第22章_一元二次方程整章教案
- 格式:doc
- 大小:711.00 KB
- 文档页数:37
《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
第二十二章一元二次方程全章教案第二十二章一元二次方程教材内容1.本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程应用题. 2.本单元在教材中的地位与作用.一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等根底之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.教学目标 1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题. 2.过程与方法〔1〕通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.?根据数学模型恰如其分地给出一元二次方程的概念.〔2〕结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.〔3〕通过掌握缺一次项的一元二次方程的解法──直接开方法,?导入用配方法解一元二次方程,又通过大量的练习稳固配方法解一元二次方程.〔4〕通过用已学的配方法解ax+bx+c=0〔a≠0〕导出解一元二次方程的求根公式,接着讨论求根公式的条件:b-4ac>0,b-4ac=0,b-4ac0,即〔m-4〕+1≠0 ∴不管m取何值,该方程都是一元二次方程.五、归纳小结〔学生总结,老师点评〕本节课要掌握:〔1〕一元二次方程的概念;〔2〕一元二次方程的一般形式ax+bx+c=0〔a≠0〕?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.教材P34 习题22.1 1、2. 2.选用作业设计.作业设计一、选择题 1.在以下方程中,一元二次方程的个数是〔〕.①3x+7=0 ②ax+bx+c=0 ③〔x-2〕〔x+5〕=x-1 ④3x- A.1个 B.2个 C.3个D.4个2.方程2x=3〔x-6〕化为一般形式后二次项系数、?一次项系数和常数项分别为〔〕. A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6 3.px-3x+p-q=0是关于x的一元二次方程,那么〔〕. A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________. 2.一元二次方程的一般形式是__________.3.关于x的方程〔a-1〕x+3x=0是一元二次方程,那么a的取值范围是________.三、综合提高题1.a满足什么条件时,关于x的方程a〔x+x〕=2m+122222222222222222225=0 x3x-〔x+1〕是一元二次方程?2.关于x的方程〔2m+m〕x+3x=6可能是一元二次方程吗?为什么?3.一块矩形铁片,面积为1m,长比宽多3m,求铁片的长,小明在做这道题时,?是这样做的:设铁片的长为x,列出的方程为x〔x-3〕=1,整理得:x-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:422x 21 2 3 4 x-3x-1 -3 -3 所以,________。
22.1一元二次方程(1)教学目的:(1)理解一元二次方程的概及项、各项系数的含义;(2)知道一元二次方程的一般形式,会把一元二次方程化成一般形式,并能正确指出二次项、一次项、常数项,二次项系数、一次项系数;(3)通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点:(1)一元二次方程的有关概念;(2)会把一元二次方程化成一般形式。
教学难点:一元二次方程的含义教学过程设计:一、 引入新课引例1:剪一块面积是150cm 2的长方形铁片,使它的长比宽多5cm 、这块铁片应该怎样剪?分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题)。
3.让学生自己列出方程 x (x 十5)=1504.化简得:x 2+5x-150=05.你能解这个方程吗?引例2:如图,有一块矩形铁皮,长100㎝,宽50㎝,在它的四个角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖的方盒,如果要制作的无盖方盒的底面积为3600cm 2,那么切去的正方形的边长应该是多少?分析:设切去的正方形的边长为xcm ,则盒底的长为(100-2x)cm ,宽为(50-2x)cm,根据方盒的底面积为3600cm 2得:(100-2x)(50-2x)=3600整理得:4x 2-300x+1400=0化简得:x 2-75x+350=0你能解这个方程吗?引例3:要组织一次邀请赛,参赛的每两个队之间都要比赛一场。
根据场地时间和条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?分析:全部比赛共4×7=28场设应邀请x 个队参加比赛,每个队要与其他(x-1)个队各赛一场,由于甲队对乙队的比赛和乙队对甲队的比赛属于同一场比赛,所以全部比赛共)1(21-x x 场。
列方程得:)1(21-x x =28 整理得:x 2-x-56=0二、 新课:1. 观察上面三个方程:(1) x 2+5x-150=0(2) x 2-75x+350=0(3) x 2-x-56=0它的等式两边都是整式,方程中只含一个未知数,未知数的最高次数是2。
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
22.2 二次函数与一元二次方程一、教学目标【知识与技能】了解二次函数与一元二次方程之间的联系,掌握二次函数图象与x轴的位置关系可由对应的一元二次方程的根的判别式进行判别,了解用图象法确定一元二次方程的近似解的方法.【过程与方法】通过对实际问题情境的思考感受二次函数与对应的一元二次方程的联系,体会用函数的观点看一元二次方程的思想方法.【情感态度与价值观】进一步增强学生的数形结合思想方法,增强学生的综合解题能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0之间的联系,利用二次函数的图象求一元二次方程的近似解.【教学难点】一元二次方程根的情况与二次函数图象与x轴位置关系的联系.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课出示课件2:以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m )与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m?为什么?(4)小球从飞出到落地要用多少时间?(二)探索新知探究一二次函数与一元二次方程的关系出示课件5:⑴小球的飞行高度能否达到15m?如果能,需要多少飞行时间?学生板演:解:15=20t-5t2,t2-4t+3=0,解得t1=1,t2=3.∴当球飞行1s或3s时,它的高度为15m.教师问:你能结合图形,指出为什么在两个时间求的高度为15m吗?学生独立思考.出示课件6:(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?学生板演:解:20=20t-5t2,t2-4t+4=0,解得t1=t2=2.故当球飞行2秒时,它的高度为20米.教师问:你能结合图形,指出为什么只在一个时间球的高度为20m?学生独立思考.出示课件7:(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?学生板演:解:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.教师问:你能结合图形指出为什么球不能达到20.5m的高度?学生独立思考.出示课件8:(4)球从飞出到落地要用多少时间?学生板演:解:小球飞出时和落地时的高度均为0m,0=20t-5t2,t2-4t=0,解得t1=0,t2=4.当球飞行0秒和4秒时,它的高度为0米.即0秒时球地面飞出,4秒时球落回地面.教师问:从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?(出示课件9)学生答:一般地,当y取定值且a≠0时,二次函数为一元二次方程.教师举例说明:二次函数与一元二次方程关系.(出示课件10)例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3 的值为0,求自变量x的值.出示课件12:例已知二次函数:y=2x2-3x-4的函数值为1,求自变量x的值,可以看作解一元二次方程.反之,解一元二次方程2x2-3x-5=0,又可以看作已知二次函数的函数值为0时自变量x的值.学生答:2x2-3x-4=1;y=2x2-3x-5解之得:x1=-1,x2=2.5出示课件13:练一练:1.二次函数y=x2-3x+2,当x=1时,y= ;当y=0时,x= .2.抛物线y=4x2-1与y轴的交点坐标为;与x轴的交点坐标为.学生自主思考后口答:1.0;1或22.(0,-1);(0.5,0)和(-0.5,0)探究二:利用二次函数与x轴的交点讨论一元二次方程的根的情况教师问:观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(出示课件14)(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.学生自主思考后,教师加以指导:先画出函数图象---图象与x轴交点横坐标是多少--对应一元二次方程的根是多少.(出示课件15)教师问:由上述问题,你可以得到什么结论呢?(出示课件16)学生思考后,师生共同总结:方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x 轴公共点的横坐标.当抛物线与x轴没有公共点时,对应的方程无实数根.反过来,由一元二次方程的根的情况,也可以确定相应的二次函数的图象与x轴的位置关系.出示课件19:观察图象,完成下表:生观察后,独立完成表格.答案:0个;无;x2-x+1=0无解1个;3;x2-6x+9=0,x1=x2=32个;-2,1;x2+x-2=0,x1=-2,x2=1师生共同总结:二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系(出示课件20)出示课件21:例1 已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.师生共同解决如下:解:(1)证明:∵m≠0,∴Δ=[-(m+2)]2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,因此抛物线与x轴总有两个交点;(2)令y=0,则(x-1)(mx-2)=0,即x-1=0或mx-2=0,解得x1=1,x2=2.当mm为正整数1或2时,x2的值为整数,因为当m为2时,Δ=0,抛物线与x轴只有一个交点,所以正整数m的值为1.出示课件22:已知抛物线y=kx2+2x-1与x轴有两个交点,则k的取值范围是.学生自主解决.221=0kx x +-函数与轴有两个交点,即有两个不相等的实数根x20024(101)00.k k k k k ∴∆>≠-⨯->≠>-≠且,即且则且,出示课件23-26:例2 如图,丁丁在扔铅球时,铅球沿抛物线268-10105x y x =++运行,其中x 是铅球离初始位置的水平距离,y 是铅球离地面的高度.(1)当铅球离地面的高度为2.1m 时,它离初始位置的水平距离是多少? (2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少? (3)铅球离地面的高度能否达到3m ?为什么?学生自主思考后,师生共同解决.解:⑴由抛物线的表达式得2682.1-,10105x x =++即2650.x x -+= 解得12=1=5.x x ,即当铅球离地面的高度为2.1m 时,它离初始位置的水平距离是1m 或5m.⑵由抛物线的表达式得2682.5-,10105x x =++即2690x x -+=. 解得x 1=x 2=3.即当铅球离地面的高度为2.5m 时,它离初始位置的水平距离是3m.⑶由抛物线的表达式得2683-,10105x x =++即26140.x x -+=因为2=-6-41140∆⨯⨯<(),所以方程无实根.所以铅球离地面的高度不能达到3m.出示课件28:如图设水管AB 的高出地面2.5m,在B 处有一自动旋转的喷水头,喷出的水呈抛物线状,可用二次函数y=-0.5x 2+2x+2.5描述,在所示的直角坐标系中,求水流的落地点D 到A 的距离是多少?教师分析:根据图象可知,水流的落地点D 的纵坐标为0,横坐标即为落地点D 到A 的距离.即y=0 .学生独立解答:根据题意得 -0.5x 2+2x+2.5=0, 解得x 1=5,x 2=-1(不合题意舍去). 答:水流的落地点D 到A 的距离是5m. 探究三:利用二次函数求一元二次方程的近似解出示课件29:求一元二次方程的根的近似值(精确到0.1).教师分析:一元二次方程x ²-2x-1=0 的根就是抛物线 y=x ²-2x-1 与x 轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x 轴的交点的横坐标,这种解一元二次方程的方法叫做图象法.师生共同解答.0122=--x x出示课件30,31:解:画出函数y=x²-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.教师总结归纳:一元二次方程的图象解法(出示课件32)利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数y=2x2+x-15的图象;(2)观察估计二次函数y=2x2+x-15的图象与x轴的交点的横坐标,由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.出示课件33:根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26学生口答:C(三)课堂练习(出示课件34-41)1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0 B.2a+b<0C.3a+c<0 D.ax2+bx+c﹣3=0有两个不相等的实数根2.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c =0的近似根为( )A.x1≈-2.1,x2≈0.1 B.x1≈-2.5,x2≈0.5C.x1≈-2.9,x2≈0.9 D.x1≈-3,x2≈13.若二次函数y=-x 2+2x+k 的部分图象如图所示,且关于x 的一元二次方程-x 2+2x+k=0的一个解x 1=3,则另一个解x 2= .4.一元二次方程3x 2+x -10=0的两个根是x 1=-2,x 2=53,那么二次函数 y= 3x 2+x -10与x 轴的交点坐标是 .5.若一元二次方程20x mx n -+=无实根,则抛物线2y x mx n =-+图象位于( )A.x 轴上方B.第一、二、三象限C.x 轴下方D.第二、三、四象限6.二次函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( )A .k<3B .k<3且k ≠0C .k ≤3D .k ≤3且k ≠07.已知函数y =(k -3)x ²+2x +1的图象与x 轴有交点,求k 的取值范围.8.某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?参考答案:1.C2.B3.-14.(-2,0)(5,0)35.A6.D7.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0. ∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0.∴k≤4且k≠3.综上所述,k的取值范围是k≤4.8.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(0,20),B(4,4),C(7,3),其中B是抛物线的顶点.9(x 设二次函数关系式为y=a(x﹣h)2+k,将点A、B的坐标代入,可得y=﹣19﹣4)2+4.(7﹣4)2+4=3,左边=右边,即点将点C的坐标代入上式,得左边=3,右边=﹣19C在抛物线上.所以此球一定能投中.⑵将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.(四)课堂小结1.抛物线y=ax2+bx+c与一元二次方程ax2+bx+c=0有何关联?你能不画出抛物线y=ax2+bx+c而了解此抛物线与x轴的交点情况吗?你是怎样做的?2.你能利用抛物线来确定相应的方程的根的近似值吗?从中你有哪些体会?(五)课前预习预习下节课(22.3第1课时)的相关内容.七、课后作业1.教材习题22.2第1、2、3、4、6题.2.配套练习册内容八、板书设计:九、教学反思:本课时教学首先通过具体情况让学生感受用方程思想方法来解决函数问题的思路,然后通过图象来探究一元二次方程的根和二次函数与x轴交点之间的关联.这样整个教学过程充分利用了学生已形成的方程、函数间的关系来类比引导挖掘、探索二次函数与一元二次方程的关系.此外,通过观察图象直观理解、解答练习以及实际观察分析都是必经的途径与方法,重在让学生自主体会.。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校六年级家长会班主任发言稿尊敬的各位家长:你们好!作为班主任,我首先代表我和所有任课老师,对各位家长的到来表示深深的感谢。
感谢你们在百忙之中来到学校,你们的到来既是对你们子女教育的关心,更是对我们工作的大力支持。
一个孩子的成长,不是光靠学校就能够做到的,而如何进行有效的家校配合是非常必要的。
今天请各位来开这个家长会,目的是:更好地了解自己的孩子最近的学习、心理等各方面的表现,更好地加强学校教师与家长的联系,更好地帮助孩子渡过小学阶段的最后一个关键时期,使孩子顺利迈进中学。
下面作为班主任我先对班级情况做个简单介绍:我们班共有学生60人,其中女生30人,男生28人。
从各方面情况来看,总体还是不错的,班级学习气氛较浓厚,集体荣誉感较强,有些家长对孩子的学习也很重视,每次的家庭作业都检查签名。
这让我感到欣慰。
作为学生的语文教师兼班主任,每一个学生在我的心中都留有深刻的印象。
学生们在前半学期取得了许多优异的成绩,如(樊政道、冯宇凡、杨心怡同学)在学校举行的作业展评中被评为优秀作业,受到学校的表彰奖励;在这次其中考试中,涌现出了一部分成绩优异的同学,总分在100分以上的共12 人,90分以上的28人,80分以上的13人,70分以上的6人,70分以下的1人,总体情况较好。
这些成绩的取得离不开家长对学校和老师工作的支持,在此,表示非常感谢。
在取得成绩的同时也存在一些问题,有少数同学的学习态度极不端正,经常不完成家庭作业,主要是周末的作业,一字不写。
究其原因是思想上懒惰,不想动脑筋。
还有部分同学就是偏科严重,不能实现全面发展。
每次考试这一科考的很好,另外一科就考砸了。
还有些同学基础差、学习不投入,还有个别学生有“破罐子破摔”的心理,谁来把这些孩子扶起来,靠老师的引导,家长的鼓励。
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
21世纪教育网 精品资料·第 1 页 (共 2 页) 版权所有@21世纪教育网 人教版九年级上册第22章一元二次方程第1节一元二次方程第2课时一元二次方程的根精品教案教学目标知识技能:理解一元二次方程及有关概念和方程根的意义,并能应用知识解决问题. 数学思考:通过丰富的实例,合作探讨,掌握一元二次方程的根的意义.解决问题:通过方程根的意义提出问题、分析问题,能运用一元二次方程的根的意义解决问题.情感态度:经历方程根的意义解决问题的过程,从而更好地理解方程根的意义和作用,激发学生的学习兴趣.教学重点:一元二次方程及其有关的概念和方程根的意义.教学难点:一元二次方程概念和方程根的意义的理解.教学内容:课本第27至28页.教学过程设计活动一.创设情景,引入新课1.解方程:4x=3(x+5)2.试说出什么是方程的解?3.下列各数是方程1)1(312=-x 解的是( )A.6B.-2C.4D.0 教学说明:此三题为口答题,复习一元一次方程的解,旨在对比学习一元二次方程的解,培养学生继续探究的兴趣.活动二.自主探索,形成概念1.自学课本第27至28页的内容,思考下列问题:(1)对于有关排球赛问题,我们得出的方程是x 2-x=56,符合实际意义的答案是什么?为什么x= -7不符合题意?(2)方程x 2-x=56的解是什么?怎么得出的?(3)什么叫一元二次方程的根?(4)怎样尝试求一元二次方程的根?(5)完成课本第28页的“思考”,体会与尝试求解的异同?(6)一元二次方程的根有几个呢?举例说明.2.教师要让学生理解和掌握:(1)一元二次方程的解也叫做一元二次方程的根.回顾前面(1)中:x 2-x=56有两个根,一个是8,另一个是-7,但-7不满足题意;因此,由实21世纪教育网 精品资料·第 1 页 (共 2 页) 版权所有@21世纪教育网 际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 教学说明:正确理解方程解的意义,让学生知道尝试求解也是一种方法;对于第(1)个问题强调由实际问题列方程求解后,要考虑这些解是否符合实际意义.本节课内容较为简单,大胆放手给学生,让同学们在交流中仔细体会成功.学生通过自学经历思考、讨论、分析的过程,最终形成一元二次方程解的概念.活动三.合作交流,巩固提高例1.下面哪些数是方程x 2-x+6=0的根?-3、-2、-1、0、1、2、3、例2.认真观察下列方程的结构形式,试写出下列方程的根,并说出你的理由.(1).x 2-16=0 (2).(x+3)(x-2)=0(3).(x-2)2=49 (4).x 2-2x+1=25.例3.若x=-3是方程x 2+kx=0的一个根,试求常数k 的值? 教学说明:牢牢把握方程根的定义,对比一元一次方程的解的含义.在例2中要学会观察,结合平方根的意义.形式决定方法,箐同学们认真体会.活动四.知识巩固,课堂练习.1.课本第小练习(答案写在课本上).2.如果-4是方程ax 2-12=0的一个根,请求出常数a 的值?(可让学生板演,完成后对照一下,教师可作简单点评.)教学说明:通过练习加深学生对一元二次方程解概念的理解与把握.活动五.课堂小结教师引导学生回顾梳理本节课的内容:1.理解方程解的意义及实际问题中方程解的实际意义.2.对简单的方程可以试解.活动六.知识反馈,作业布置.1.课本第28至29页3,4,8,9题.2.中考链接.①(2010广西桂林)一元二次方程2340x x +-=的解是 ( ). AA .11x =,24x =-B .11x =-,24x =C .11x =-,24x =-D .11x =,24x = ②(2010贵州贵阳)方程x 2+1=2的解是 x =±1③(2010河北省)已知x = 1是一元二次方程02=++n mx x 的一个根,则222n mn m ++的值为 . 1。
《一元二次方程》教学案第一课时学习目标:1、 理解什么是一元二次方程及一元二次方程的一般形式。
2、 能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、 会依据简单的实际问题列一元二次方程并将其转化为一般形式。
重点难点:1、重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.预习导学:1、观察方程:2x=1; 3x+2=x-4; 2(x+2)-3(x-1)=0它们都含有 个未知数,并且未知数的最高次数是 ,这样的整式方程叫做一元一次方程。
2、下列方程哪些是一元一次方程( )(1) 5x+3=0,(2)2x+y=3,(3)3122=+x , (4)3251)2(=-x ; (5)x2-2x+1=03、自学课本P25---P 26思考下列问题:(1)在教材中两个问题得出的两个方程有什么共同点?未知数的个数和最高次数各是多少?(2)什么叫一元二次方程?类比一元一次方程的概念,一元二次方程概念中的关键词是 什么?举例说明。
(3)一元二次方程的一般形式是什么?为什么规定a ≠0?对b 、c有什么要求吗?(4)对一个一元二次方程是怎样转化成它的一般形式的?并说出它的二次项、一次项、常数项、二次项系数、一次项系数?研习探究:例1、若关于x的方程(k+3)x2-kx+1=0是一元二次方程,求k的取值范围。
例2、将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。
巩固练习:1、判断下列方程,哪些是一元二次方程( )(1)x 3-2x2+5=0; (2)x2=1; (3)221352245x x x x --=-+; (4)2(x+1)2=3(x+1);(5)x2-2x=x2+1;(6)ax 2+bx +c =0 2、将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。
第二十二章一元二次方程一、教材内容一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.二、课标要求1、以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.2、根据化归思想,抓住降次这一策略,掌握配方法,公式法和因式分解法等一元二次方程的基本解法.3、经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用这种重要数学工具的基本能力.三、教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出、分析问题,建立一元二次方程数学模型,并用解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.四、教学重点与难点教学重点:1. 一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3. 利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点:1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.五、课时划分本单元教学时间约需13课时,具体分配如下:22.1 一元二次方程2课时22.2 降次──解一元二次方程5课时22.3 实际问题与一元二次方程3课时教学活动、习题课、小结3课时22.1.1 一元二次方程(1)教案课型:三疑三探上课时间:2014年8月19日星期二课时: 1学习目标:1、进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;2、正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
学习过程:一、设疑自探:(一)根据题意列方程:(1)有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?(2)我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度.(3)要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,依据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,请问全校有多少个队参赛?(二)解疑合探:(1)问题:上述4个方程是不是一元一次方程?有何共同点?①;②;③。
(2)一元二次方程的概念:像这样的等号两边都是_____,只含有___个未知数,并且未知数的最高次数是___的方程叫做一元二次方程。
(3)任何一个关于x的一元二次方程都可以化为(a,b,c为常数,)的形式,我们把它称为一元二次方程的一般形式。
a为,b为,c为。
(三)注意点:(1)一元二次方程必须满足三个条件:a ;b ; c 。
(2)任何一个一元二次方程都可以化为一般形式: .二次项系数、一次项系数、常数项都要包含它前面的符号。
(3)二次项系数0a ≠是一个重要条件,不能漏掉,为什么? (四)质疑再探:1、下列列方程中,哪些是关于x 的一元二次方程?(1)250x -= (22x -= (3)21230x x+-= (4)330x x -= (5)230x xy +-=2、把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:(1) 2351x x =- (2) (2)(1)6x x +-= (3) 2470x -=(五)阅读课本,25页到27页,反思设疑自探情况。
二、学生分小组交流解疑,教师点评升华。
三、巩固练习:课本27页练习1、2题 四、课堂检测:1、下列方程中,是关于X 的一元二次方程的是( )3= B.2221x x x +=- C.20ax bx c ++= D.23(1)2(1)x x +=+2、方程2(1)4(1)x x x -=-的一次项是( ) A. 2x B. 4x C. 6- D. 6x -3、将方程2(21)(3)(21)6x x x -+--=化成一般形式为___________,它的二次项系数为_____,一次项系数为_____,常数项为______。
4、当a_______时,关于X 的方程(a -1)x 2+3x -5=0是一元二次方程。
22.1.2 一元二次方程(2)教案课型:三疑三探 上课时间:2014年8月20日星期三 课时: 1学习目标:1、会进行简单的一元二次方程的试解;2、理解方程的解的概念,发展有条理的思考与表达能力;3、会在简单的实际问题中估算方程的解,理解方程解的实际意义。
学习过程: 一、设疑自探: (一)复习引入:1、解方程,并说出方程解的定义:3x=2(x+5)2一个面积为120m2的矩形苗圃,它的长比宽多2m ,苗圃的长和宽各是多少? 设苗圃的宽为xm ,则长为_______m . 根据题意,得________. 整理,得_____ _ __. (二)解疑合探:1.下面哪些数是上述方程的根?-4,-3,-2,-1,0,1,2,3,4.2、一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边相等的_________的值。
3、判断下列一元二次方程后面括号里的哪些数是方程的解: (1) 2360x -= (-7,-6,-5, 5, 6, 7)(2) 231134902,,1,,0,,1,,22222x ⎛⎫-=---- ⎪⎝⎭4、你能用以前所学的知识求出下列方程的根吗?(1) 2250x -= (2) 231x = (3) 29160x -= (三)注意点:1、使一元二次方程成立的未知数的值,叫做一元二次方程的解,也叫做一元二次方程的根。
2、由实际问题列出方程并得出解后,还要考虑这些解是否是实际问题的解。
(四)质疑再探:1、下列各未知数的值是方程2320x x +-=的解的是( ) A. 1x = B.1x =- C.2x = D.13x =2、根据表格确定方程287.5x x -+=0的解的范围____________3、已知方程2390x x m -+=的一个根是1,则m 的值是______(五)阅读课本,27页到28页,反思设疑自探情况。
二、学生分小组交流解疑,教师点评升华。
三、巩固练习:课本28页练习1、2题 四、课堂检测:1、把22(1)2x x x x -=++化成一般形式是______________,二次项是____一次项系数是_______,常数项是_______。
2、一元二次方程2x x =的根是__________;方程x (x -1)=2的两根为________3、写出一个以2x =为根的一元二次方程,且使一元二次方程的二次项系数为1:__________。
4、已知m 是方程260x x --=的一个根,则代数式2m m -=________。
5.若222x x -=,则2243x x -+=_____________。
6.方程ax (x -b )+(b -x )=0的根是 x 1=______ x 2=___7.已知x=-1是方程ax 2+bx+c=0的根(b≠0)8.如果x 2-81=0,那么x 2-81=0的两个根分别是x 1=________,x 2=__________. 9.已知方程5x 2+mx -6=0的一个根是x=3,则m 的值为________.10.如果x=1是方程ax 2+bx+3=0的一个根,则(a -b )2+4ab 的值为 .11、若关于X 的一元二次方程22(1)10a xx a -++-=的一个根是0,a 的值是几?你能得出这个方程的其他根吗?22.2.1 用直接开平方法解一元二次方程教案课型:三疑三探 上课时间:2014年8月21日星期四 课时: 1学习目标:1、会用开平方法解形如x 2=p 或(mx+n)2=p(p≥0)的方程;2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界的数学模型。
学习过程: 一、设疑自探 (一)、复习引入学生活动:请同学们完成下列各题 问题1.填空(1)x 2-8x+______=(x -______)2; (2)9x 2+12x+_____=(3x+_____)2; (3)x 2+px+_____=(x+______)2.问题2.如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s •的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,•P 、Q 都从B 点同时出发,几秒后△PBQ 的 面积等于8cm 2? (二)解疑合探: 1、36的平方根是________,49的平方根是____________。
2、若24x =,则x =______________;若221x =,则x =__________。
3、请根据提示完成下面解题过程:(1) 由方程 2(21)5x -=, 得 (2) 由方程 2692x x ++=, 得21x -=_______ (_________)2=2即 ∴ ______________=_______21x -=____,21x -=_____ 即 ____________, ____________ ∴ 1x =_______, 2x =_____ ∴ 1x =_______, 2x =_____ (三)归纳概括:1、形如2x p =(0)p ≥或2()mx n p +=(0)p ≥的一元二次方程可利用平方根的 定义用开平方的方法直接求解,这种解方程的方法叫做直接开平方法。