定理可得:BC = 8 . 由(1) 知,∠BAE=∠AEB,∴△ABC∽△EAM,∴∠C=∠AME,AC/EM = BC/AM , 即10/2 = 8/AM ,∴AM = 48/5 .又∵∠D=∠C,∴∠D=∠AMD.∴AD=AM=48/5 .。
人教版数学九年级上册24.2.2.2《切线的判定和性质》说课稿一. 教材分析《切线的判定和性质》是人教版数学九年级上册第24章《圆》的第二个知识点。
本节内容是在学生已经掌握了圆的定义、性质以及圆的基本运算的基础上进行学习的。
本节内容主要介绍了切线的定义、判定和性质,以及切线与圆的位置关系。
这些知识对于学生理解和掌握圆的性质,解决与圆有关的问题具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的性质和运算已经有了一定的了解。
但是,对于切线的定义、判定和性质以及切线与圆的位置关系可能还比较陌生。
因此,在教学过程中,我需要注重引导学生从已知的圆的性质出发,推导出切线的性质,从而帮助学生理解和掌握切线的相关知识。
三. 说教学目标1.知识与技能目标:使学生理解和掌握切线的定义、判定和性质,以及切线与圆的位置关系。
2.过程与方法目标:通过观察、思考、讨论和操作,培养学生的观察能力、逻辑思维能力和动手操作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:切线的定义、判定和性质,以及切线与圆的位置关系。
2.教学难点:切线的判定和性质的推导过程,以及切线与圆的位置关系的理解。
五. 说教学方法与手段在本节课的教学中,我将采用讲授法、引导发现法、小组合作学习和动手操作相结合的教学方法。
同时,利用多媒体课件和几何画板等教学手段,帮助学生直观地理解切线的性质和判定。
六. 说教学过程1.导入:通过复习圆的性质,引导学生思考与圆有关的问题,激发学生的学习兴趣。
2.引导发现:引导学生从已知的圆的性质出发,观察和思考切线的性质,引导学生发现切线的判定和性质。
3.讲解与示范:讲解切线的定义、判定和性质,以及切线与圆的位置关系,并通过几何画板进行演示。
4.动手操作:让学生利用几何画板或者手工画图,自己尝试作出圆的切线,并判断其性质。
5.小组合作学习:让学生分组讨论,总结切线的性质和判定,以及切线与圆的位置关系。
切线的概念、切线的判定和性质-人教版九年级数学上册教案一、切线的概念1. 切线的定义在圆上取一点P,连接P与圆心O,若通过点P的直线与圆相交于点P,则这条直线称为该圆在点P处的切线。
2. 切线的性质切线只与圆相交于切点,且垂直于半径。
二、切线的判定1. 判定方法1在圆上任取一点P,连接P与圆心O。
若连接P与圆心O的线段与已知直线L 垂直,则L与圆的交点就是切点,而L即为此点处的切线。
2. 判定方法2在圆上任取一点P,连接P与圆心O。
作过点P并与已知直线L平行的直线,与圆相交于点Q。
再连接点Q与圆心O,则Q与L的交点即为圆在点P处的切点,L即为点P处的切线。
三、切线性质的应用1. 切线定理若一条直线与圆相交于点A、B,则与这条直线垂直的切线分别过点A、B。
2. 判定定理在圆上任取两点P、Q,以这两点为端点连一条线段,若该线段平分圆周角,则它的延长线必过圆的圆心。
3. 弦割定理两条互相垂直的弦互相垂直。
4. 弦长定理两条互相垂直的弦所对圆周的两段弧相等。
5. 弧上点角定理圆周上一点的任意两个角所对的弧长相等。
四、练习题1.已知圆O,半径为3.4cm,P为圆上一点,PA为一条直线,且PA=8.1cm。
求PA的垂线与OP的夹角。
2.已知圆的直径是20cm,D,E,F,G均在圆上。
若DE⊥FG,DE=12cm,FG=9cm,求DG的长。
3.已知圆心角ACB的弧度是20度,线段AB上一点D是圆上的一点,求角ADC的角度。
五、课堂小结1.切线的定义和性质。
2.切线判定方法和定理。
3.切线性质的应用。
4.练习题的解答。
六、作业1.完成课堂练习题。
2.独立思考,将切线定理、判定定理、弦割定理、弦长定理和弧上点角定理的证明写出来。
切 线 复 习
班级:________________ 姓名:___________________
一、直线和圆的位置关系
切线的判定:
切线的性质: 二、切线长定理:
结合图形: 当PA 、PB 与⊙O 相切 推出结论:
★ 在切线问题中,经常需要作过切点的半径为辅助线
三、能力提升:
1、如图:⊙O 与等腰梯形ABCD 各边都相切,切点分别是E 、F 、G 、H ,等腰梯形的周长是24cm ,则腰AB=_______________。
2、如图,∠AOB=30°,M 为边OB 上一点,以M 为圆心,2cm 为半径作⊙M ,若点
M 在OB 上运动,则当OM= cm 时,⊙M 与OA 相切。
P
A
O
B
F C M O B A N
3如图:半径为2的⊙P ,点P 在直线y=x-2上运动,当⊙P 和x 轴相切时,点P 的坐标是_______________。
3、如图:PA,PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠BAC=25o ,求:∠P
的度数。
4、如图:AB 是⊙O 的直径,BC 是⊙O 的切线,D 是⊙O 上一点,且A D ∥CO ,CO 与BD 交于点E 。
(1)、请说明△ADB 与△OBC 相似
(2)、若AB=2,BC=2,求:AD 的长。
A
P .
.。