线性二次型最优控制概述
- 格式:ppt
- 大小:254.00 KB
- 文档页数:39
线性二次型最优控制一、最优控制概述最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。
然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。
系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。
因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。
变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。
庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。
尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。
二、线性二次型最优控制2.1 线性二次型问题概述线性二次型最优控制问题,也叫LQ 问题。
它是指线性系统具有二次型性能指标的最优控制问题。
线性二次型问题所得到的最优控制规律是状态变量的反馈形式,便于计算和工程实现。
它能兼顾系统性能指标的多方面因素。
例如快速性、能量消耗、终端准确性、灵敏度和稳定性等。
线性二次型最优控制目标是使性能指标J 取得极小值, 其实质是用不大的控制来保持比较小的误差,从而达到所用能量和误差综合最优的目的。
2.2 线性二次型问题的提法给定线性时变系统的状态方程和输出方程如下:()()()()()()()()X t A t X t B t U t Y t C t X t ⎧=+⎨=⎩ (2.1))(t X 是n 维状态变量,)(t U 是m 维控制变量,)(t Y 是l 维输出变量,)(t A 是n n ⨯时变矩阵,)(t B 是m n ⨯时变矩阵。
离散双线性系统二次型最优控制的迭代算
法
离散双线性系统二次型最优控制是一种用于优化离散双线性系统的控制方法。
它的核心思想是通过迭代的方式,求解最优控制参数,从而使系统达到最优的性能。
在离散双线性系统中,假设控制参数为X,则根据控制参数X的变化,可以计算出系统的最优性能值Y。
在Y的计算中,一般包括两部分,一部分是系统的累计损失,另一部分是控制参数X的正则化项。
接着,通过迭代的方式,不断优化控制参数X,使得系统性能值Y 最大化。
在迭代过程中,采用梯度下降法,不断更新控制参数X,使得Y最大化。
每次迭代过程中,可以通过计算梯度的方式,找到控制参数X的最优解。
在计算出最优的控制参数X之后,可以得到离散双线性系统的最优性能值Y。
这样,就可以真正实现系统的最优控制。
综上,离散双线性系统二次型最优控制是一种有效的优化离散双线性系统的控制方法,它将梯度下降法和迭代过程结合起来,使得系统可以达到最优性能,从而实现系统的最优控制。
lqr控制器原理
LQR(线性二次型调节器)是一种基于状态反馈的最优控制策略,其原理主要包括以下步骤:
1. 确定状态方程模型:首先需要确定一个描述系统状态的动力学模型,通常以状态空间的形式给出。
2. 线性化处理:对状态方程进行线性化处理,将其转化为线性系统模型。
3. 定义目标函数:目标函数通常是系统状态和控制输入的二次型函数,用于评估控制性能的好坏。
4. 优化目标函数:通过设计状态反馈控制器,使得目标函数取最小值。
这意味着需要找到一个状态反馈控制律,使得系统的状态轨迹能够跟踪参考信号,同时控制输入的二次型能量最小。
5. 求解最优控制律:通过求解优化问题,可以得到最优控制律,即状态反馈控制器的增益。
这个增益可以用来调节系统的状态,以达到最优控制的目的。
6. 控制系统实现:将得到的增益值代入到实际控制系统中,通过闭环控制的方式对系统进行调节,以实现最优控制。
LQR控制器的优点包括:
1. 易于实现:LQR控制器通过线性二次型目标函数进行优化,其解具有封闭形式的解析解,易于计算和实现。
2. 鲁棒性好:LQR控制器对系统参数的变化和扰动具有较强的鲁棒性,能够在不确定环境下实现较好的控制效果。
3. 稳定性高:LQR控制器能够保证系统的状态轨迹收敛到平衡点,具有较好的稳定性和收敛性。
4. 可扩展性:LQR控制器可以与其他先进控制策略相结合,如模糊逻辑、神经网络等,以实现更复杂的控制任务。
总之,LQR控制器是一种有效的最优控制策略,广泛应用于各种线性系统的控制中。
通过合理地选择权矩阵Q和R,可以适应不同的控制要求和系统特性,实现最优控制。