ANSYS集成化仿真平台方案
- 格式:pptx
- 大小:6.24 MB
- 文档页数:22
学会使用ANSYS进行工程仿真分析第一章:ANSYS工程仿真分析的基础知识ANSYS是目前世界上广泛使用的一种工程仿真分析软件,它可以用于各种不同领域的工程分析和设计。
熟练掌握ANSYS的使用方法对于工程师来说至关重要。
本章将介绍ANSYS的基础知识,包括软件的安装和启动、用户界面的介绍以及基本操作方法等。
首先,安装ANSYS软件是使用它的前提。
用户可以从ANSYS 官方网站上下载安装文件,并按照安装向导的步骤进行安装。
安装完成后,可以通过点击桌面上的图标来启动ANSYS。
启动后,会出现ANSYS的用户界面。
用户界面通常由菜单栏、工具栏、主窗口和命令窗口等组成。
菜单栏上包含了各种功能的菜单,用户可以通过点击菜单来选择所需的功能。
工具栏上则包含了一些常用的工具按钮,可以方便地进行操作。
主窗口用于显示分析结果和编辑模型等。
命令窗口则用于输入命令进行操作,这在一些高级功能中会用到。
在进行工程仿真分析之前,需要先创建一个模型。
ANSYS提供了多种建模工具,例如几何建模工具和计算网格生成工具等。
可以根据需要选择合适的建模工具,并按照提示进行操作。
在建模完成后,可以对模型进行网格生成,即将模型划分为小块,并计算各个小块上的分析参数。
第二章:结构分析结构分析是ANSYS中的一个重要模块,用于对各种结构件进行强度、刚度和模态等分析。
本章将介绍ANSYS中常用的结构分析方法和技巧。
在进行结构分析之前,需要先定义结构的边界条件和加载条件。
边界条件包括约束条件和支撑条件等,而加载条件则包括外力和内力等。
用户可以通过ANSYS提供的工具来定义这些条件,并将其应用于模型中。
在进行结构分析时,可以选择合适的分析方法。
ANSYS提供了多种分析方法,例如静力分析、动力分析和模态分析等。
用户可以根据具体的分析要求选择合适的方法,并设置相应的分析参数。
在进行结构分析时,还可以使用ANSYS的后处理功能来查看分析结果。
后处理功能可以用于绘制应力云图、位移云图和动力响应曲线等。
ansys workbench建模仿真技术及实例详解-回复什么是ANSYS Workbench建模仿真技术,以及提供一个实例来详解。
ANSYS Workbench建模仿真技术是一种集成在ANSYS软件平台下的先进仿真建模工具。
它能够提供全面的、高精度的仿真分析,用于解决各种工程问题。
ANSYS Workbench能够模拟并分析结构力学、流体动力学、热传导和电磁场等各种物理现象,它是一个功能强大且灵活的工具,可用于设计优化、性能评估和故障诊断等应用。
ANSYS Workbench的优势之一是其集成的工作环境。
它提供了一个统一的界面,允许工程师能够轻松地建立多物理场的模型、设置边界条件、进行网格划分以及执行仿真分析。
这个集成环境大大提高了工作效率,减少了因为转换格式而产生的错误和不一致性。
ANSYS Workbench还具有高度可扩展性。
它支持多种不同类型的分析,并且可以与其他工具和软件集成。
这使得工程师能够根据他们的特定需求,选择合适的分析方法和模型。
此外,ANSYS Workbench还可以通过添加插件和自定义脚本等方式进行扩展和定制化,以满足用户需求。
下面以一个实例来详细说明ANSYS Workbench建模仿真技术的应用。
假设我们要设计一个汽车的底盘,我们希望通过仿真分析来优化其刚度和强度。
首先,我们需要建立一个底盘的三维几何模型。
可以使用ANSYS SpaceClaim软件来创建几何模型,然后将其导入到ANSYS Workbench 中进行后续分析。
接下来,我们需要定义材料属性。
通过在材料库中选择合适的材料,并输入相应的力学参数,如弹性模量、泊松比和屈服强度等。
这些参数将用于定义底盘的材料行为。
然后,我们需要设定边界条件。
我们可以设定车轮的载荷、车身的支撑条件、底盘的连接方式等。
这些边界条件将用于约束和模拟底盘在实际工况下的受力情况。
接着,我们需要对几何模型进行网格划分。
ANSYS Workbench提供了多种网格划分工具,可以根据模型的复杂性和分析需求选择合适的网格类型和划分方法。
ANSYS 2019R2重新定义新一代工程仿真解决方案随着工程仿真技术的不断发展,ANSYS 作为业内领先的工程仿真软件提供商,始终以技术创新为导向,不断推出更新升级版本,为工程界提供更加先进的仿真解决方案。
2019 年,ANSYS 推出了全新的 2019R2 版本,重新定义了新一代工程仿真解决方案,为用户带来更多前所未有的功能和性能体验。
ANSYS 2019R2 版本在模拟虚拟现实、工程仿真、材料科学和电子集成设计领域进行了全面的升级优化,为用户提供了更加全面和先进的解决方案。
无论是在复杂结构的设计优化、材料性能分析,还是在电子产品的热管理和电磁兼容性等方面,ANSYS 2019R2 都提供了全面而精准的仿真能力,助力用户更好地完成工程设计和优化任务。
在模拟虚拟现实方面,ANSYS 2019R2 版本增强了与第三方虚拟现实平台的集成能力,用户可以更加轻松地将仿真数据导入到虚拟现实系统中进行可视化展示和交互操作,提升了工程设计过程的效率和可视化体验。
ANSYS 2019R2 版本加强了对多物理场耦合仿真的支持,包括流固耦合、热-流场耦合等多种物理场的耦合仿真分析,为用户提供更加全面的仿真解决方案。
在工程仿真领域,ANSYS 2019R2 版本加入了新的拓展模块,如声学仿真分析、疲劳分析等,为用户提供了更广泛的仿真能力。
ANSYS 2019R2 版本还提供了更加强大和高效的优化算法和工具,加速了工程设计的优化过程,减少了设计迭代的时间和成本。
在电子集成设计领域,ANSYS 2019R2 版本加强了对电磁兼容性和热管理的仿真分析能力,用户可以更加准确地分析电子产品的电磁性能和热性能,优化产品设计和性能,提升产品的品质和可靠性。
在性能提升方面,ANSYS 2019R2 版本对软件的性能和稳定性进行了全面优化,用户可以更加流畅地进行仿真分析和数据处理,节省时间和精力。
ANSYS 2019R2 版本还加强了与云计算和大数据平台的集成能力,用户可以更加便捷地进行分布式计算和大规模数据处理,提高了仿真分析的效率和灵活性。
更快更强-ANSYS仿真计算硬件配置推荐(2013A)跨入2013年,HPC硬件技术有了很大发展,对工作站性能提升的CPU、总线架构、GPU、RAID-IO、SSD技术等等,有了一个全新的升级换代,intel 推出了Sandybridge架构Xeon技术、AVX高级矢量指令集、核数越来越多、内存容量越来越大、Nvidia提供了更强大的支持图形处理和并行计算的Kepler架构GPU处理器、LSI推出了基于pcie3.0结构更大带宽的双核IO阵列处理器….通常计算机硬件升级换代总是比软件方面走在前面,ANSYS作为仿真计算的占有显著位置,软件版本已经到14.5,充分享受这些IT技术变化带来的好处,全面支持intel的高级矢量指令集AVX、支持pcie3.0,内存容量和带宽大幅提升,支持性能达1Tflops的Tesla K20并行计算卡,计算规模更大,求解速度大幅提升,ANSYS主要软件进行了功能上的提升:ANSYS Mechanical 方面:1.Sparse稀疏矩阵求解器(SMP和DMP)支持GPU2.工作站或计算节点支持多GPU架构计算3.PCG求解器支持CPU+GPU混合架构计算ANSYS Fluent方面:-AMD求解器支持在单GPU卡上并行计算ANSYS三大类仿真计算软件计算特点归类:(1)隐式结构计算(Ansys Mechnical)计算特点:对内存要求最大,对硬盘容量和IO读写带宽要求高, 虚拟内存io对整个计算过程有影响,支持GPU并行计算(2)显式结构计算(Ansys LS-Dyna、AutoDYN)计算特点:对CPU要求高,对CPU核数无限制,对内存容量要求高,对内存容量需求高,和QPI及CPU与内存通道带宽要求高,硬盘io一般硬件配置规模划分:(3)流体计算(Ansys Fluent、CFX)计算特点:CPU并行计算效果好,对核数无限制,对内存容量需求高,和QPI及CPU与内存通道带宽要求高,对硬盘要求一般,硬件配置规模划分:XASUN高端定制图形工作站介绍XASUN紧跟时代步伐与时俱进,提供最新最先进的工作站硬件架构,满足ANSYS各个类型和不同计算规模仿真计算需求,无论你多大的计算规模、多么复杂算法求解,量身定制出具有超一流性能的图形工作站或分布式集群,让你感受到无与伦比的精准高效和高性能、高可靠,完美打造CAE仿真计算软件最佳硬件平台XASUN配置推荐方案如下:(1)中小规模配置方案规模划分:1000万自由度以内、或300万单元以内(2)中大规模配置方案(3)大规模配置方案计算规模:5000万自由度,或1000万单元以内(4)超大规模配置方案计算规模:1亿自由度左右,2000万~4000万单元。
ANSYS Workbench仿真平台实现协同设计作者:王易CAE技术发展到今天,已经不仅仅满足于为研究人员提供一个分析计算的工具,企业的研发已经成为一个复杂的系统工程。
如何整合这些与研发相关的技术资源使之充分发挥科技创新的能力成为所有的仿真工具必须面临的问题。
ANSYS Workbench协同仿真技术的出现使一个集成化的仿真平台成为可能。
基于ANSYS Workbench的协同环境ANSYS的CAD/CAE协同环ANSYS 新的AWE(ANSYS Workbench Environment)环境能直接读入各种CAD软件的零件模型,并在其统一环境中实现任意模型装配和CAE分析。
整合相同或不同CAD软件模型数据就得到CAE分析用的CAD模型库,这些模型库保留CAD中的设计参数,并通过连接技术实现与CAD的软件之间的共享,其优点是任何CAD和CAE人员对设计的改变都立即反映到对方软件环境中,从而实现设计-仿真的同步协同。
ANSYS 协同仿真环境中能将UG、PRO/E等CAD软件的零件模型直接读入,保留尺寸参数的条件下实现任意装配、分析和优化。
CAE软件和模型数据整合在ANSYS AWE环境中建立仿真分析模型,将所有CAE(包括FEA/CFD/CEM等)软件作为求解器进行调用执行仿真分析,并允许进行优化设计。
整合所得CAD模型经过网格划分、施加载荷工况与边界条件,然后调用CAE程序进行分析求解,还可以给予CAE分析进行设计优化计算。
ANSYS AWE环境下可以解读并转换各种CAE软件的模型数据。
CAD-CAE数据共享与交换在ANSYS AWE环境中,CAD-CAE之间是通过链接的方式共享几何模型数据,包括尺寸、尺寸参数和装配参数等,可以实现双向参数互动。
CAD人员修改CAD软件中的几何设计参数则立即刷新CAE软件中几何模型,CAE人员修改CAE软件中的几何设计参数则立即刷新CAD软件中几何模型,优化设计环境中修改几何设计参数则立即刷新CAE软件中几何模型。
ANSYS工程仿真方案ANSYS是一款非常强大的工程仿真软件,在许多行业都得到广泛的应用,如建筑、汽车、航空航天、电子设备等。
ANSYS提供了许多功能强大的工具,可以用来进行静态和动态分析、热分析、流场分析等,以及多种模拟和优化技术。
本文将介绍ANSYS工程仿真方案的基本概念和应用。
ANSYS工程仿真的基本概念ANSYS工程仿真是用数值计算的方法对物体进行模拟,以便能够预测其受到不同状态下的载荷时的行为和表现。
它可以用来进行结构分析、热分析、流场分析、振动分析等多种分析,在不同行业中都有广泛的应用。
结构分析结构分析主要是对物体受到不同载荷时的应力和变形进行计算和分析。
它可以用来分析静态、动态和非线性条件下的结构响应。
在使用ANSYS进行结构分析时,需要进行有限元网格划分,将物体离散成小的有限元单元,以便计算每个单元的变形和应力,并据此计算物体的总变形和应力。
常用的结构分析技术包括静力分析、动力分析、非线性分析等。
热分析热分析主要是对物体在不同温度条件下的热响应进行计算和分析。
它可以用来分析材料的热膨胀、热应力、热传导等。
在使用ANSYS进行热分析时,需要将物体离散为小的单元,计算每个单元的温度变化并据此计算出物体的总温度分布。
常用的热分析技术包括传导、对流、辐射等。
流场分析流场分析主要是对物体周围的流体流动进行计算和分析。
它可以用来分析流体的速度、压力、热力等。
在使用ANSYS进行流场分析时,需要将流体离散为小的单元,计算每个单元的流速、压力等,再据此计算出整个流场的分布。
常用的流场分析技术包括CFD(计算流体力学)、LBM(格子玻尔兹曼方法)、FEM(有限元方法)等。
振动分析振动分析主要是对物体在受到外部激励时的振动响应进行计算和分析。
它可以用来分析物体的振幅、频率、模态、阻尼等特性。
在使用ANSYS进行振动分析时,需要将物体离散为小的单元,计算每个单元的振动响应,并据此计算出物体的总振动响应。
ANSYS Additive Suite增材工艺仿真解决方案ANSYS Additive Suite是一款用于增材制造(AM)工艺仿真的解决方案,可以帮助用户优化3D打印部件的设计和制造过程。
这个全面的解决方案包括了从设计优化到构建参数控制再到制造过程模拟的工具,使用户能够在整个增材制造过程中进行全面的仿真分析。
在这篇文章中,我们将探讨ANSYS Additive Suite的功能特点,以及它是如何帮助用户解决增材工艺中的各种挑战的。
功能特点:1. 设计优化:ANSYS Additive Suite可以帮助用户优化3D打印部件的设计,通过仿真分析来确定最佳的几何形状和结构布局。
它可以对部件进行拓扑优化,使得结构更加轻量化和强度更高,同时最大限度地减少材料使用量。
2. 熔融温度控制:增材制造过程中熔融池的温度控制是非常重要的,它直接影响到零件的质量和性能。
ANSYS Additive Suite可以模拟熔融池的温度分布,帮助用户调整设备参数和工艺参数,以确保熔融池的温度在一个合适的范围内。
3. 残余应力预测:在增材制造过程中,由于快速的冷却和热收缩,零件上会产生残余应力。
这些残余应力可能导致部件变形和裂纹。
ANSYS Additive Suite可以帮助用户预测零件上的残余应力分布,以及对几何形状和工艺参数进行优化,以减少残余应力的影响。
4. 支撑结构优化:在增材制造过程中,支撑结构的设计和布局对零件质量和生产效率有很大影响。
ANSYS Additive Suite可以模拟支撑结构的行为,确定最佳的支撑布局和材料,以减少支撑结构对零件质量的影响。
解决方案:1. 提高零件质量:通过对零件的设计和构建参数进行全面的仿真分析,ANSYS Additive Suite可以帮助用户提高零件的质量,减少裂纹和缺陷的产生。
2. 降低制造成本:通过优化设计和工艺参数,ANSYS Additive Suite可以帮助用户降低部件的材料使用量和制造时间,从而降低制造成本。