计量经济学模型
- 格式:docx
- 大小:360.91 KB
- 文档页数:7
一、往届的学生提交的作业存在问题归纳如下:1、缺少具有说服力的理论假说2、变量之间关系牵强,无研究价值和实际意义如:全国居民消费价格指数与商品零售价格指数;粮食出售量与蔬菜出售量;农民收入与居民收入;日照时间与粮食产量;等等。
3、自变量不是主要的影响因素,如日照时间就不是影响粮食产量的主要因素4、变量的度量指标不具体,模糊不清5、指标数据的类型不明确,是采用时间序列数据、还是截面数据。
二、提供可参考的计量经济学模型:1.生产函数:农业总产值与农业从业人员、财政用于农业资金、农业机械总动力关系工业总产值与固定资产、职工人数之间的关系2.消费函数:(1)食品消费支出与食品价格、家庭年(月)人均收入(2)不同地区城镇居民家庭人均可支配收入与人均消费支出(3)中国居民收入与消费的关系(4)农村居民消费函数:农村居民人均消费支出与农业经营纯收入、其他来源的纯收入3.需求函数:Y:居民对食品的消费量;X1:消费者消费支出总额;X2:食品价格指数三、计量经济学模型建立:8个基本步骤现实问题:经济形势对人们工作意愿的影响?第一步,建立一个理论假说假说一:受挫—工人假说。
即经济形势恶化(表现为高失业率),则工人的工作意愿下降(表现为低劳动参与率);假说二:增加—工人假说。
即经济形势恶化(高失业率),许多后备工人进入劳动市场以补贴家庭开支(尽管薪酬很低),进而导致劳动参与率上升。
第二步,收集数据变量:经济形势,劳动者的工作意愿具体的度量指标:城市失业率(%),城市劳动力参与率(%)数据一般来源:权威部门向社会发布的统计信息、公开出版物、亲自调查资料来源:总统经济报告,2008年 第三步,设定数学模型第四步,设立统计或经济计量模型 第五步, 估计经济计量模型参数第六步,检查模型的适用性:模型设定检验1.经济意义检验:2.统计学检验:3.计量经济学检验:第七步,检验源自模型的假说;1.验证估计的模型是否有经济意义;2.估计的结果是否与经济理论相符。
计量经济学理论的模型解释与预测引言计量经济学是经济学中一个重要的分支,其研究方法主要基于经济理论和数理统计学,旨在通过使用数学和统计方法来解释经济现象,并进行预测和政策分析。
计量经济学理论的模型是实现这一目标的核心工具。
本文将对计量经济学理论的模型进行解释,并探讨其在预测方面的应用。
一、计量经济学理论的模型解释1.1 常见的计量经济学模型计量经济学模型是对经济现象进行抽象和概括的数学表达式。
常见的计量经济学模型包括线性回归模型、时间序列模型、面板数据模型等。
线性回归模型是计量经济学中最基础且广泛应用的模型之一。
它假设变量之间存在线性关系,并通过估计各个变量的系数来解释经济现象。
时间序列模型是用于分析时间序列数据的模型,其中包括自回归模型、移动平均模型、ARMA模型等。
时间序列模型主要用于分析时间上的趋势和周期性。
面板数据模型是同时包含横截面和时间序列数据的模型,通常用于分析跨国或跨地区的经济现象。
面板数据模型可以同时考虑个体特征和时间特征,提高了模型的解释能力。
1.2 模型解释的基本步骤模型解释是对计量经济学模型进行参数估计和推断的过程。
基本的模型解释步骤包括模型设定、估计方法选择、参数估计和模型诊断。
模型设定是根据研究目的和数据特征选择适当的计量经济学模型,并确定模型中包含的变量和假设条件。
估计方法选择是根据模型的性质和数据的特点选择合适的估计方法,常见的估计方法包括最小二乘法、广义最小二乘法、极大似然估计等。
参数估计是利用选定的估计方法对模型的参数进行估计,通常使用计算机软件进行参数的数值计算。
模型诊断是对估计结果进行评价和检验,包括残差分析、假设检验等。
模型诊断可以用于判断模型的拟合程度和参数的显著性。
1.3 模型解释的应用领域计量经济学模型的解释应用广泛,包括实证研究、政策评估和预测分析等。
实证研究是计量经济学模型应用的基本领域,通过对模型进行解释,可以验证和检验经济理论的有效性,并提供实证证据支持。
计量经济学模型
计量经济学模型是一种用于分析定量经济行为的方法。
它通过使用数字技术来描述和预测经济问题,以帮助决策者更好地理解经济现象。
计量经济学模型的基本目标是描述经济行为的影响因素并识别其影响的大小,以便可以对政策措施作出明智的经济决策。
计量经济学模型的基本原理是要把经济变量通过数学模型的形式进行表达,这种数学模型可以用来描述经济现象,也可以用来预测未来的经济发展趋势。
例如,计量经济学模型可用来分析价格波动、收入差距、市场份额或投资回报率等经济变量之间的关系,以及各种政策措施对这些变量的影响。
计量经济学的模型
计量经济学是一门运用数学、统计学和经济学理论来分析经济数据的学科。
它的核心是建立经济变量之间的数学模型,并利用实际数据进行估计和验证。
计量经济学模型通常由一组方程式组成,这些方程式描述了经济变量之间的关系。
其中,最常见的模型是线性回归模型,它假设因变量与自变量之间存在线性关系。
在建立计量经济学模型时,需要考虑许多因素,例如变量的选择、数据的收集和处理、模型的假设和限制等。
为了确保模型的可靠性和有效性,需要进行一系列的统计检验和诊断,例如拟合优度检验、异方差性检验、自相关检验等。
计量经济学模型可以用于预测经济变量的未来走势、评估政策的效果、检验经济理论的正确性等。
它在宏观经济、金融市场、产业经济等领域都有广泛的应用。
总之,计量经济学是一门重要的经济学分支,它通过建立数学模型来分析经济数据,为政策制定和经济决策提供了科学依据。
——名词解释将因变量与一组解释变量和未观测到的扰动联系起来的方程,方程中未知的总体参数决定了各解释变量在其他条件不变下的效应。
与经济分析不同,在进行计量经济分析之前,要明确变量之间的函数形式。
经验分析(Empirical Analysis):在规范的计量分析中,用数据检验理论、估计关系式或评价政策有效性的研究。
确定遗漏变量、测量误差、联立性或其他某种模型误设所导致的可能偏误的过程线性概率模型(LPM)(Linear Probability Model, LPM):响应概率对参数为线性的二值响应模型。
没有一个模型可以通过对参数施加限制条件而被表示成另一个模型的特例的两个(或更多)模型。
有限分布滞后(FDL)模型(Finite Distributed Lag (FDL) Model):允许一个或多个解释变量对因变量有滞后效应的动态模型。
布罗施-戈弗雷检验(Breusch-Godfrey Test):渐近正确的AR(p)序列相关检验,以AR(1)最为流行;该检验考虑到滞后因变量和其他不是严格外生的回归元。
布罗施-帕甘检验(Breusch-Pagan Test)/(BP Test):将OLS 残差的平方对模型中的解释变量做回归的异方差性检验。
若一个模型正确,则另一个非嵌套模型得到的拟合值在该模型是不显著的。
因此,这是相对于非嵌套对立假设而对一个模型的检验。
在模型中包含对立模型的拟合值,并使用对拟合值的t 检验来实现。
回归误差设定检验(RESET)(Regression Specification Error Test, RESET):在多元回归模型中,检验函数形式的一般性方法。
它是对原OLS 估计拟合值的平方、三次方以及可能更高次幂的联合显著性的F 检验。
怀特检验(White Test):异方差的一种检验方法,涉及到做OLS 残差的平方对OLS 拟合值和拟合值的平方的回归。
这种检验方法的最一般的形式是,将OLS 残差的平方对解释变量、解释变量的平方和解释变量之间所有非多余的交互项进行回归。
计量经济学模型方法
计量经济学是一种应用数学和统计学原理来研究经济现象的方法。
计量经济学模型是一种用来描述经济关系的数学模型。
常用的计量经济学模型方法包括:
1. 线性回归模型(Linear Regression Model):线性回归模型是最常用的计量经济学模型之一,用于描述一个或多个自变量与因变量之间的线性关系。
该模型可以用来估计变量之间的关系,并进行预测和因果推断。
2. 面板数据模型(Panel Data Model):面板数据模型是一种用于分析来自多个观察单位的经济数据的模型。
它结合了时间序列数据和截面数据的特点,可以考虑个体间的异质性和个体内的序列相关性。
3. 时间序列模型(Time Series Model):时间序列模型用于分析随时间变化的经济数据。
它考虑到数据的序列相关性和趋势,可以用来预测未来的值和分析数据的长期趋势。
4. 非线性回归模型(Nonlinear Regression Model):非线性回归模型用于描述自变量和因变量之间的非线性关系。
它可以更准确地拟合实际经济数据,但参数估计和推断方法更复杂。
5. 非参数模型(Nonparametric Model):非参数模型是一种不对数据分布做出假设的模型,它不依赖于具体的函数形式,通过比较观测值之间的相对顺序来估计变量之间的关系。
这些方法可以根据具体问题的需要进行选择和应用。
在实际研究中,常常会结合多种方法和模型,以得到更全面和准确的分析结果。
计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。
在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。
下面将对这四种模型进行详细介绍。
第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。
线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。
在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。
线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。
第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。
时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。
时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。
时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。
第三种模型是面板数据模型,也称为横截面时间序列数据模型。
面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。
面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。
面板数据模型的常用方法包括固定效应模型、随机效应模型等。
面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。
第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。
离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。
离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。
离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。
综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。
计量经济学模型名词解释计量经济学是一门运用数学、统计学和经济学理论研究经济现象的学科。
在计量经济学中,模型是用来描述经济关系和预测经济变量的数学表达式。
以下是一些计量经济学模型中的名词解释:1. 普通最小二乘法(OLS):是一种通过最小化误差的平方和来寻找数据最佳函数匹配的统计方法。
2. 广义最小二乘法(GLS):是一种针对原始模型进行变换,以解释误差方差的方差已知结构(异方差性)、误差中的序列相关形式或同时解释二者的估计量。
3. 加权最小二乘法(WLS):通过使用对某种已知形式的异方差进行调整的估计量,其中每个残差的平方都用一个等于误差的(估计的)方差的倒数作为权数。
4. 解释平方和(SSE):在多元回归模型中,度量拟合值的样本变异。
5. 残差平方和(SSR):实际值与估计值之差的平方的总和,即误差项平方的总和。
6. 总平方和(SST):因变量相对于其样本均值的总样本变异。
7. 高斯马尔科夫假定(横截面数据):包括MLR1-MLR5五个假设,其中MLR1-4表示无偏性,MLR1-5表示得到的估计量是BLUE(最优线性无偏估计量)。
8. 高斯马尔科夫假定(时间序列数据):包括TS.1-TS.5五个假设,涉及线性性、无序列相关等条件。
9. 标准差:一次抽样中个体分数间的离散程度,反映了个体分数对样本均值的代表性。
10. 标准误:多次抽样中样本均值间的离散程度,反映了样本均值对总体均值的代表性。
11. 回归分析:通过建立变量之间的关系模型,对计量经济学模型参数进行估计、显著性检验及分析评价的过程。
12. 异方差:误差项方差的非恒定性质,可能导致参数估计量失效。
13. 多重共线性:自变量之间存在较高线性相关性的情况,可能导致参数估计量失效或经济含义不合理。
14. 随机解释变量:在总体回归函数中引入随机干扰项,用以代表未知的影响因素、残缺证据、众多细小影响因素、数据观测误差和模型设定误差等。
15. 一元线性回归模型:包含一个解释变量和一个被解释变量的简单线性关系模型,其基本假设包括回归模型正确设定、解释变量与误差项相互独立等。
多元线性回归模型
一、建立模型
社会物流总费用受多种综合因素的影响,如运输费用、仓储费用、包装费用、装卸搬运费用、流通加工费用、信息处理费用等,而其中最重要的因素就是运输费用和仓储费用,即运输费用和仓储费用与社会物流总费用之间存在单方向的因果关系;由此,我们可设以下回归模型:Yi=b0+b1*x1i+b2*x2i+ ui 现在以中国1995年至2004年物流总费用占GDP比例(%)的资料进行回归分析,并对估计模型进行检验。
1995年至2004年物流总费用占GDP比例(%)
在Eviews中新建工作簿,定义变量“商品价格”(x1)、“消费者人均月收入”(x2)及“商品需求量”(y),并输入相关数据,得出相应散点图如下:
①x1 与y 的散点图为:
②x2与y 的散点图为:
由两张散点图不能明确的看出x1、x2与y之间存在线性关系,故通过Eviews 软件计算,得出估计模型的参数结果如下:
由以上数据可知回归方程为:
Y=11.57032+0.405599*x1 +0.794365*x2 (5.07) (2.67) (7.69)
1499.02=R 8909.02=R 37.62689=F
二、模型检验
1、 经济意义检验:
①b0=11.57032,在运输费用与仓储费用接近于零时,仍存在其他物流费用;②b1=0.405599,说明运输费用与社会物流总费用之间存在正的线性关系,运输费用每增加1%,社会物流总费用增加0.405599%
③b2= 0.794365,说明仓储费用与社会物流总费用之间存在正的线性关系,仓储费用每增加1%,社会物流总费用增加0.794365% 2、计量经济学检验:
①拟合优度检验:本模型的拟合优度系数为0.914898,表明本模型具有较高的拟合优度,x1、x2对y 的解释能力较好;
②变量的显著性检验(t 检验):方程的截距项和斜率项的t 检验值分别为5.07、2.67、7.69,均大于5%显著性水平下自由度为n-2=8的临界值t0.025(8)=1.860,模型参数估计显著,拒绝原假设H0;
③方程的显著性检验(F 检验):有上图可知,F-statistic =37.62689;Prob(F-statistic)
=0.000180 ,由F 检验的原则可知,在显著性概率为0.05的条件下,回归方程显著成立,拒绝H0 ;
三、异方差性检验
在5%的显著性水平下,辅助回归的n 8.4592 R 大于自由度为5的卡方分布临界值1.145,故模型存在异方差性,现用加权最小二乘法对其进行修正:
即采用加权最小二乘法得到的回归方程为:
=11.65680+0.398039*x1+0.788178*x2
(11.92) (6.69) (13.80) 0.9999762 R 可以看出,加权最小二乘法的结果与普通最小二乘估计的结果有较大的区别。
四、序列相关性检验
由图示法检验可以看出,模型存在正序列相关,现用广义差分法对其修正:
即采用广义差分法修正后得到的回归方程为:
=12.38083+0.345864*x1+0.776354*x2-0.427697
(11.92) (6.69) (13.80) (-1.04)
五、多重共线性检验
从表中数据可以看出不存在较强的多重共线性。