线性二次型最优控制
- 格式:doc
- 大小:953.50 KB
- 文档页数:13
线性二次型最优控制一、最优控制概述最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。
然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。
系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。
因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。
变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。
庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。
尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。
二、线性二次型最优控制2.1 线性二次型问题概述线性二次型最优控制问题,也叫LQ 问题。
它是指线性系统具有二次型性能指标的最优控制问题。
线性二次型问题所得到的最优控制规律是状态变量的反馈形式,便于计算和工程实现。
它能兼顾系统性能指标的多方面因素。
例如快速性、能量消耗、终端准确性、灵敏度和稳定性等。
线性二次型最优控制目标是使性能指标J 取得极小值, 其实质是用不大的控制来保持比较小的误差,从而达到所用能量和误差综合最优的目的。
2.2 线性二次型问题的提法给定线性时变系统的状态方程和输出方程如下:()()()()()()()()X t A t X t B t U t Y t C t X t ⎧=+⎨=⎩ (2.1))(t X 是n 维状态变量,)(t U 是m 维控制变量,)(t Y 是l 维输出变量,)(t A 是n n ⨯时变矩阵,)(t B 是m n ⨯时变矩阵。
线性二次型最优控制问题2. 线性二次型最优控制问题如果所研究系统为线性,所取性能指标为状态变量与控制变 量的二次型函数,称这种动态系统最优化问题为线性二次型最概念优控制问题.问题的提法 设线性时变系统的状态方程为:x ( t ) = A( t ) x ( t ) + B( t )u( t ) y( t ) = C ( t ) x ( t )假设控制向量u(t)不受约束 ,用yr(t)表示期望输出,则误差向量为e( t ) = yr ( t ) − y( t )求最优控制u*(t) ,使下列二次型性能指标极小。
1 T 1 tf e ( t f )Fe ( t f ) + ∫ [e T ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0 F —半正定 q × q常数矩阵 , Q ( t ) —半正定 q × q时变矩阵 J ( u) =R ( t ) —正定 p × p时变矩阵 t 0 及 t f 固定NORTHWESTERN POLYTECHNICAL UNIVERSITYNWPU线性二次型最优控制问题2. 线性二次型最优控制问题各项指标物理意义1 T 1 tf T J ( u) = e ( t f )Fe ( t f ) + ∫ [e ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0(1) 第一积分过程项 0.5∫ttf0[e T ( t )Q ( t )e( t )]dt 是对动态跟踪误差加权平方和的积分要求,是系统在运动过程中动态跟踪误差的总度量. t (2) 第二积分过程项 0.5∫t [u( t )T R( t )u( t )]dt 表示系统在控制过程中对系统加权f 0后的控制能量消耗的总度量. (3) 末值项 0.5eT (t f )Fe( t f ) 表示末态跟踪误差向量与希望的零向量之间的距 离加权平方和. 整个性能指标物理意义: 使系统在控制过程中的动态误差与能量消耗,以及控制结束时的系统 终端跟踪误差综合最优。
线性系统二次型最优控制律线性系统二次型最优控制定义使用二次型性能指标的线性系统最优控制。
它可得到状态线性反馈的最优控制规律,便于实现闭环最优控制,是应用广泛的最优控制方式。
性能指标线性系统状态方程及输出方程为x(t)=A(t)x(t)+B(t)u(t) (1)y(t)=C(t)x(t) (2)式中x(t)为n维状态向量;u(t)为p维控制向量;y(t)为q维输出向量。
设z(t)为理想输出向量,与y(t)同维数,并定义e(t)=z(t)-y(t) (3)误差向量。
线性二次型最优控制问题的性能指标这里,权函数F、Q(t)为正半定矩阵,R(t)为正定矩阵。
假设tf固定。
要求寻找最优控制u*(t),使性能指标J为最小。
被积函数的第一项表明误差e(t)的大小,是非负的。
其第二项表明控制功率的大小,对应于u≠0它恒为正。
因此,对u(t)往往不需再加约束,而常设u(t)为自由的。
性能指标的第一项则表示终值误差。
状态调节器问题系统状态方程如式 (1)所示,u(t)不受约束,tf固定,性能指标为寻找最优控制u*(t),使性能指标J为最小。
用极小值原理或动态规划法,可得下列矩阵黎卡提微分方程(一阶非线性微分方程)P(t)=-P(t)A(t)-AT(t)P(t)+P(t)B(t)R-1(t)BT(t)P(t)-Q(t) (6) 其边界条件为P(tf)=F (7)由式(6)解出P(t)后,可得最优控制规律为u*(t)=-R-1(t)BT(t)P(t)x*(t) (8)由式(8)可以看出,最优控制规律是一个状态线性反馈规律,控制向量u*(t)由状态向量x*(t)生成,构成状态反馈,并且呈线性关系。
这样,能方便地实现闭环最优控制,这一点在工程上具有十分重要的意义。
P(t)是一对称矩阵,一般都要由计算机求出方程(6)的数值解。
P(t)是时间函数,即使线性系统是定常的,为了实现最优控制,反馈增益应该是时变的,而不是常值反馈增益。
线性二次型最优控制
本文旨在探讨线性二次型最优控制的理论及其实际应用。
线性二次型控制是一种广泛使用的有效控制策略,用于解决复杂的系统问题。
本文以线性二次型的哲学和理论基础为主线,全面总结了线性二次型最优控制的哲学和原理,研究了它的实际应用,并介绍了理论与实践的关系。
首先,本文介绍了线性二次型最优控制的哲学和理论基础。
实践证明,线性二次型控制技术在它所面对的问题中具有优势。
线性二次型最优控制是一种基于目标的最优化控制技术,以有效地通过控制技术来实现有效的控制者。
其次,本文研究了线性二次型最优控制的实际应用。
实际应用中,线性二次型最优控制的最大特点在于它的非线性输入和输出行为。
基于该技术,可以构建一类实用性强的系统,以有效地满足实际应用中的复杂性及非线性性需求。
此外,线性二次型最优控制也可用于节能、飞行控制,机器人控制、智能汽车控制等领域的实际应用。
最后,本文介绍了线性二次型最优控制的理论与实践的关系。
在实践中,要求在有效消耗低的基础上实现有效控制,这要求模型与实践相结合。
只有通过深入理解和求解这种关系,才能有效地利用这种理论在实践中得到最优的控制效果。
总之,线性二次型最优控制作为一种有效的最优化控制策略,极大地促进了复杂系统的发展和应用,同时为更加高效和可靠的实践应用提供了有效的方案。
本文为线性二次型最优控制的哲学和理论研究
以及实际应用提供了一个全面的研究和探讨,以帮助更好地理解和应用这种控制策略。
一、主动控制简介概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。
特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。
优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。
但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。
组成:传感器、控制器、作动器工作方式:开环、闭环、开闭环。
二、简单回顾主动控制的应用与MATLAB应用1.主动变刚度A VS控制装置工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。
锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度;打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。
示意图如下:2. 主动变阻尼A VD控制装置工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。
关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态;打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。
一、主动控制简介概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。
特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。
优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。
但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。
组成:传感器、控制器、作动器工作方式:开环、闭环、开闭环。
二、简单回顾主动控制的应用与MATLAB应用1.主动变刚度A VS控制装置工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。
锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度;打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。
示意图如下:2. 主动变阻尼A VD控制装置工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。
关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态;打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。
示意图如下:3.振动实例 已知多自由度有阻尼线性结构的参数:276200027600002300M kg ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,54.406 1.92101.921 3.443 1.52210/0 1.522 1.522K N m -⎡⎤⎢⎥=--⨯⎢⎥⎢⎥-⎣⎦,阻尼矩阵采用瑞利阻尼C M K αβ=+,,αβ根据前两阶自振频率及阻尼比确定,阻尼比取0.05,该多自由度结构(参数同上)所受地震波数据见dzb.xls 文件,文件第一列为时间,单位s ,文件第2列为加速度,单位m/s 2。
方法采用中心差分法:3.1变刚度对比了刚度分别为K 、10*K 以及0.1*K 时M1的响应时程曲线以及最大位移。
MATLAB 程序如下:clearclcM=diag([2762 2760 2300]); %质量矩阵K=100000*[4.406 -1.921 0;-1.921 3.443 -1.522;0 -1.522 1.522];kk={K,10.*K,0.1.*K} %细胞矩阵-变刚度 W=[4.1041;10.4906;14.9514]; %各阶频率zuni=0.05area=2*W(1)*W(2)*zuni/(W(1)+W(2));byta=2*zuni/(W(1)+W(2));C=area*M+byta*K; %阻尼矩阵num=xlsread('dzb.xls',1,'B1:B1501');P=M*ones(3,1)*num'; %读入外荷载*********中心差分法**********h=0.02; %步长para=[1/h^2,1/(2*h),2/h^2,h^2/2]; %参数向量Kx=para(1)*M+C*para(2); %x(i+1)前系数x(:,1)=zeros(3,1); %初位移v(:,1)=zeros(3,1); %初速度a(:,1)=-0.00082*num(1)*ones(3,1); %初加速度for j=1:3for i=1:1:1501 %差分迭代第一步 if i<2;x0=x(:,1)-h*v(:,1)+h^2/2*a(:,1);Px(:,i)=P(:,i)-(kk{j}-para(3)*M)*x(:,i)-(para(1)*M-para(2)*C)*x0;x(:,i+1)=inv(Kx)*Px(:,i);a(:,i+1)=para(1)*(x0-2*x(:,i)+x(:,i+1)); %加速度响应v(:,1)=para(2)*(x(:,i+1)-x0); %速度响应else %差分迭代Px(:,i)=P(:,i)-(kk{j}-para(3)*M)*x(:,i)-(para(1)*M-para(2)*C)*x(:,i-1);x(:,i+1)=inv(Kx)*Px(:,i);a(:,i+1)=para(1)*(x(:,i-1)-2*x(:,i)+x(:,i+1)); %加速度响应v(:,i)=para(2)*(x(:,i+1)-x(:,i-1)); %速度响应endend*************中心差分法*************X=x(:,1:1501);Y=max(abs(X),[],2);Z(j)=max(Y);save X %保存位移相应subplot(3,1,j) %画图plot(X(1,:))xlabel('时间t/0.02s')ylabel('位移X1/m');end运行结果如下:最大位移分别为:0.0085m0.0045m0.0100m3.2变阻尼依旧使用上述系统,对比无阻尼,阻尼为C和0.5C三种情况下M1的响应时程曲线和最大位移。
MATLAB程序:clearclcM=diag([2762 2760 2300]); %质量矩阵K=100000*[4.406 -1.921 0;-1.921 3.443 -1.522;0 -1.522 1.522]; %刚度矩阵W=[4.1041;10.4906;14.9514]; %各阶频率zuni=0.05area=2*W(1)*W(2)*zuni/(W(1)+W(2));byta=2*zuni/(W(1)+W(2));C=area*M+byta*K;cc={0*C,C,0.5*C}; %变阻尼num=xlsread('dzb.xls',1,'B1:B1501');P=M*ones(3,1)*num'; %读入外荷载**************中心差分法************h=0.02; %步长para=[1/h^2,1/(2*h),2/h^2,h^2/2]; %参数向量Kx=para(1)*M+C*para(2); %x(i+1)前系数x(:,1)=zeros(3,1); %初位移v(:,1)=zeros(3,1); %初速度a(:,1)=-0.00082*num(1)*ones(3,1); %初加速度for j=1:3for i=1:1:1501 %差分迭代第一步if i<2;x0=x(:,1)-h*v(:,1)+h^2/2*a(:,1);Px(:,i)=P(:,i)-(K-para(3)*M)*x(:,i)-(para(1)*M-para(2)*cc{j})*x0;x(:,i+1)=inv(Kx)*Px(:,i);a(:,i+1)=para(1)*(x0-2*x(:,i)+x(:,i+1)); %加速度响应v(:,1)=para(2)*(x(:,i+1)-x0); %速度响应else %差分迭代Px(:,i)=P(:,i)-(K-para(3)*M)*x(:,i)-(para(1)*M-para(2)*cc{j})*x(:,i-1);x(:,i+1)=inv(Kx)*Px(:,i);a(:,i+1)=para(1)*(x(:,i-1)-2*x(:,i)+x(:,i+1)); %加速度响应v(:,i)=para(2)*(x(:,i+1)-x(:,i-1)); %速度响应endend**************中心差分法******************X=x(:,1:1501);Y=max(abs(X),[],2);Z(j)=max(Y);save X %保存位移相应subplot(3,1,j) %画图plot(X(1,:))xlabel('时间t/0.02s')ylabel('位移X1/m');end运行结果是:最大位移分别为:0.0115m0.0085m0.0068m三、主动控制算法简介主动控制算法是主动控制的基础,它们是根据控制理论建立的。
好的控制理论算法必须在线计算时间短、稳定性及可靠性好、抗干扰能力强。
结构控制算法分为经典控制理论与现代控制理论两类。
1.经典控制理论:经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。
经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频域方法。
经典控制理论包括线性控制论、采样控制理论、非线性控制理论三个部分。
2.现代控制理论:现代算法计算主要用时间域,采用状态空间法(State Space Method) 来描述系统的动力性态,其数学工具为线性代数、矩阵理论和变分法。
其主要包括下面一些算法:(1)经典线性最优控制法(2)瞬时最优控制法(3)极点配置法(4)独立模态空间控制法(5)随机最优控制法(6)界限状态控制法(7)模糊控制法(8)预测实时控制法(9)H∞优化控制(10)变结构控制3.简要介绍各种算法最优控制算法通俗来讲:即对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
在工程上,最优控制算法以现代控制理论中的状态空间理论为基础,采用极值原理,使用最优滤波或者动态规划等最优化方法,进一步求解结构振动最优控制输入,在振动主动控制领域应用比较普遍。
当被控对象结构参数模型可以被精确建模,并且激励和测量信号比较确定时,采用最优算法设计控制器可以较容易地取得控制效果。
最优控制法根据具体算法又可分为经典线性最优控制法、瞬时最优控制法、随机最优控制法等等,下面简单介绍:A经典线性最优控制法该算法基于现代控制理论,以线性二次型性能指标为目标函数来确定控制力与状态向量之间的关系式。
目标函数中用权矩阵来协调经济性与安全性之间的关系,需求解Riccati方程。
由于该算法忽略了荷载项,严格说来,由它得到的控制不是最优控制;但数值分析和有限的试验证明,这一控制算法虽然不是最优的,但是可行的和有效的。