《n维向量空间》PPT课件
- 格式:ppt
- 大小:82.00 KB
- 文档页数:9
第二节 n 维向量空间定义1:n 个实数组成的有序数组称为n 维向量,一般用γβα,,等希腊字母表示。
称()n a a a ,,,21 =α为n 维行向量,称()Tn n b b b b b b ,,,2121 =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=β为n 维列向量。
称i i b a ,分别为向量βα,的第i 个分量。
特别对矩阵=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a a a a a a a a 212222111211中每一行()in i i a a a ,,,21 ),,2,1(m i =称为矩阵A 的行向量;每一列()Tnj j j a a a ,,,21 ),,2,1(n j =称为矩阵A 的列向量。
定义2:所有分量都是零的向量称为零向量,零向量记作0=()000 。
定义3:由n 维向量()n a a a ,,,21 =α各分量的相反数组成的向量,称为α的负向量,记作:()n a a a ---=-,,,21 α。
定义4:若n 维向量()n a a a ,,,21 =α与()n b b b ,,,21 =β的所有对应分量相等,即),,2,1(n i b a i i ==,则称这两个向量相等,记作βα=。
定义5:设n 维向量()n a a a ,,,21 =α,()n b b b ,,,21 =β,βα与对应分量的和所构成的n 维向量,称为向量βα与的和,记作βα+。
()n n b a b a b a +++=+,,,2211 βα()βαβα-=-+()n n b a b a b a ---=,,,2211定义6:设n 维向量()n a a a ,,,21 =α的各分量都乘以数k 后所组成的n 维向量,称为数k 与向量α的乘积,记作: k α=()n ka ka ka ,,,21 。
向量的运算性质:(1)αββα+=+ (2)γβαγβα++=++)()((3)αα=+0 (4)0)(=-+αα (5)()βαβαk k k +=+ (6)()αααl k l k +=+ (7))()(ααl k l k =⋅ (8)αα=⋅1定义7:在n 维向量的集合中,如果其中任意二个向量的和以及一个向量与数的积都在这个集合中,则称这集合为n 维向量空间。
第4章 n 维向量空间 §4.1 n 维向量定义1 n 个有次序的数n a a a ,,,21 所组成的数组),,,(21n a a a 称为n 维向量, 这n 个数称为该向量的n 个分量, 第i 个数i a 称为第i 个分量.n 维向量可写成一行,称为行向量,也可以写成一列,称为列向量.向量常用黑体小写字母βα、、、b a 等表示,即n 维列向量记为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α,n 维行向量记为),,,(21n αααα =.行向量与列向量的计算按矩阵的运算规则进行运算.例 设.)1,0,1,0(,)2,4,7,1(,)3,1,0,2(T T T =-=-=γβα(1) 求 γβα32-+; (2) 若有x , 满足,0253=++-x γβα 求.x 解(1)γβα32-+T T T )1,0,1,0(3)2,4,7,1()3,1,0,2(2--+-=.)1,2,4,5(T =(2)由,0253=++-x γβα得x )53(21γβα-+-=])1,0,1,0(5)2,4,7,1()3,1,0,2(3[21T T T --+--=.)8,2/7,1,2/5(T --= 在解析几何中,我们把“既有大小又有方向的量”称为向量,并把可随意平行移动的有向线段作为向量的几何形象. 引入坐标系后,又定义了向量的坐标表示式(三个有次序实数),这就是上面定义的3维向量. 因此,当3≤n 时,n 维向量可以把有向线段作为其几何形象. 当3>n 时,n 维向量没有直观的几何形象.§4.2 向量组的线性相关性1、向量组的概念若干个同维数的列向量(或行向量)所组成的集合称为向量组.例如,一个n m ⨯矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a a a a a A 212222111211每一列⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mj j j j a a a 21α),2,1(n j =组成的向量组n ααα,,,21 称为矩阵A的列向量组,而由矩阵A 的的每一行),,2,1(),,,(21m i a a a T in i i i ==α组成的向量组m ααα,,,21 称为矩阵A 的行向量组.反之,由有限个向量所组成的向量组可以构成一个矩阵。