四年级奥数思维训练专题-巧妙求和
- 格式:docx
- 大小:13.86 KB
- 文档页数:4
四年级奥数专题巧妙求和【一】求1~20这20个连续自然数的所有数字之和。
练习1、求1~50这50个连续自然数的所有数字之和。
2、求3~19连续自然数的全部数字之和。
【二】一把钥匙只能开一把锁。
现在有4把钥匙和4把锁,但不知道哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?练习1、现在有8对钥匙和锁混在一起,不知道哪把钥匙配哪把锁,最多要试多少次就可以把它们全部配成对?2、有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最多称多少次,就可以找到那颗较轻的钢珠?【三】思雨读一本长篇小说,他第一天读20页,从第二天起,他每天读的页数都比前一天多2页,第11天读了40页,正好读完,这本书共有多少页?练习1、王师傅做一批零件,第一天做了40个,以后每天都比前一天多做3个,第15天做了82个,正好做完,这批零件共有多少个?2、张琳读一本故事书,她第一天读了15页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了40页恰好读完,这本书共有多少页?【四】45把锁的钥匙都搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?练习1、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2、有一些锁的钥匙搞乱了,已知至多要试45次,就能使每把锁都配上自己的钥匙,问一共有几把锁的钥匙搞乱了?【五】某班有30个同学,每两个同学互通一次电话,那么他们一共通了多少次电话?练习1、竹苑小学进行象棋比赛,每个参赛选手都要和其他所有的选手各赛一场,如果有15人参加比赛,问一共要进行多少场比赛?2、一次生日party中,参加的有20位同学和3位老师,每两人之间握一次手。
那么一共握了几次手?【六】求1~99中连续自然数的所有数字之和。
练习1、求1~199的199个连续自然数的所有数字之和。
2、求1~999的999个连续自然数的所有数字之和。
3、求1~210连续自然数的全部数字之和。
4、求1~299连续自然数的全部数字之和。
巧妙求和【一】求1~20这20个连续自然数的所有数字之和。
练习1、求1~50这50个连续自然数的所有数字之和。
2、求3~19连续自然数的全部数字之和。
【二】一把钥匙只能开一把锁。
现在有4把钥匙和4把锁,但不知道哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?练习1、现在有8对钥匙和锁混在一起,不知道哪把钥匙配哪把锁,最多要试多少次就可以把它们全部配成对?2、有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最多称多少次,就可以找到那颗较轻的钢珠?【三】思雨读一本长篇小说,他第一天读20页,从第二天起,他每天读的页数都比前一天多2页,第11天读了40页,正好读完,这本书共有多少页?练习1、王师傅做一批零件,第一天做了40个,以后每天都比前一天多做3个,第15天做了82个,正好做完,这批零件共有多少个?2、张琳读一本故事书,她第一天读了15页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了40页恰好读完,这本书共有多少页?【四】45把锁的钥匙都搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?练习1、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2、有一些锁的钥匙搞乱了,已知至多要试45次,就能使每把锁都配上自己的钥匙,问一共有几把锁的钥匙搞乱了?【五】某班有30个同学,每两个同学互通一次电话,那么他们一共通了多少次电话?练习1、竹苑小学进行象棋比赛,每个参赛选手都要和其他所有的选手各赛一场,如果有15人参加比赛,问一共要进行多少场比赛?2、一次生日party中,参加的有20位同学和3位老师,每两人之间握一次手。
那么一共握了几次手?【六】求1~99中连续自然数的所有数字之和。
练习1、求1~199的199个连续自然数的所有数字之和。
2、求1~999的999个连续自然数的所有数字之和。
3、求1~210连续自然数的全部数字之和。
4、求1~299连续自然数的全部数字之和。
五年级思维提升今天的成绩是以往勤奋的表现,而一生的成绩还依靠毕生的勤奋。
坚持就是胜利,毅力对最后的成功有决定意义。
巧妙求和一、某些问题可以转化为若干个数的和。
在解决这些问题时,同样要先判断是否是求等差数列的和。
如果是等差数列求和,才可用等差数列公式求和。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
二、经典例题解析例1 刘俊读一本长篇小说,他第一天读30页,第二天起他每天读的页数都比前一天多3页,第11天读60页,正好读完。
这本书共有多少页?解:答:想一想:如果把“第11天读60页,正好读完”,改成最后一天读60页,正好读完。
该怎样解答?解:习题:丽丽学英语单词,第一天学会了6个,以后每天多学会1个,最后一天学会了16个。
丽丽在这些天中学会了多少个单词?解:答:例2 把30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试多少次?解:答:习题:有一些锁的钥匙搞乱了,已知至多要试28次,都能使每把锁都配上自己的钥匙,问一共有几把锁的钥匙搞乱了?解:答:例3 实验小学304个小朋友围成若干个圈(一圈套一圈)做游戏。
已知内圈24人,最外圈52人。
如果相邻两圈相差的人数相等,那么相邻两圈相差多少人?解:(1)(2)答:习题:小明练习写毛笔字。
第一天写4个大字,以后每天比前一天多写相同数量的大字,最后一天写34个,共写589个大字。
小明每天比前一天多写几个大字?解:(1)(2)答:课后跟踪习题一、填空:1、若干个数排成一列,称为。
数列中的每一个数称为一项,其中第一项称为,最后一项称为。
数列中的数的个数称为。
2、从第二项开始,后项与其相邻的前项之差都相等的数列称为。
后项与前项的差称为。
3、学习等差数列求和三个常用的公式。
1)求等差数列的和=2)项数=3)末项=二、解答题1、等差数列中,首项=1,末项=39,公差=2。
求这个等差数列有多少项?解:答:2、有一个等差数列2、5、8、11......101,这个等差数列共有多少项?解:答:3、有这样的一个数列1、2、3、4,......99、100,请你求出这个数列各项相加的和。
第八讲巧妙求和
第一部分:趣味数学
高斯与等差数列
一位教师布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,教师刚叙述完题目,一位小男孩即刻把写着答案的小石板交了上去。
1+2+3+4+……+98+99+100=?
老师起初并不在意这一举动,心想这个小家伙又在捣乱,但当他发现全班唯一正确的笞案属于那个男孩时,才大吃一惊。
而更使人吃惊的是男孩的算法……
老师发现:第一个数加最后一个数是101,第二个数加倒数第二个数的和也是101,……共有50对这样的数,用101乘以50得到5050。
这种算法是教师未曾教过的计算等差数列的方法,高斯的才华使老师一—彪特耐尔十分激动,下课后特地向校长汇报,并声称自己已经没有什么可教这位男孩的了。
此男孩叫高斯,是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。
(一)数列的基本知识:
(1)1、2、3、4、5、6……
(2)2、4、6、8、10、12……
(3)5、10、15、20、25、30……
像这样按照一定规律排列成的一列数我们称它为数列,
数列中的每一个数称为一项;第1项称为首项;最后1项称为末项;
在第几个位置上的数就叫第几项;
有多少项称为项数;
(二)等差数列的基本知识
(1)1、2、3、4、5、6……(公差=1)
(2)2、4、6、8、10、12……(公差=2)。
12.四年级奥数思维训练巧妙求和
12.四年级奥数思维训练巧妙求和
四年级奥数思维训练巧妙求和
在小学数学竞赛中,常发生一类有规律的数列议和问题,这种问题我们往往必须小朋
友根据数列找到规律所在,并灵活运用公式以解决问题。
存有如下规律:总和=(首项+
末项)×项数÷2项数=(末项-首项)÷公差+1公差=(末项-首项)÷(项数-1)
一、尝试练习
1.议和:
(1)8+9+10+11+12+13
(2)2+5+8+11+14+17+20
二、训练营地
1、存有10只盒子,44只乒乓球。
把这44只乒乓球放在盒子中,每个盒子中至少Though一个球,能够无法并使每个盒子中的球数都不相同?
2、50把锁的钥匙搞乱了。
为了使每把锁都配上自己的钥匙,至少要试多少次就足够了?
3、谋所有两位数的和。
4、启明小学的礼堂里共有30排座位。
从第一排开始,以后每排比前一排多2个座位,最后一排有75个座位。
问:这个礼堂共有多少个座位?。
巧妙求和
基本概念
1 数列:若干个数排成一列,称为数列
2 项:数列中的每一个数
首项:数列中的第一项
末项:数列中的最后一项
项数:数列中项的个数
3 等差数列:从第二项开始,后项与前项之差都相等的数列
公差:后项与前项的差
4 等差数列求和
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
例1:数列4,10,16,22…52共有多少项?
例2:等差数列9,12,15,18…,2004,这个数列共有多少项?
例3:等差数列1000,993,986,979,…20,这个数列共有多少项?
例4:已知等差数列3,7,11,15,…,则该等差数列第100项是多少?
例5:求等差数列1,6,11,16,…的第61项。
例6:求等差数列307,304,301,298,…第99项。
例7:有这样一列数:1,2,3,4,…98,99,100.请求出这列数各项相加之和。
例8:求等差数列2,4,6,…48,50的和。
例9:用简便方法计算(100+102+104+...+200)-(1+5+9+13+ (97)
作业:
1.3+5+7+9+…+63
2.100+110+120+…+350
3.160+154+148+…+16
4.2+3-4+5+6-7+8+9-10+11+12-13+…+101+102-103。
四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
这一周学习“等差数列求和”。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
(四年级)备课教员:* * *第八讲巧妙求和一、教学目标:知识目标1.认识等差数列及各个相关名称。
2.利用规律来简便求出等差数列的项数。
能力目标根据实际情况会判断所求的总和是否是求等差数列的总和。
情感目标善于发现善思考,提高计算能力。
培养良好的审题习惯和思维习惯。
二、教学重点:利用规律来简便求出等差数列的项数。
三、教学难点:理解等差数列的意义,知道等差数列中各部分的名称,掌握求尾项和项数的公式。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:故事引入,提高学生学习兴趣。
】师:今年上课前,老师要给大家讲一个数学家高斯的故事。
高斯7岁那年开始上学。
10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。
数学教师是布特纳,他对高斯的成长也起了一定作用。
一天,老师布置了一道题,1+2+3……这样从1一直加到100等于多少。
高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。
”高斯说出答案就是5050,高斯是这样算的1+100=101,2+99=101……1加到100有50组这样的数,所以50×101=5050。
布特纳对他刮目相看。
他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。
”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。
他们一起学习,互相帮助,高斯由此开始了真正的数学研究。
师:听了故事后,你有什么感想?生:学生回答。
师:高斯是利用什么方法去求1至100这100个数的和?生:分组的方法。
师:是的,就是把头尾两两分组。
为什么要这样分组呢?生:因为这样分组后,每组的和都是一样的。
师:这位同学讲的太棒了!是的,这样分组,刚好每组的两个数的和是一样的。
这也是我们在计算中一种重要的方法,也就是分组法。
接下来我们就要用这种方法去解答我们数学问题。
举一反三四年级奥数第6讲巧妙求和一奥数(即奥林匹克数学竞赛)是一项旨在培养学生逻辑思维能力和解决问题技巧的数学竞赛活动。
对于四年级学生而言,学习奥数可以培养他们的数学思维和动手能力,提高他们对数学的兴趣和学习效果。
在本文中,我们将从第六讲的巧妙求和一这一话题来探讨如何举一反三。
巧妙求和一:等差数列求和在第六讲中,我们遇到了一个有关等差数列的求和问题。
等差数列是由一个初始项和一个公差确定的一系列数,其中每个数与它的前一个数的差值都是相等的。
通过找到这个差值,我们可以利用求和公式来快速求解等差数列的和。
以数列1,4,7,10,13为例,我们可以观察到每个数与前一个数的差值都是3。
因此,我们可以使用求和公式S = (a1 + an) * n / 2来求得该数列的和,其中a1为初始项,an为最后一项,n为项数。
在这个例子中,我们有a1 = 1,an = 13,n = 5,代入公式计算得到S = (1 + 13) * 5 / 2 = 35。
举一反三:寻找等差数列通过上述例子,我们学会了如何利用求和公式求解等差数列的和。
那么,如果我们只知道数列的和S、项数n,我们能否反过来寻找等差数列呢?答案是肯定的。
假设我们知道一个等差数列的和S为35,项数n为5,我们可以先假设初始项a1为未知数x,公差d也为未知数y。
根据求和公式,我们可以得到一个方程式:S = (a1 + an) * n / 2。
将具体数值代入方程,我们得到35 = (x + (x + (n-1)y)) * n / 2,化简得 35 = (2x + (n-1)y) * n / 2,继续化简可得 70 = 2x + (n-1)y * n,即 2x + 4y = 70。
从这个方程中,我们可以发现x和y的取值不是唯一的,但它们需要满足方程。
我们可以通过试探不同的x和y值,来寻找满足这个方程的合理解。
通过上述例子,我们可以看到在已知一些条件的情况下,通过方程求解的方法可以帮助我们寻找等差数列。
巧妙求和教学目标:①知识与技能目标:使学生理解首项,末项以及项数的概念,掌握数列求和的公式②过程与方法目标:使学生能利用数列求和公式解决实际问题③情感态度与价值观目标:让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣教学重点:数列求和公式及其适用条件教学难点:数列求和公式的推导过程[知识引领与方法]通项公式:第n项=首项+(项数-1)X公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)X项数÷2巧妙求和(一)[例题精选及训练]【例1】等差数列4,10,16,22,…,52共有多少项?练习:1.等差数列中,首项=7,末项=119,公差=4。
这个等差数列共有多少项?2.等差数列2,5,8,11,…,101共有多少项?3.已知一个等差数列的首项是5,末项是117,总和是976,这个数列共有多少项?【例2】已知等差数列3,7,11,15,…,则该等差数列的第100项是多少?练习:1.一个等差数列的首项=3,公差=2,项数=10,则它的末项是多少?2.已知等差数列1,4,7,10,…,则该等差数列的第30项是多少?3.已知等差数列2,6,10,14,…,则该等差数列的第100项是多少?【例3】有这样的一个数列1,2,3,4,…,99,100,请你求出这列数各项相加的和。
练习:计算下面各题。
(1)1+2+3+4+…+49+50(2)6+7+8+9+…+75(3)100+99+98+…+61+60【例4】求等差数列2,4,6,…,48,50的和练习:计算下面各题。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)99+96+93+…+21+18【例5】如果一个等差数列的第4项为21,第6项为33,那么它的第8项是多少?练习:1.如果一个等差数列的第5项是19,第8项是61,那么它的第11项是多少?2.如果一个等差数列的第3项是10,第7项是26,那么它的第12项是多少?3.如果一个等差数列的第2项是10,第6项是18,那么它的第110项是多少?[课堂练习]1.有一个等差数列:9、12、15、18、...、2004,这个数列共有多少项?2.已知等差数列:1000、993、986、979、...、20,这个数列共有多少项?3.求等差数列:1、6、11、16、...的第61项。
小学四年级奥数题:巧妙求和一、知识要点某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
二、精讲精练【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?【思路导航】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
要求这本书共多少页也就是求出这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答?练习1:1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。
所以,至多需试 29+28+27+…+2+1=(29+1)×29÷2=435(次)。
练习2:1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
巧妙求和教学目标:①知识与技能目标:使学生理解首项,末项以及项数的概念,掌握数列求和的公式②过程与方法目标:使学生能利用数列求和公式解决实际问题;通过对求和公式的推导,培养学生的观察能力和探究能力③情感态度与价值观目标:通过让学生体验探究发现的乐趣,培养学生的探索精神教学重点:数列求和公式及其适用条件教学难点:数列求和公式的推导过程[知识引领与方法]通项公式:第n项=首项+(项数-1)X公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)X项数÷2在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数字适当分组,并将每组中的数字合理配对,使问题得以顺利解决。
巧妙求和(二)[例题精选及训练]【例1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都比前一天多3页,第十一天读了60页,正好读完。
这本书共有多少页?练习:1.刘师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第15天做了48个正好做完。
这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页,最后一天读了50页恰好读完。
这本书共有多少页?3.丽丽学英语单词,第一天学会了6个,以后每一天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个单词?【例2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次?练习:1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次?2.平面上有10个点,没有3个点在同一直线上。
过这些点最多可以画出多少条直线?3.有10个盒子,44个羽毛球。
能不能把44个羽毛球放到盒子中去,使各个盒子里的羽毛球不相等?【例3】某班有51个同学,毕业时每人都和其他所有人握一次手,那么共握了多少次手?练习:1.学校进行乒乓球比赛,每个参赛选手都要和其他所有选手各赛一场,如果有21人参加比赛,问一共要进行多少场比赛?2.一次同学聚会中,参加聚会的有43位同学和4位老师,每一位同学或老师都要和其他人握一次手。
第八讲巧妙求和(必做与选做)1. 在数列5,9,13,17,21……中,109是第()项。
A. 25B. 26C. 27D. 28根据题意知道这是一组等差数列,首项是5,公差是4,要求的109是第几项,那么利用项数公式:项数=(末项-首项)÷公差+1代入计算得是第27项。
所以选C。
2. 有一种植物生长排列情况很奇怪,第一次是生长6根树杈,往后每次生长都比前一次多生长6根树杈,那么一次生长600根树杈是第()次生长后。
A. 99B. 100C.101D. 102根据题意知道这种植物是按等差数列规律生长,首项是6,公差是6,要求的600根树杈是第几次生长,即600是第几项,那么利用项数公式:项数=(末项-首项)÷公差+1代入计算得是第100项。
所以选B。
3. 已知等差数列的通项公式是第n项=4n -3,则17是第()项。
A. 3B. 4C. 5D. 6解析:将17代入通项公式中,则4n-3=17,从而求出n是5。
所以选C。
4.在一条公路上种树,第1、6、11、16、21棵……是桃树,其余的都是梨树,则第58棵是()树。
A. 梨树B. 桃树C. 也许是桃树,也许是梨树D. 无法确定解析:根据题意可以知道桃树的排列位置是按等差数列的顺序排列,则可以先将58当成一项来算,发现(58-1)÷5=11(项)……2,不在桃树的排列位置上,所以第58棵是梨树。
所以选A。
5. 在数列8,23,38,53,……中第32项是()。
A. 465B. 473C. 480D. 488解析:根据题意知道这组数是一组等差数列,首项是8,公差是15,要求第32项,根据通项公式:第n项=首项+(项数-1)×公差代入计算得出473。
所以选B。
6. 欧拉要代表学校参加全市的小学生长跑比赛,他计划进行体能训练,第一天跑500米,第二天跑600米,第三天跑700米,按这样的规律,第11天他跑()米。
A. 1000B. 1100C. 1500D. 1600解析:根据题意可以知道欧拉的每天跑步数成等差数列,所以根据通项公式:第n 项=首项+(项数-1)×公差代入计算得到1500米。
小学四年级奥数思维训练-巧妙求和巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9答:这个数列共有9项。
试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399试一试2:求1,4,7,10……这个等差数列的第30项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析:等差数列总和=(首项+末项)×项数÷21+2+3+…+99+100=(1+100)×100÷2=5050试一试3:6+7+8+…+74+75例4:求等差数列2,4,6,…,48,50的和。
分析:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25首项=2,末项=50,项数=25等差数列的和=(2+50)×25÷2=650试一试4:9+18+27+36+…+261+270巧妙求和(二)专题简析:某些问题,可以转化为求若干个数的和。
先判断是否是求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
第十讲巧妙求和(二)知识提纲:某些问题可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否是求某个等差数列的和。
如果是等差数列求和,才可用等差数列公式求和。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数字适当分组,并将每组中的数字合理配对,使问题得以顺利解决。
【典型例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都比前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?【分析】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的,即 30,33,36,…,57,60。
要求这本书共多少页,也就是求这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:(30+60)×11÷2=495(页)答:这本书共495页。
?想一想:如果把“第11天读了60页,正好读完”改为“最后一天读了60页,正好读完”该怎样解答?【随堂练习1】(1)胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页,最后一天读了50页恰好读完。
这本书共有多少页?(2)丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个单词?【典型例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次?【分析】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁最多需要试29次。
同理,开第二把锁最多需试28次,开第三把锁最多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。
所以,最多需要29+28+27+…+1=(29+1)×29÷2=435(次),才能保证每把锁都配上自己的钥匙。
29+28+27+...+2+1=(29+1)×29÷2=435(次)答:最多要试435次。
四年级奥数思维训练专题-巧妙求和(一)
专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差。
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9
答:这个数列共有9项。
试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?
例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?
分析:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399
试一试2:求1,4,7,10……这个等差数列的第30项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析:等差数列总和=(首项+末项)×项数÷2
1+2+3+…+99+100=(1+100)×100÷2=5050
试一试3:6+7+8+…+74+75
例4:求等差数列2,4,6,…,48,50的和。
分析:项数=(末项-首项)÷公差+1
=(50-2)÷2+1=25
首项=2,末项=50,项数=25
等差数列的和=(2+50)×25÷2=650
试一试4:9+18+27+36+…+261+270
巧妙求和(二)
专题简析:
某些问题,可以转化为求若干个数的和。
先判断是否是求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
例1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都比前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?
分析:根据“每天读的页数都比前一天多3页”可知他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
这列数是一个等差数列,首项=30,末项=60,项数=11带入等差数列求和公式,得:
(30+60)×11÷2=495(页)
试一试1:丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?
例2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?
分析:开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第
29把锁,剩下的最后一把不用试,一定能打开。
所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。
试一试2:有10只盒子,44只羽毛球。
能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?
例3:某班有51个同学,毕业时每人都和其他的每个人握一次手。
那么共握了多少次手?
分析1:假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。
依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为:
50+49+48+…+2+1=(50+1)×50÷2=1275(次)
分析2:每个同学都要握手51-1=50次。
而每两人就重复算了1次。
所以实际握手次数:51×50÷2=1275(次)
试一试3:学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。
如果有21人参加比赛,一共要进行多少场比赛?。