线性二次型的最优控制
- 格式:ppt
- 大小:1005.00 KB
- 文档页数:49
线性二次型最优控制一、最优控制概述最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。
然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。
系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。
因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。
变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。
庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。
尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。
二、线性二次型最优控制2.1 线性二次型问题概述线性二次型最优控制问题,也叫LQ 问题。
它是指线性系统具有二次型性能指标的最优控制问题。
线性二次型问题所得到的最优控制规律是状态变量的反馈形式,便于计算和工程实现。
它能兼顾系统性能指标的多方面因素。
例如快速性、能量消耗、终端准确性、灵敏度和稳定性等。
线性二次型最优控制目标是使性能指标J 取得极小值, 其实质是用不大的控制来保持比较小的误差,从而达到所用能量和误差综合最优的目的。
2.2 线性二次型问题的提法给定线性时变系统的状态方程和输出方程如下:()()()()()()()()X t A t X t B t U t Y t C t X t ⎧=+⎨=⎩ (2.1))(t X 是n 维状态变量,)(t U 是m 维控制变量,)(t Y 是l 维输出变量,)(t A 是n n ⨯时变矩阵,)(t B 是m n ⨯时变矩阵。
lqr控制器原理
LQR(线性二次型调节器)是一种基于状态反馈的最优控制策略,其原理主要包括以下步骤:
1. 确定状态方程模型:首先需要确定一个描述系统状态的动力学模型,通常以状态空间的形式给出。
2. 线性化处理:对状态方程进行线性化处理,将其转化为线性系统模型。
3. 定义目标函数:目标函数通常是系统状态和控制输入的二次型函数,用于评估控制性能的好坏。
4. 优化目标函数:通过设计状态反馈控制器,使得目标函数取最小值。
这意味着需要找到一个状态反馈控制律,使得系统的状态轨迹能够跟踪参考信号,同时控制输入的二次型能量最小。
5. 求解最优控制律:通过求解优化问题,可以得到最优控制律,即状态反馈控制器的增益。
这个增益可以用来调节系统的状态,以达到最优控制的目的。
6. 控制系统实现:将得到的增益值代入到实际控制系统中,通过闭环控制的方式对系统进行调节,以实现最优控制。
LQR控制器的优点包括:
1. 易于实现:LQR控制器通过线性二次型目标函数进行优化,其解具有封闭形式的解析解,易于计算和实现。
2. 鲁棒性好:LQR控制器对系统参数的变化和扰动具有较强的鲁棒性,能够在不确定环境下实现较好的控制效果。
3. 稳定性高:LQR控制器能够保证系统的状态轨迹收敛到平衡点,具有较好的稳定性和收敛性。
4. 可扩展性:LQR控制器可以与其他先进控制策略相结合,如模糊逻辑、神经网络等,以实现更复杂的控制任务。
总之,LQR控制器是一种有效的最优控制策略,广泛应用于各种线性系统的控制中。
通过合理地选择权矩阵Q和R,可以适应不同的控制要求和系统特性,实现最优控制。
最优控制课后习题答案最优控制课后习题答案最优控制是现代控制理论中的重要分支,它研究如何在给定约束条件下,使系统的性能指标达到最优。
在最优控制的学习过程中,课后习题是巩固理论知识、培养解决问题能力的重要环节。
本文将为大家提供一些最优控制课后习题的答案,希望能对大家的学习有所帮助。
1. 线性二次型最优控制问题考虑一个线性时不变系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= Ax(t) + Bu(t) \\J(u) &= \int_{0}^{T} (x^T(t)Qx(t) + u^T(t)Ru(t))dt\end{align*}$$其中,$x(t)$为系统的状态向量,$u(t)$为控制输入向量,$A$和$B$为系统矩阵,$Q$和$R$为正定矩阵,$T$为最优控制的时间段。
求解该问题的最优控制输入$u^*(t)$。
答案:根据最优控制的原理,最优控制输入$u^*(t)$满足以下的最优性条件:$$\begin{align*}\frac{\partial J}{\partial u}(u^*(t)) &= 2R u^*(t) + 2B^T P(t)x(t) = 0 \\\dot{P}(t) &= -PA - A^T P - Q + PBR^{-1}B^T P\end{align*}$$其中,$P(t)$为状态向量的共轭变量矩阵。
通过求解上述的代数方程和微分方程,可以得到最优控制输入$u^*(t)$和状态向量的共轭变量矩阵$P(t)$。
2. 非线性最优控制问题考虑一个非线性系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= f(x(t), u(t)) \\J(u) &= \int_{0}^{T} g(x(t), u(t)) dt\end{align*}$$其中,$f(x(t), u(t))$为非线性函数,$g(x(t), u(t))$为性能指标函数。
线性二次型最优控制问题2. 线性二次型最优控制问题如果所研究系统为线性,所取性能指标为状态变量与控制变 量的二次型函数,称这种动态系统最优化问题为线性二次型最概念优控制问题.问题的提法 设线性时变系统的状态方程为:x ( t ) = A( t ) x ( t ) + B( t )u( t ) y( t ) = C ( t ) x ( t )假设控制向量u(t)不受约束 ,用yr(t)表示期望输出,则误差向量为e( t ) = yr ( t ) − y( t )求最优控制u*(t) ,使下列二次型性能指标极小。
1 T 1 tf e ( t f )Fe ( t f ) + ∫ [e T ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0 F —半正定 q × q常数矩阵 , Q ( t ) —半正定 q × q时变矩阵 J ( u) =R ( t ) —正定 p × p时变矩阵 t 0 及 t f 固定NORTHWESTERN POLYTECHNICAL UNIVERSITYNWPU线性二次型最优控制问题2. 线性二次型最优控制问题各项指标物理意义1 T 1 tf T J ( u) = e ( t f )Fe ( t f ) + ∫ [e ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0(1) 第一积分过程项 0.5∫ttf0[e T ( t )Q ( t )e( t )]dt 是对动态跟踪误差加权平方和的积分要求,是系统在运动过程中动态跟踪误差的总度量. t (2) 第二积分过程项 0.5∫t [u( t )T R( t )u( t )]dt 表示系统在控制过程中对系统加权f 0后的控制能量消耗的总度量. (3) 末值项 0.5eT (t f )Fe( t f ) 表示末态跟踪误差向量与希望的零向量之间的距 离加权平方和. 整个性能指标物理意义: 使系统在控制过程中的动态误差与能量消耗,以及控制结束时的系统 终端跟踪误差综合最优。
线性系统二次型最优控制律线性系统二次型最优控制定义使用二次型性能指标的线性系统最优控制。
它可得到状态线性反馈的最优控制规律,便于实现闭环最优控制,是应用广泛的最优控制方式。
性能指标线性系统状态方程及输出方程为x(t)=A(t)x(t)+B(t)u(t) (1)y(t)=C(t)x(t) (2)式中x(t)为n维状态向量;u(t)为p维控制向量;y(t)为q维输出向量。
设z(t)为理想输出向量,与y(t)同维数,并定义e(t)=z(t)-y(t) (3)误差向量。
线性二次型最优控制问题的性能指标这里,权函数F、Q(t)为正半定矩阵,R(t)为正定矩阵。
假设tf固定。
要求寻找最优控制u*(t),使性能指标J为最小。
被积函数的第一项表明误差e(t)的大小,是非负的。
其第二项表明控制功率的大小,对应于u≠0它恒为正。
因此,对u(t)往往不需再加约束,而常设u(t)为自由的。
性能指标的第一项则表示终值误差。
状态调节器问题系统状态方程如式 (1)所示,u(t)不受约束,tf固定,性能指标为寻找最优控制u*(t),使性能指标J为最小。
用极小值原理或动态规划法,可得下列矩阵黎卡提微分方程(一阶非线性微分方程)P(t)=-P(t)A(t)-AT(t)P(t)+P(t)B(t)R-1(t)BT(t)P(t)-Q(t) (6) 其边界条件为P(tf)=F (7)由式(6)解出P(t)后,可得最优控制规律为u*(t)=-R-1(t)BT(t)P(t)x*(t) (8)由式(8)可以看出,最优控制规律是一个状态线性反馈规律,控制向量u*(t)由状态向量x*(t)生成,构成状态反馈,并且呈线性关系。
这样,能方便地实现闭环最优控制,这一点在工程上具有十分重要的意义。
P(t)是一对称矩阵,一般都要由计算机求出方程(6)的数值解。
P(t)是时间函数,即使线性系统是定常的,为了实现最优控制,反馈增益应该是时变的,而不是常值反馈增益。
线性二次型最优控制
本文旨在探讨线性二次型最优控制的理论及其实际应用。
线性二次型控制是一种广泛使用的有效控制策略,用于解决复杂的系统问题。
本文以线性二次型的哲学和理论基础为主线,全面总结了线性二次型最优控制的哲学和原理,研究了它的实际应用,并介绍了理论与实践的关系。
首先,本文介绍了线性二次型最优控制的哲学和理论基础。
实践证明,线性二次型控制技术在它所面对的问题中具有优势。
线性二次型最优控制是一种基于目标的最优化控制技术,以有效地通过控制技术来实现有效的控制者。
其次,本文研究了线性二次型最优控制的实际应用。
实际应用中,线性二次型最优控制的最大特点在于它的非线性输入和输出行为。
基于该技术,可以构建一类实用性强的系统,以有效地满足实际应用中的复杂性及非线性性需求。
此外,线性二次型最优控制也可用于节能、飞行控制,机器人控制、智能汽车控制等领域的实际应用。
最后,本文介绍了线性二次型最优控制的理论与实践的关系。
在实践中,要求在有效消耗低的基础上实现有效控制,这要求模型与实践相结合。
只有通过深入理解和求解这种关系,才能有效地利用这种理论在实践中得到最优的控制效果。
总之,线性二次型最优控制作为一种有效的最优化控制策略,极大地促进了复杂系统的发展和应用,同时为更加高效和可靠的实践应用提供了有效的方案。
本文为线性二次型最优控制的哲学和理论研究
以及实际应用提供了一个全面的研究和探讨,以帮助更好地理解和应用这种控制策略。
Chapter7 线性二次型最优控制稳定性是控制系统的一个重要指标,还要考虑诸如调节时间、超调、振荡等动态特性以及控制器所消耗的能量等因素。
通过极点配置可使系统具有期望的稳定性和动态性能,然而并没有考虑控制的能量代价。
用Lyapunov 稳定性理论解决“参数优化问题”,通过选取一个适当的参数,可以在保证系统稳定的前提下,使二次型性能指标最小化,从而使系统的过渡过程具有较好的性能,有必要将这种方法推广到控制器设计。
7.1 二次型最优控制在控制系统中,为了达到同一个控制目的,可以有多种方案(如多输入系统的极点配置状态反馈控制器是不唯一的),具有最小能量的控制方式更具实际意义。
对于Bu Ax x+= Cx y = (7-1) 系统性能和控制能量的要求可以由下列二次型性能指标来描述: ⎰∞+=0d ][t Ru u Qx x J T T (7-2)Q 是对称正定(半正定)加权矩阵,R 是对称正定加权矩阵,他们反映了设计者对状态x 和控制u 中各分量重要性的关注程度。
第一项反映控制性能,这一项越小,状态衰减到0的速度越快,振荡越小,控制性能越好;第二项反映对控制能量的限制。
通常状态x 衰减速度越快,控制能量越大,这是一个矛盾,最优控制的目的就是寻找Q 、R ,调和上述矛盾,问题归结为,对给定系统(7-1)和保证一定性能指标(7-2)的前提下,,设计一个控制器u ,使J 最小。
若系统的状态是可以直接测量的,且考虑的控制器是状态反馈控制器,则可以证明,使性能指标(7-2)最小化的最优控制器具有以下线性状态反馈形式:Kx u -= (7-3) 将控制器(7-3)代入系统方程(7-1)可得x BK A x)(-= (7-4) 若系统是渐近稳定的,矩阵BK A -所有特征值均具有负实部,根据线性时不变系统的Lyapunov 稳定性定理,(7-4)一定存在一个正定对称矩阵P 的二次型Lyapunov 函数Px x x T =)V (,利用系统的稳定性可得⎰⎰∞∞⋅-⎥⎦⎤⎢⎣⎡++=00d )(V d d d )(V d d t x t t x t Ru u Qx x J TT []{}∞==∞--+-++=⎰t t T T T T t x t x P BK A BK A P x Ru u Qx x 00)]([V d )()([]000d Px x t x P B K PBK P A PA RK K Q x TT T T T T +--+++=⎰∞对上式“下划线”部分“+”“-”P B PBR T 1-进行配平方得到P B PBR P B PBR P B K PBK RK K T T T T T 11---+-- P B PBR P B R K R P B R K T T T T 111)()(------=可得[]0001d Px x t x P B PBR P A PA Q x J TT T T +-++=⎰∞- ⎰∞----+011d )()(t x P B R K R P B R K x T T T T (7-5)求解最优控制问题,就是选取一个适当的增益矩阵K ,是性能指标J 最小化。
一、主动控制简介概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。
特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。
优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。
但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。
组成:传感器、控制器、作动器工作方式:开环、闭环、开闭环。
二、简单回顾主动控制的应用与MATLAB应用1.主动变刚度A VS控制装置工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。
锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度;打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。
示意图如下:2. 主动变阻尼A VD控制装置工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。
关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态;打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。