叶邦角电磁学课后答案第五章
- 格式:pdf
- 大小:634.09 KB
- 文档页数:9
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
5.1 在自由空间中,已知电场3(,)10sin() V/m y E z t e t z ωβ=−G G,试求磁场强度。
(,)H z t G解:以余弦为基准,重新写出已知的电场表示式3π(,)10cos( V/m 2y E z t e t z ωβ=−−G G这是一个沿方向传播的均匀平面波的电场,其初相角为z +90−D 。
与之相伴的磁场为300311π(,)(,)10cos(210πcos() 2.65sin() A/m120π2z z y x x H z t e E z t e e t z e t z e t z ωβηηωβωβ=×=×−−=−−−=−−G G G G G G G5.2 理想介质(参数为0μμ=、r 0εεε=、0σ=)中有一均匀平面波沿x 方向传播,已知其电场瞬时值表达式为9(,)377cos(105) V/m y E x t e t x =−G G试求:(1) 该理想介质的相对介电常数;(2) 与(,)E x t G相伴的磁场;(3) 该平面波的平均功率密度。
(,)H x t G 解:(1) 理想介质中的均匀平面波的电场E G应满足波动方程2220EE tμε∂∇−=∂G G据此即可求出欲使给定的E G满足方程所需的媒质参数。
方程中222929425cos(105)y y y y y E E e E e e t x x∂∇=∇==−−∂G G G G 221892237710cos(105)y y y E E e e t t x∂∂==−×−∂∂G G G x = 故得91899425cos(105)[37710cos(105)]0t x t x με−−+×−即18189425251037710με−==×× 故181882r 0025102510(310) 2.25εμε−−×==×××=其实,观察题目给定的电场表达式,可知它表征一个沿x +方向传播的均匀平面波,其相速为98p 10210 m/s 5v k ω===× 而8p 310v ====×故2r 3() 2.252ε==(2) 与电场相伴的磁场E G H G 可由0j E ωμ∇×=−H G G求得。
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
第五章习题答案5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。
在轴与圆盘边缘上分别接有一对电刷。
这一装置称为法拉第发电机。
试证明两电刷之间的电压为22ωBa 。
证明:,选圆柱坐标, ρφe vB e B e v B v E z ind=⨯=⨯=其中 φρωe v=22ωρρωρερρa B d B e d e v B l d E aal ind====⎰⎰⎰∙∙∴证毕 5-3解:5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。
求s t 0.1=时极板间任意点的位移电流密度。
解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。
忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因题图5-2zvρ此有ρρπετe 2E 0=21r r <<ρ1200222121r r d dl E u r r r r lnπετρρπετ===⎰⎰∙1202r r u ln=∴πετ所以ρρer r u E 12 ln =, ρρεer r u D 12ln=2A/mρρππρερεe t 10010026000r r e tu r r tD J 1212dcos ln ln ⨯=∂∂=∂∂=当s t 1=时2512A/m10816100100260004108584ρρρππρe e J d--⨯=⨯⨯⨯⨯=.cos ln .解法二:用边值问题求解,即⎪⎩⎪⎨⎧=====∇401u 02ρϕρϕϕ 由圆柱坐标系有0)(1=∂∂∂∂ρϕρρρ(1)解式(1)得 21ln c c +=ρϕ由边界条件得: 4u c 1ln -= u c 2=u 4u +-=∴ρϕln ln所以 ρρπϕe 4t10026000Eln sin =-∇=ρρπεεe 4t 100260004E D 0ln sin ==ρπρπεe 1004t 100260004t D J 0D⨯=∂∂=ln cos当s t 1=时)(.25D mAe 10816J ρρ-⨯=5-5由圆形极板构成的平板电容器)(d a >>见题图所示,其中损耗介质的电导率为γ、介电系数为ε、磁导率为μ,外接直流电源并忽略连接线的电阻。
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
5.3设y=0为两种磁介质的分界面,y<0为媒质1,其磁导率为1μ,y>0为媒质2,其磁导率为2μ,分界面上有电流密度s x J 2a A/m =分布的面电流,已知媒质1中磁场强度为123/x y z H a a a A m =++ 求媒质2中磁场强度2H 解:mA a a a H a n J H H n z y x y S /52)(2121212++=-==-⨯μμ其中则由到媒质设电磁波由媒质5.6已知在空气中,电场强度矢量为90.1sin(10)cos(610)/y E a x t z V m ππβ=⨯-求磁场强度H 和相位常数β 解:3939,0.2310sin(10)cos(61054.41)0.1310cos(10)sin(61054.14)20/x z E jwB B HH a x t z a x t z rad mμππππηωμεωνπ--∇⨯=-==-⨯⨯--⨯⨯-==÷=由得相位常数:5.7自由空间中,已知电场强度矢量为4cos()3cos()x y E a t z a t z ωβωβ=-+-求(1)磁场强度的复数表达式(2)坡印廷矢量的瞬时表达式(3)平均坡印廷矢量 解: (1)m/4)e a 3a (120113e a e 4a zj -y x z-j y z -j x )(V B H B j E E z βββπμω-==-=⨯∇+=得由 (2)z)-t (cos 245a H E S z)-t 4)cos(a 3a (1201z)-t 3cos(a z)-t cos(4a 2z y x ),(y x )t ,(βωπβωπβωβω=⨯=-=+=所以t z z H E w/m 2(3)()[]ππ485)43()34(120121HE Re 21S av zy x y x a a a a a =-⨯+=⨯=*5.9 将下列复数形式的场矢量变换成瞬时表达式,或作用反的变换 (1)43j z j z x y Ea e a je ββ--=+()()2(,)4Re[]3Re[]4cos()3cos()24cos()3sin()j t z j t z z t x y x y x y E a ea ea t z a t z a t z a t z πωβωβπωβωβωβωβ-+-=+=-+-+=---(2)4sin()sin()cos()cos()x z Ea x t z a x t z a aππωβωβ=-+-(,)()()2()2()4sin()cos()cos()cos()24sin()Re[]cos()Re[]4sin()cos()4sin()cos()z t x z j t z j t z x z j z j zz x z j z j zx z E a x t z a x t z a a a x e a x e a aE a x ea x e aaa j x e a x e a aπωβωβπββββπππωβωβππππππ--------=--+-=+=+=-+(3)cos()2sin()x y E a t z a t z ωβωβ=-+-(,)()()2()cos()2cos()2Re[]2Re[]2z t x y j t z j t z x y j z j zz x y E a t z a t z a ea eE a e a je πωβωβββπωβωβ-----=-+--=+=-(4)sin 3cos(cos )jkz y x Ea j k e θθ-=(sin )2()(sin )2(,)3cos(cos )3cos(cos )Re[]3cos(cos )cos(sin )23cos(cos )sin(sin )j kz z y x j t kz z t y x y x y x E a k eE a k ea k t kz a k t kz πθπωθθθπθωθθωθ---+===-+=--(5)2sin()y Ea t z ωβϕ=-+(,)()()()2cos()22Re[]2z t y j t z y j z z y E a t z a j e E a je ωβφβφπωβφ-+-+=-+-=-=-5.12 对于线性,均匀和各向同性导电媒质,设媒质的介电常数为,磁导率为电导率为,试证明无源区域中时谐电磁场所满足的波动方程为2222E jw E k E H jw H k Hμσμσ∇=-∇=-式中22k w με=解:H k H j H HH j H H Hj H H H E HH H E j E H Ej E D j J H2222220)j ()()(j )()(-=∇-=∇∴=⋅∇-⋅+=∇-⋅∇∇-=⨯∇⨯∇⨯∇+∇=⋅∇∇+⨯∇=⨯∇⨯∇+=+=⨯∇ωμσμεωωμσωμωεσωμωεσωεσω即代入上式将E k E j E 22:-=∇ωμσ同理5.15设电场强度和磁场强度分别为cos()cos()o e o m E E t H H t ωφωφ=+=+求其平均坡印廷矢量。
5.1真空中直线长电流/的磁场中有一等边三角形回路,如题5.1图所示,求三角形回路内的磁通。
解根据安培环路泄理,得到长直导线的电流/产生的磁场题5.1图穿过三角形回路而积的磁通为由题5.1图可知,z = (x —〃)tan? = V,故得到5.2通过电流密度为丿的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题5.2图所示。
计算各部分的磁感应强度并证明腔内的磁场是均匀的。
解将空腔中视为同时存在丿和_丿的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为丿、均匀分布在半径为力的圆柱内,另一个电流密度为均匀分布在半径为&的圆柱内。
由安培环路左律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。
由安培环路左律= 可得到电流密度为丿.均匀分布在半径为b的圆柱内的电題5.2图流产生的磁场为B b=\ 电流密度为、均匀分布在半径为a的圆柱内的电流产生的磁场为这里□和◎分别是点°。
和⑷到场点p的位宜矢量。
将和〃$叠加,可得到空间各区域的磁场为圆柱外:B=^Jx(D圆柱内的空腔外:B = ^-Jx^r.-^r a | (r h<b, r a >a)空腔内:B = =(為va)式中d是点和5到点S的位苣矢量。
由此可见,空腔内的磁场是均匀的。
5.3下而的矢量函数中哪些可能是磁场?如果是,求其源变量J。
(1)H =e r ar , B = (圆柱坐标)(2)H =5(-©) + 匕处,B =卜』(3)H =e x ax-e^ay, B = “)H(4)H = e0ar , B = (球坐标系)解根据恒泄磁场的基本性质,满足V 5 = 0的矢量函数才可能是磁场的场矢量,否则, 不是磁场的场矢量。
若是磁场的场矢量,则可由j = VxH求出源分布。
< 1)在圆柱坐标中V B = - — (rB r) = -—(ar2) = 2a^0r dr 1 r dr该矢量不是磁场的场矢量。