n维向量与向量空间
- 格式:ppt
- 大小:1.26 MB
- 文档页数:14
线性代数教学教案第3章 向量与向量空间授课序号01 教 学 基 本 指 标教学课题 第3章 第1节 维向量及其线性运算课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学教学手段 黑板多媒体结合 教学重点 维向量的概念、向量的线性运算的性质教学难点 向量的线性运算的性质 参考教材 同济版《线性代数》作业布置 课后习题大纲要求 理解维向量的概念 教 学 基 本 内 容一. 维向量的概念1.维向量:由个数组成的有序数组称为维向量.2.称为维行向量,称为维列向量. 二.维向量的线性运算1.定义:(1)分量全为0的向量称为零向量;(2)对于,称为的负向量; (3)对于,,当且仅当时,称与相等;(4)对于,,称为与的和;(5)对于,,称为与的差; (6)对于,为实数,称为的数乘,记为.2.向量的线性运算的性质:对任意的维向量和数,有:n n n n n n n a a a ,,,21 n ),,,(21n a a a n 12⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n a a a n n ()12T n αa ,a ,,a = ()12---Tn a ,a ,,a αT n a a a ),,,(21 =αT n b b b ),,,(21 =β),,2,1(n i b a i i ==αβT n a a a ),,,(21 =αT n b b b ),,,(21 =βT n n b a b a b a ),,,(2211+++ αβT n a a a ),,,(21 =αT n b b b ),,,(21 =β()1122---Tn n a b ,a b ,,a b αβT n a a a ),,,(21 =αk T n ka ka ka ),,,(21 ααk n γβα,,l k ,(1);(2);(3);(4);(5);(6);(7);(8).三.例题讲解例1. 某工厂两天的产量(单位:吨)按照产品顺序用向量表示,第一天为第二天为求两天各产品的产量和.αββα+=+)()(γβαγβα++=++αα=+00-αα=αα=⋅1αα)()(kl l k =βαβαk k k +=+)((k l )αk αl α+=+1(15,20,17,8),=T α2(16,22,18,9),=T α授课序号02 教 学 基 本 指 标教学课题 第3章 第2节 向量组的线性关系 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合教学重点 线性组合与线性表示、向量组线性相关、线性无关的定义,向量组线性相关、线性无关的有关性质及判别法教学难点 有关线性相关、线性无关的证明 参考教材 同济版《线性代数》作业布置 课后习题大纲要求 1.理解向量的线性组合与线性表示。
第二章 向量空间打印本页内容提要:n 维向量的概念:向量的线性运算:向量空间及其子空间的概念。
向量组的线性相关与线性无关,向量组的秩的概念,向量空间的基,维数和向量的坐标。
一、向量空间及其子空间1.n 维向量及其线性运算例:坐标原点0(0,0)为起点,以M (x,y )为终点的向量OM ,称为点M 的位置向量或点M 的向径,可用有序数组(X ,Y )来表示,而M 1(x 1,y 1)为起点,M 2(x 2,y 2)为终点的向量m 1m 2可用二元有序数组(x 2-x 1,y 2-y 1)表示,类似地,空间中的向量可以用3元有序数组(a 1,a 2,a 3)来表示。
定义: 称由n 个数a 1,a 2……a n 组成的有序数组(a 1,a 2……a n )为一个n 维向量,数a i 称为该向量的第i 个分量。
(i=1,2……,n )行向量:(a 1,a 2……a n )列向量:α,β,x ,y……等来表示向量,用ai, xi, yi ……等来表示向量的分量向量的相等:如果两个n 维向量α=( a 1,a 2……a n ),β=( b 1,b 2……b n )的对应分量相等,即ai=bi (I=1,2……n )则称向量α与β相等,记为α=β零向量:分量全是零的n 维向量称为n 维零向量,记为0负向量:对于向量α=(a 1,a 2……a n )称-α=(-a 1,-a 2.……-an )为α的负向量。
向量的线 性运算:加法运算=(a1,a2,---,an)=(b1,b2,---bn)与的和为:+=(a1+b1,a2+b2,……,an+bn)数乘运算:k(或k)=(ka1,ka2,……,kan)减法运算:-=+(-)=(a1-b1,a2-b2,……an-bn)向量的线性运算法则:(1)+=+(2)(+)+=+(+)(3)+0=(4)+(-)=0(5)1=(6)k(l)=(kl)(7)k(+)=k+k(8)(k+l)=k+l向量的转置和乘法矩阵一致例:设向量=(4,7,-3,2)=(11,-12,8,58)求满足5-2=2(-5)的向量解:∵5-2=2(-5)∴15=2+2∴=(+)=(15,-5,5,60)=(2,,8)由向量的定义,一个mxn的矩阵可以看成是用m个n维行向量:ai=(ai1,ai2,……,ain)(i=1,2,……m)组成的,或看成是由n个m维列向量=(j=1,2,…,n)组成的。