ZPW-2000轨道电路18种低频信号
- 格式:ppt
- 大小:994.00 KB
- 文档页数:66
ZPW-2000A技术标准一.技术条件1. 发送器(1)低频频率:10.3+n×1.1Hz ,n=0~17即:10.3 Hz.11.4 Hz.12.5 Hz.13.6 Hz.14.7Hz.15.8 Hz.16.9 Hz.18 Hz.19 .1 Hz.20.2 Hz.21.3 Hz.22.4 Hz.23.5 Hz.24.6 Hz.25.7 Hz.26.8 Hz.27 .9 Hz.29 Hz。
(2)载频频率下行:1700-1 1701.4 Hz 上行:2000-1 2001.4 Hz 1700-2 1698.7Hz 2000-2 1998.7Hz2300-1 2301.4Hz 2600-1 601.4Hz23002 2298.7 Hz 2600-2 2598.7 Hz(3)频偏:±11 Hz(4)输出功率:不小于70W2.接收器轨道电路调整状态下:主轨道接收电压不小于240mV;主轨道继电器电压不小于20V(1700Ω负载,无并机接入状态下);小轨道接收电压不小于33mV;小轨道继电器或执行条件电压不小于20V(1700Ω负载,无并机接入状态下)。
3.工作电源(1)直流电源电压范围:23.5V~24.5V;(2)设备耗电情况:发送器在正常工作时负载为400Ω,功出为1电平得情况下,耗电为5.55A;当功出短路时耗电小于10.5A;(3)接收器正常工作时耗电小于500mA。
4. 轨道电路(1)分路灵敏度为0.15Ω,分路残压小于140mv(带内)。
(2)主轨道无分路死区;调谐区分路死区不大于5m;(3)有分离式断轨检查性能;轨道电路全程断轨,轨道继电器可靠落下。
二.补偿电容规格及技术指标1700Hz:55μF±5%(轨道电路长度250~1450m)2000Hz:50μF±5%(轨道电路长度250~1400m)2300Hz:46μF±5%(轨道电路长度250~1350m)2600Hz:40μF±5%(轨道电路长度250~1350m)三.ZPW-2000A设备测试1.在衰耗盘测试:(测试周期:季)衰耗盘上共有5个指示灯,12个测试孔。
铁路信号基础设备课程设计班级电1302-1学号 20132742姓名 zy题目:ZPW-2000A轨道电路及发送器仿真设计一、设计目的本课题制作的主要目的是掌握ZPW2000A的工作原理,深入了解发送器、接收器的工作原理和冗余设计方式,掌握发送器工作过程。
二、设计要求1、熟悉绘图软件CAD;2、绘制工作原理图;3、利用仿真软件实现发送器调频功能,产生18种低频种载频的高精度、高稳定的移频信号;4、撰写课程设计报告。
三、设计说明1、系统原理PW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
ZPW2000A移频自动闭塞1.1ZPW2000A闭塞系统概述一、概述1.载频、频偏的选择我国于20世纪90年代初引进法国高速铁路的UM71移频自动闭塞设备,并在此基础上结合我国国情研制了更加适应我国铁路的区间移频自动闭塞设备,该设备即为目前铁道部推广使用的ZPW-2000无绝缘轨道电路移频自动闭塞设备。
ZPW-2000无绝缘轨道电路移频自动闭塞低频、载频延用了UM71技术。
载频分别为四种:1700HZ、2000HZ、2300HZ、2600HZ。
其中上行线使用2000 HZ和2600 HZ 交替排列,下行线用l700HZ和2300 Hz交替排列。
UM71轨道电路的频偏Δf为11HZ。
UM71低频调制信号Fc(低频信息)从10.3 HZ 至29 HZ按1.1 HZ递增共18种。
即这18种低频信息分别为:10.3 HZ、11.4HZ、12.5 HZ、13.6 HZ、14.7 HZ、15.8 HZ、16.9 Hz、18 HZ,19.1 HZ、20.2 HZ、21.1H2、22.4 HZ、23.5 HZ、24.6 HZ、25.7HZ、26.8 HZ、27.9 HZ、29 HZ。
在低频调制信号作用下,一个周期内,信号频率发生f1、f2来回变化。
其中f1=f0 -Δf,f2=f0 +Δf 。
2.18信息的显示3.基本工作原理在移频自动闭塞区段,移频信息的传输,是按照运行列车占用闭塞分区的状态,迎着列车的运行方向,自动地向各闭塞分区传递信息的。
如图3-1-1所示,若下行线有两列列车A 、B 运行,A 列车运行在1G 分区,B 列车运行在5G 分区。
由于1G 有车占用,防护该闭塞正线通过信号L 码 11.4出站信号开放黄灯信号L U 码 13.6经18号道岔侧线通过U U S 码 19.1列车“直进”“弯出”通过 U 2 码 14.7 (出站信号开放)进站开放正线停车信号 U 码 16.9 进站开放侧线停车信号U U 码 18进站开放引导信号H B 码 24.6进站信号关闭H U 码 26.8 进站信号机前方有2以上闭塞分区空闲L 码 11.4前方只有2个闭塞分区空闲L U 码 13.6次架为进站信号机开放黄、闪黄信号U 2S 码 20.2(次架信号机显示U S U )次架为进站信号机开放双黄信号U 2 码 14.7(次架信号机显示U U ) 前方只有1个闭塞分区空闲U 码 16.9(次架信号机显示H )前方闭塞分区有车占用H U 码 26.8通过 或出站 信号机信号显示含义发送的低频码(H Z )显示分区的通过信号机7显示红灯,这时7信号点的发送设备自动向闭塞分区2G发送以26.8 Hz调制的中心载频为2300Hz的移频信号。
ZPW-2000A应知应会1、ZPW-2000型无绝缘轨道电路由那些部分组成?答:由发送器、接收器、衰耗盘、电缆防雷模拟网络、调谐单元、空心线圈、匹配变压器、补偿电容、轨道电路及SPT电缆组成。
2、电气绝缘节作用是什么?答:电气绝缘节由调谐单元、空芯线圈及29m钢轨组成。
用于实现两相邻轨道电路间的电气隔离,即完成电气绝缘节的作用。
3、ZPW-2000型无绝缘轨道电路的动作原理是怎样的?答:如图:电气绝缘节长29米,在两端各设一个调谐单元(下称BA),对于较低频率轨道电路(1700、2000Hz)端,设置L1、C1两元件的F1型调谐单元;对于较高频率轨道电路(2300、2600Hz)端,设置L2、C2、C3三元件的F2型调谐单元。
“f1”(f2)端BA的L1C1(L2C2)对“f2”(f1)端的频率为串联谐振,呈现较低阻抗(约数十毫欧姆),称“零阻抗”相当于短路,阻止了相邻区段信号进入本轨道电路区段。
“f1”(f2)端的BA对本区段的频率呈现电容性,并与调谐区钢轨、SVA的综合电感构成并联谐振,呈现较高阻抗,称“极阻抗”(约2欧),相当于开路。
以此减少了对本区段信号的衰耗。
4、ZPW-2000型无绝缘轨道电路移频自动闭塞采用哪几种载频?如何使用的?答:四中载频。
下行1700Hz、2300Hz 交替使用,上行2000Hz、2600Hz交替使用;站内电码化下行1700Hz、上行2000Hz。
5、ZPW-2000型无绝缘轨道电路移频自动闭塞采用了几种低频信号?答:共采用了18种低频信号,10.3+n×1.1Hz,n<17。
6、目前使用的低频信号是哪些?对应地面信号、机车信号的显示是什么?答:低频信号:10.3 11.4 12.5 13.6 14.7 16.9 18 24.6 26.8 27.9地面信号:L L L LU U U UU HB H 反方向机车信号:L L L LU U2 U UU HUS HU 反方向7、发送器的作用是什么?答:⑴产生18种低频信号8种载频的高精度、高稳定的移频信号。
南京铁道职业技术学院毕业论文题目:ZPW-2000无绝缘移频轨道电路原理分析及故障处理作者:卢志刚学号: 06306110132 二级学院:通信信号学院系:铁道信号专业:高铁信号班级: 1101班指导者:王文波助教评阅者:张国候副教授2014年 05 月ZPW-2000无绝缘移频轨道电路原理分析及故障处理摘要 ZPW-2000A系列自动闭塞是将法国的UM71系统国产化的产物。
它充分的吸收了UM71的优点,同时解决了UM71在传输安全性以及传输长度上的问题。
ZPW-2000A系列自动闭塞实现了轨道电路全路断轨检查、调谐单元断线检查,解决了调谐区死区长度,拍频干扰防护等问题。
系统采用了数字处理和单片微机技术,提高了系统的抗干扰能力。
ZPW-2000A无绝缘移频自动闭塞设备目前已经成为了我国电气化区段的主流设备。
本文主要阐述ZPW-2000A型无绝缘移频自动闭塞系统结构及其工作原理,介绍了一些ZPW-2000A无绝缘移频轨道电路的常见故障及处理方法。
关键词 ZPW-2000A、移频、轨道电路、自动闭塞目录1、绪论 (3)2 .ZPW-2000A无绝缘移频轨道电路的概况 (4)2.1 ZPW-2000A型无绝缘轨道电路的构成 (4)2.2 ZPW-2000A型无绝缘轨道电路的特点 (4)3.ZPW-2000A型无绝缘轨道电路的原理分析 (6)3.1发送器 (7)3.2接收器 (8)3.3衰耗器 (10)3.3.1衰耗器电路原理 (10)3.4电缆模拟网络和站防雷 (13)3.5电气绝缘节 (14)3.6匹配变压器 (15)3.7补偿电容 (16)3.8红灯转移原理 (16)4.2 ZPW-2000A无绝缘轨道电路红光带故障判断 (17)4.3常见故障分析 (18)4.4故障案例 (19)结论与展望 (21)致谢 (22)参考文献 (23)1、绪论照我国铁路行业标准《轨道电路通用技术条件》,轨道电路定义为:利用铁路线路的钢轨作为导体传递信息的电路系统。
2020年信号工定岗考试复习题库及答案(共150题)1.ZYJ7的第一、第二牵引点之间的油管连接应该是顺直的,接头应该密封紧固良好,油管应该固定牢固,并且在两端出入处应该有良好的防护,以免与钢铁件棱角相磨,也不应该由于列车通过上下振动而受力。
答案为A。
2.如果ZYJ7电机能正常转动,但是油缸不动作,最有可能的原因是机械卡阻。
答案为D。
3.提速道岔定位向反位启动线为X1、X3、X4.答案为B。
4.提速道岔反位向定位启动线为X1、X2、X5.答案为A。
5.提速道岔定位表示线为X1、X2、X4.答案为C。
6.提速道岔反位表示线为X1、X3、X5.答案为D。
7.在扳动道岔时,如果道岔表示灯不灭,应该重点检查1DQJ砺磁电路。
答案为A。
8.如果在扳动道岔后,原表示灯熄灭,停扳后原表示又恢复,此种情况下应该重点检查2DQJ转极电路。
答案为C。
9.道岔扳动后电流表指针最大,过13S自停,此时应着重检查室外道岔是否卡阻。
答案为D。
10.当提速道岔无表示时,在分线盘处测X1、X2有交流110V电压,说明故障在室外。
答案为B。
11.25HZ轨道电路中,当轨道线圈和局部线圈电源满足规定的相位和频率要求时,GJ吸起,调整,空闲状态,表示轨道电路空闲。
答案为B。
12.HF2-25型防护盒起着抑制干扰电流和减小轨道电路传输衰耗和相移的作用。
答案为A。
13.25HZ轨道变压器用于25HZ相敏轨道电压中作为供电电源和阻抗匹配用,送电端和受电端可以用不同型号。
答案为B。
B不小于0.1ΩC不大于0.3ΩD不小于0.3Ω15.97型25HZ轨道电路的电气特性为:在调整状态时,轨道继电器的轨道线圈上的有效电压应不小于15V,使用0.06Ω标准分路电阻线在轨道电路送、受电端轨面任一处分路时,轨道继电器端电压(分路残压)应不小于7.4V。
16.双扼流一送一受无分支97型25HZ轨道电路,当限流电阻为4.4Ω时,轨道电路允许的长度为1500m。
铁路信号基础设备课程设计班级电1302-1学号 20132742姓名 zy题目:ZPW-2000A轨道电路及发送器仿真设计一、设计目的本课题制作的主要目的是掌握ZPW2000A的工作原理,深入了解发送器、接收器的工作原理和冗余设计方式,掌握发送器工作过程。
二、设计要求1、熟悉绘图软件CAD;2、绘制工作原理图;3、利用仿真软件实现发送器调频功能,产生18种低频种载频的高精度、高稳定的移频信号;4、撰写课程设计报告。
三、设计说明1、系统原理PW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
探索ZPW-2000A轨道电路结构组成及作用冀帅帅摘要:随着我国铁路列车运行速度的不断提高和客运专线建设,人们对列车运行的安全性、舒适性提出了更高的要求,而列车高速、平稳地运行,不仅需要高可靠的列车和高质量的线路,还需要有高可靠、高安全的信号设备来指导列车的运行。
针对我们在使用设备的过程中常见的一些故障,如何去解决这些问题,从而确保我们列车更高效的运行。
关键词:轨道电路;无绝缘移频自动闭塞系统;前言:ZPW-2000A型无绝缘移频自动闭塞是在法国UM71无绝缘轨道电路技术引进、国产化基础上,结合国情进行的技术再开发。
较之UM71,ZPW-2000A型无绝缘移频自动闭塞在轨道电路传输安全性、传输长度、系统可靠性、可维修性以及结合国情提高技术性能价格比、降低工程造价上都有了显著提高。
该系统自1998年开始研究。
2000年10月底,针对郑州局、南昌局接连两次发生因钢轨电气分离式断轨,轨道电路得不到检查,客车脱轨的严重事故,该系统提出了解决“全程断轨检查”等四项提高无绝缘轨道电路传输安全性的技术创新方案,获得了铁道部运输局、科技司的肯定。
2001年,针对郑——武UM71轨道电路雨季多处“红光带”,该系统围绕“低道碴电阻道床雨季红光带”问题,通过对轨道电路计算机仿真系统的开发,提出了提高轨道电路传输性能的一系列技术方案,从理论和实践结合上实现了传输系统的技术优化[3]。
2002年5月28日,该系统通过铁道部技术鉴定,确定推广应用。
一、ZPW-2000A型无绝缘移频自动闭塞系统特点系统的特点体现在以下几方面:1.保持UM71无绝缘轨道电路整体结构上的优势;2.解决了调谐区断轨检查,实现轨道电路全程断轨检查;3.减少调谐区分路死区;4.实现对调谐单元断线故障的检查;5.实现对拍频干扰的防护;6.通过系统参数优化,提高了轨道电路传输长度;7.提高机械绝缘节轨道电路传输长度,实现与电气绝缘节轨道电路等长输;8.轨道电路调整按固定轨道电路长度与允许最小道碴电阻方式进行。
1.简述ZPW-2000A发送盒的作用答:发送盒的作用:(1)。
产生18种低频信号8种载频的高精度、高稳定的移频信号;(2)产生足够功率的输出信号;(3)调整轨道电路(4)对移频信号特征的自检测,故障时给出报警及N+1冗余运用的转换软件。
2.简述ZPW-2000A调谐区断轨检查的原理。
答:(1)将调谐区做为一段仅29m长的短小轨道电路,正常工作时,接收端电流属于并联谐槽路大电流的一部分。
在规定的道砟电阻条件下,调谐区钢轨断轨时,该电流大幅度下降,使轨道继电器失磁。
(2)经理论计算:在最不利道砟电阻条件下,断轨地点在距离送端7.25m处断轨残压最高。
以2600Hz为例,断轨时接收残压为0.04127mv。
为调谐区轨道电路落下值的1/508.84,有断轨保证。
现场四种载频调谐区断轨试验均得以检查验证。
3.简述ZPW—2000A接收盒的作用。
答:主要有以下三点:(1)用于对主轨道电路移频信号的解调,并配合与送电端相连接调谐区短小轨道电路的检查条件;(2)实现对与受电端相连接调谐区短小轨道电路移频信号的解调,给出短小轨道电路执行条件,送至相邻轨道电路接收器;(3)检查轨道电路完好,减少分路死区长度,还用于接收门限控制实现对BA断线的检查。
4.简述ZPW—2000A接收器的安全性措施。
答:用于接收器移频信号特征的解调,控制执行环节——轨道继电器(GJ及小轨道电路执行条件)。
接收器设备也采用双CPU电路。
在同一载频条件下,双CPU对接收信号的载频、低频及幅度三个特征进行解调判断。
为保证故障——安全,双CPU除需对载频控制条件进行查对外,还需检查载频、低频信号,满足通频带及能量谱相对幅值要求时,以动态信号输出,通过“安全与门”控制执行环节。
5.论述ZPW—2000A发送器的安全措施。
答:用于产生高稳定高精度的移频信号源,采用微电子器件构成该设备中,考虑了同一载频、同一低频控制条件下,双CPU电路。
为实现双CPU的自检、互检,两组CPU及一组用于产生FSK移频信号的可编程控制器各自采用了独立的石英晶体源。