负载敏感液压系统介绍
- 格式:pdf
- 大小:3.03 MB
- 文档页数:4
液压系统基础知识大全液压系统的组成及其作用一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。
动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。
液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。
执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。
控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。
根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。
压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。
根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。
辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。
液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
液压系统结构液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。
液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。
液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。
在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。
空心箭头表示信号流,而实心箭头则表示能量流。
基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。
对于执行元件和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。
根据系统工作原理,您可对所有回路依次进行编号。
Eaton®中等负载柱塞泵(斜盘-轴向)负载敏感(LS)控制系统工作原理与操作——Load Sensing Sytem-Principle and Operation王清岩[译]CCE(JLU,CHINA)15-09-2005Load Sensing Principle of OperationPage序言 (3)何谓负载敏感? (4)负载敏感系统是如何工作的 (5)采用负载敏感控制的优点 (14)开发与调试 (25)系统比较 (26)应用 (27)负载敏感控制技术的前景 (27)Load Sensing Principle of Operation序言早在二十世纪六十年代后期,一些年轻的工程师对液压传动技术的优缺点进行了仔细的分析。
中位开放式液压系统,采用了一个定排量的齿轮泵,提供恒定的流量,系统压力是由作用于工作介质上的载荷决定的。
为限制系统的最高工作压力,必须设置一个高压溢流阀。
当系统工作压力达到设定值,液压泵近乎全部流量将通过溢流阀流回油箱,因而导致极高的功率损失,并在系统中产生大量的热损耗致使系统效率极低。
相比之下中位封闭的液压系统具有排量可调的优点,排量调节的范围可从最小排量至最大排量,甚至正向最大排量至反向最大排量;并且无需在系统中设置溢流阀。
其最大工作压力的控制是通过液压泵内部的补偿器实现的。
此类补偿器可在系统因负载超出额定范围导致系统受到阻滞的状态下通过限压变量活塞使泵卸荷即液压泵处于高压运转状态、但排量近乎为零。
此时液压泵将进入等待状态,并保持较高的工作压力,直至负载被克服或恢复操作阀的控制状态。
中位闭式系统的缺点是液压泵试图在所有的工况下均实现所限定的最高工作压力附近的排量调节。
但是液压系统还有这样一类工况,即期望获得较大的流量而所要求的工作压力却很低。
中位闭式的系统在此种工况下导致了较高的压力降并在能量损失过程中产生大量的热。
工程师们于是设想,若能将两种系统的优点进行合并将得到最佳的性能。
力士乐闭中心负载敏感压力补偿挖掘机液压系统主要内容介绍了力士乐闭中心负载敏感压力补偿挖掘机液压系统组成及其工作原理、特性。
重点分析了多路阀液压系统、液压泵控制系统、各主要液压作用元件液压回路及多路阀先导操纵系统等。
目前液压挖掘机有两种油路: 开中心直通回油六通阀系统和闭中心负载敏感压力补偿系统, 我国国产液压挖掘机大多采用”开中心”系统, 而国外著名的挖掘机厂家基本上都采用”闭中心”系统。
闭中心具有明显的优点, 但价格较贵。
国内厂家对开中心系统比较熟悉, 而对闭中心系统不太了解,因此有必要来介绍一下闭中心系统, 本文重点分析力士乐闭中心负载敏感压力补偿(LUDV) 挖掘机油路。
LUDV 意为与负载无关的分配阀。
LUDV系统力士乐挖掘机液压系统可以看作由以下4 部分组成:①多路阀液压系统(主油路) ;②液压泵控制液压系统(包括与发动机综合控制) ;③各液压作用元件液压子系统, 包括动臂、斗杆、铲斗、回转和行走液压系统, 还包括附属装置液压系统;④多路阀操纵和控制液压系统。
LUDV系统是力士乐等公司在改进负荷传感技术的基础上发展起来的,它是不受负载影响的流量分配系统,它将常开式压力补偿改为常闭式,泵所提供的流量与负载所需相匹配,避免了不必要的空流和节流损失。
即使泵的流量小于系统复合动作所需的流量,各动作的相对速度也不会发生变化,从而保证动作的协调性,避免动作冲击。
1 多路阀液压系统多路阀液压系统是液压挖掘机的主油路, 它确定了液压泵如何向各液压作用元件的供油方式, 决定了液压挖掘机的工作特性。
力士乐采用的闭中位负载敏感压力补偿多路阀液压系统的工作原理见图1 (因换向阀不影响原理分析, 故未画出) 。
图1 挖掘机力士乐主油路简图挖掘机力士乐主油路由工装油路和回转油路二个负载敏感压力补偿系统组成。
1.1 工装油路工作装置和行走油路(除回转外) 简称工装油路,用阀后补偿分流比负载敏感压力补偿(LUDV)系统, 具有抗饱和功能。
负载敏感控制技术在TBM液压系统中的应用2010-08-27 11:43:11来源:中华铁道网浏览次数:86网友评论0 条液压技术是基于帕斯卡定律(Pascal Law),以有压流体(压力油)为介质,来实现能量传递和自动控制的一种应用技术。
液压传动传递动力大,运动平稳。
液压技术可应用在需要传递高功率及负载运动需要精确控制的场合。
对于液压系统来说,压力和流量是两个基本参数。
液压系统的压力是由负载来确定的,而流量是系统重点要控制的变量。
流量与压力的乘积为功率。
因此,对该两变量进行控制,关系到系统的功率利用率问题。
论文将以负载敏感控制技术为依据,论述液压系统功率效率及控制问题。
并以WIRTH TB880E隧道掘进机中液压系统作为应用实例,加以说明。
1负载敏感技术的原理负载敏感技术,简言之,就是将负载需要的压力、流量与泵的压力、流量相匹配以最大限度地提高系统效率的技术。
要提高系统效率,一方面,需要将负载的压力与泵的输出压力相适应;另一方面,泵的输出流量正好满足负载运动速度的需要。
此外,还需要实现待机状态的低功耗。
如图1所示,实现负载敏感控制的系统由下列元件组成:负载敏感变量柱塞泵1,速度调节元件(节流阀)2,压力传感元件(梭阀)3。
在柱塞泵1上有压差控制阀4和压力控制阀5。
压力控制阀用来限定泵的最高工作压力Pmax。
负载的驱动压力Pl,通过梭阀3反馈到泵的控制口X,压差控制阀4用来设定泵的出口与执行元件(油缸)进油口之间的压差△P。
从而,执行元件的运动速度取决于节流阀2的开度(节流阀的流量关系式确定Q=f(A, △P))。
即在此系统中,节流阀和压差控制阀共同组成了一个调速阀。
只要Pl≤Pmax-△P,无论负载怎么变化,泵提供的流量能始终与负载的要求相适应,而泵的输出压力为Pl+△P。
这样液压系统的效率(不计入泵的效率及执行元件的效率)为Pl/(Pl+△P)。
当系统未工作,处于待机状态时,负载压力Pl=0,系统的待机功率损耗为△PQp 。
负载敏感多路阀工作原理负载敏感多路阀(Load Sensitive Multiport Valve)是一种可以根据负载变化自动调节流量的阀门。
它在液压系统中具有重要作用,可以有效地平衡流体的压力,降低系统的能量消耗,提高系统的响应速度和稳定性。
负载敏感多路阀由阀体、阀芯、弹簧、调节阀、负载敏感元件等组成。
当液压系统中有负载变化时,负载敏感元件会感知负载的变化,并通过调节阀控制阀芯的移动,进而改变液压系统的流量。
具体工作原理如下:当液压系统中没有负载作用时,阀芯处于初始位置,流体通过阀体的中心通道直接流过,不受阀芯控制,流量较大。
同时,弹簧的压力将阀芯保持在初始位置。
当液压系统中有负载作用时,负载敏感元件会感知到负载的变化。
如果负载增加,负载敏感元件会发出信号,通过调节阀补充液压系统中的压力。
增加液压系统中的压力可以推动阀芯的运动。
阀芯的运动会改变阀体中通道的截面积,从而改变液体的流量。
负载敏感多路阀会根据负载的变化,自动调整阀芯的位置,控制液体的流量。
当液压系统中的负载减少时,负载敏感元件会感知到负载的变化,并通过调节阀降低液压系统中的压力。
降低压力可以使阀芯回到初始位置,恢复到较大的流量状态。
通过以上工作原理,负载敏感多路阀可以根据负载的变化自动调节流量,从而使液压系统能够更好地适应实际的工作状态。
它可以实时监测负载的变化,并迅速响应,及时调整流量,平衡系统的压力,提高系统的工作效率和稳定性。
负载敏感多路阀在液压系统中的应用非常广泛。
例如,在挖掘机、起重机、农机等大型设备中,负载敏感多路阀可以根据负载变化,精确控制液压系统的流量,从而实现平稳的工作,减少能量消耗,延长设备的使用寿命。
负载敏感多路阀的工作原理简单而可靠,它通过监测负载的变化,自动调节流量,提高了液压系统的工作效率和稳定性。
同时,它还可以降低系统的能源消耗,节约成本。
因此,负载敏感多路阀在液压系统中具有重要作用,为现代工程机械的发展提供了有力的支撑。
117中国设备工程C h i n a P l a n t E n g i n e e r i ng中国设备工程 2020.07 (下)1 前言液压传动是很多传动方式中的一种,广泛使用在船舶、冶金、航空航天、工程机械等领域 ,液压传动在耐污和维修保养方面有一定的要求,同时,液压传动遵循两个特点:一是具有高功率密度,二是遵守帕斯卡原理。
以某中小吨汽车起重机为例,执行元件较多且分布较为分散,同时,多个元件需要同步协调工作,液压传动可以解决这一难题。
液压系统为更好地满足工程机械的不同的工况需求,也发生较多的变化,比如,汽车起重机的液压系统多项技术的应用升级,依次从节流调速、负载铭感、负载铭感加流量分配到最新的电液比例正流量数字控制。
分析各控制的特点如下。
(1)简单描述一下节流调速控制:节流调速的特点是节流调速阀加定量泵系统,优点是成本低,但缺点明显是流量收负载进口压力的影响,即单执行机构工作时,调速区间随着负载的增大而减小,多执行机构同时动作时,动作不协调,重载机构减速或者停止,轻载部件速度过快,流量分配不均,导致汽车起重接组合动作不协调。
受负载影响的原因是节流调速控制一般的都是中位开方式液压系统,动力源为一个定量泵提供恒定的流量,系统压力是由载荷决定,为限制系统的最高工作压力,必须设置一个高压溢流阀,当系统压力达到溢流阀设定值时,液压泵输出的压力油几乎全部通过溢流阀流回油箱,导致功率损失较大并导致系统发热量大,系统效率低下。
(2)负载铭感控制系统:该系统是由负载敏感阀和定量泵或变量泵组成的,可实现多个执行机构同步工作,控制输出流量与负载无关,换向阀的每个工作联阀芯可单独设计流量和压力,系统节能,但当液压泵供给的流量小于同步工作的执行机构所需流量时,阀芯同样开口情况下,负载大的执行机构流量先减少,导致多个汽车起重机负载敏感阀及压力补偿液压系统的解析孙玉魁,王充(安徽柳工起重机有限公司,安徽 蚌埠 233000)摘要:随着工程机械行业的快速发展,汽车起重机产品的液压系统已全面升级,由最早节流调速系统发展到现在的负载敏感及压力补偿技术的应用,本文介绍了该技术的一些基本特点以及系统怎么进行组合使用,后期能达到什么样的应用效果。
负载敏感液压系统压力振荡问题的解决办法◎ 应金玲 吴碧青 中国科学院南海海洋研究所摘 要:本文主要根据负载敏感液压系统的基本原理,结合实际应用过程中遇到的故障及解决经验,介绍负载敏感液压系统压力振荡问题的一种简单有效的解决办法,供相关液压设计人员及用户参考,希望液压设计人员在设计负载敏感液压系统时能够充分考虑各种复杂工况,设计更加合理,在实际应用中能够不断发展和完善。
关键词:负载敏感液压系统;压力振荡;蓄能器;节流孔1.负荷敏感液压系统基本原理负载敏感液压系统L S(lo a d senser)是一种液压系统中感受压力、流量变化和控制的需求,提供液压系统设备所需要的压力和流量的液压回路。
系统将控制阀后负载压力传递给负载敏感的变量泵,变量泵根据负载压力变化改变泵的排量,使泵提供系统所需求的流量。
下面结合某科考船6000米地质绞车液压控制系统部分截图来简单介绍一下负载敏感液压系统基本原理。
负载敏感液压系统主要的部件有负载敏感变量柱塞泵(见图1)、电液比例换向阀、压力补偿阀等功能阀件(见图2)。
负载敏感系统的工作原理核心为系统将负载的压力反馈到负载敏感泵上,压力油通过泵上的LS口,传入到泵内,泵内的负载敏感阀的弹簧感受压力油压力大小,改变泵的斜盘角度,从而改变泵的输出流量。
进一步讲是负载敏感阀上的弹簧,感受压力油而获得的弹簧变形的程度来改变泵的输出排量。
电液比例换向阀与压力补偿阀配合使用,由于压力补偿阀能保证换向阀前后压差(即泵出口压力和负载压力之差)恒定,去执行元件的流量仅由比例换向阀的开口大小决定,与负载压力无关。
电液比例换向阀前后压差(即泵出口压力和负载压力之差),即为压力补偿阀的调定弹簧值△P。
由于△P为常量,从而各执行元件的流量取决于电液比例换向阀阀口面积A的大小,即与压力无关的流量分配,可以很精准地控制执行元件的速度。
采用负载敏感技术的优点是:系统的输出压力及流量直接取决于负载,能确保液压泵的压力与负载所需自动匹配,可以大大提高系统的功率利用率;而且也能精确地控制负载的速度,使绞车速度变化平滑,根据负载调节泵输出流量,减少系统发热和能量损耗。
负载敏感阀在液压系统中的应用
负载敏感阀(Load-sensing valve)是一种用于液压系统的控制阀,用于根据系统负载需求来调节液压系统的流量和压力。
负载敏感阀的主要工作原理是通过感应外部负载对阀芯力的作用,从而调整阀芯的位置和开启程度,以达到控制系统流量和压力的目的。
当系统负载增加时,负载敏感阀会根据负载的压力要求来调整液压阀的开启程度,从而保持合适的流量和压力。
负载敏感阀在液压系统中的应用主要有以下几个方面:
1.节能优化:负载敏感阀可以根据系统的负载需求动态调整
流量和压力,以最大程度地减少能源的消耗。
通过及时调
整流量和压力,可以避免系统过度供应液压能量,提高系
统的效率和能源利用率。
2.功率平衡:在多个液压执行元件(如液压缸)同时工作的
情况下,负载敏感阀可以根据负载需求均衡地供应液压能
量,确保系统各个执行元件能够获得合适的流量和压力,
避免出现优先级不均衡或负载偏差的问题。
3.系统稳定性:负载敏感阀通过动态调整流量和压力,可以
提高系统的稳定性和控制精度。
当负载需求发生变化时,
负载敏感阀能够迅速响应并调整系统的工作参数,以确保
系统稳定运行和准确控制。
4.负载保护:负载敏感阀可以根据负载的压力要求来调整阀
芯的位置和开启程度,以保护系统和负载部件。
当负载压
力超过设定值时,负载敏感阀会适时降低流量和压力,以防止系统和负载的过载和损坏。
综上所述,负载敏感阀在液压系统中起着重要的作用,可以通过动态调整流量和压力,实现节能优化、功率平衡、系统稳定性和负载保护等功能。
这使得液压系统能够更加高效、可靠和安全地运行。
负载敏感液压泵原理负载敏感液压泵是一种能够根据负载情况自动调整输出压力和流量的液压泵。
它利用负载敏感元件和控制系统实现对液压泵输出的精确调节,从而实现对液压系统的动态控制。
在工业生产和机械设备中,负载敏感液压泵被广泛应用,为系统提供高效、稳定的液压能源。
负载敏感液压泵的工作原理可以简单地描述为:根据负载情况自动调节输出压力和流量。
具体来说,当液压系统的负载增加时,负载敏感元件感应到负载的变化,并通过控制系统调整液压泵的输出压力和流量,使其能够满足系统的要求。
而当负载减少时,液压泵也能够相应地减小输出压力和流量,以节约能源和降低系统的运行成本。
负载敏感液压泵的关键在于负载敏感元件和控制系统。
负载敏感元件通常采用压力控制阀或流量控制阀,用于感应和反馈负载的变化。
当负载增加时,压力或流量控制阀会感应到负载的增加,并通过控制系统发送信号给液压泵,要求增加输出压力和流量。
控制系统根据负载的变化信号,调节液压泵的工作状态,使其能够满足系统对压力和流量的需求。
负载敏感液压泵的优点在于其高效、节能的特性。
由于能够根据负载情况自动调节输出压力和流量,负载敏感液压泵能够实现能源的有效利用。
当负载较轻时,液压泵会自动减小输出压力和流量,以减少能源的消耗。
而当负载较重时,液压泵会自动增加输出压力和流量,以满足系统对液压能源的需求。
这种自动调节的能力能够保证系统在不同负载下的稳定运行,提高系统的效率和可靠性。
负载敏感液压泵在工业生产和机械设备中的应用非常广泛。
例如,在机床行业中,负载敏感液压泵能够根据切削负载的变化,自动调整切削液的压力和流量,使机床能够在不同工况下保持稳定的切削质量和加工效率。
在冶金、矿山等行业中,负载敏感液压泵能够根据负载的变化,自动调整工作液的压力和流量,以满足不同工艺的要求。
在工程机械和汽车行业中,负载敏感液压泵能够根据负载的变化,自动调整液压系统的工作状态,以提高机械设备的工作效率和安全性。
负载敏感液压泵是一种能够根据负载情况自动调节输出压力和流量的液压泵。
负载敏感液压泵原理液压泵是液压系统中的核心元件,负载敏感液压泵是一种根据外部负载要求来调整工作压力和流量的液压泵。
它可以根据负载的变化自动调整输出压力和流量,从而实现对液压系统的精确控制和能量的有效利用。
负载敏感液压泵的原理是通过感应负载变化来调整输出压力和流量。
当负载增加时,液压泵会自动增加输出压力和流量,以满足负载要求;当负载减少时,液压泵会自动降低输出压力和流量,以节约能量。
这种负载敏感的调节方式可以在不同工况下保持合适的工作压力和流量,提高液压系统的工作效率和稳定性。
负载敏感液压泵的工作原理主要包括以下几个方面:1. 感应负载压力:负载敏感液压泵通过感应负载的压力变化,来调整输出压力。
当负载增加时,负载敏感液压泵会感应到负载压力的增加,并通过相应的调节机构来增加输出压力。
当负载减少时,负载敏感液压泵会感应到负载压力的减少,并通过相应的调节机构来降低输出压力。
2. 调节输出流量:负载敏感液压泵还可以根据负载的要求来调节输出流量。
当负载增加时,负载敏感液压泵会增加输出流量,以满足负载的需求;当负载减少时,负载敏感液压泵会减少输出流量,以节约能量。
这种调节流量的方式可以使液压系统在不同负载下保持恰当的流量,提高系统的工作效率。
3. 负载敏感器:负载敏感液压泵中的负载敏感器是实现负载感应的关键部件。
负载敏感器可以感应到负载的压力变化,并将这些信号传递给液压泵的调节机构。
调节机构根据负载信号来调整输出压力和流量,以满足负载的要求。
负载敏感液压泵的优点在于能够根据负载的变化来调整输出压力和流量,从而提高液压系统的工作效率和能量利用率。
它适用于需要精确控制和能量节约的液压系统,如工程机械、冶金设备、船舶等领域。
负载敏感液压泵通过感应负载变化来调整输出压力和流量,实现对液压系统的精确控制和能量的有效利用。
它的工作原理是通过感应负载压力和调节输出流量来实现的,其中负载敏感器是实现负载感应的关键部件。
负载敏感液压泵的优点在于能够根据负载的变化自动调整输出压力和流量,提高系统的工作效率和能量利用率。
一、负载敏感和压力补偿概念(一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。
以往液压系统在使用操纵过程中,存在着以下需解决的问题:1.节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。
2.操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。
3.单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。
合理地分配流量,实现理想复合动作。
4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。
为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。
目前液压传动仍存在问题有待解决。
例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。
目前人们正在研究采用电路中变压器这类东西,来解决这个问题。
(二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。
(即广义的负载敏感和压力补偿)。
负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行反馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。
负载敏感系统所采用的控制方式包括液压控制和电子控制。
从负载敏感系统的液压元件来看可分:负载敏感阀:将压力、流量和功率变化信号,向阀进行反馈,实现控制功能的阀。
负载敏感泵:将压力、流量和功率变化信号,向泵进行反馈,实现控制功能的泵和马达。
负载敏感系统可降低液压系统能耗,提高机械生产率,改善系统可控性,降低系统油温,延长液压系统寿命。