中科大编码理论chapter1
- 格式:pdf
- 大小:951.75 KB
- 文档页数:89
信息论与编码---序言xx年xx月xx日CATALOGUE目录•什么是信息论•信息论的研究内容•信息论的应用•信息论的挑战与发展方向•信息论的学科体系与研究方法01什么是信息论信息论是一门研究信息的传输、存储、处理和变换的学科,旨在为通信系统设计提供理论基础和技术支持。
信息论的研究范围广泛,包括信息编码、数据压缩、加密解密、信号处理等方面,涵盖了通信系统的各个层面。
信息论的发展与计算机科学、数学、物理学、电子工程、生物信息学等学科密切相关。
信息论的定义与背景1948年,香农发表了《通信的数学理论》,标志着信息论的诞生。
20世纪60年代,信息论被应用于计算机科学领域,促进了计算机科学的飞速发展。
20世纪70年代,信息论进入应用阶段,出现了大量基于信息论的通信系统和计算机应用。
20世纪50年代,信息论得到迅速发展和广泛应用,出现了多种编码理论和技术。
信息论的发展历程信息论的分类按照研究对象的不同,信息论可以分为经典信息论和量子信息论。
经典信息论主要研究信息的传输、存储和处理的基本理论和技术,包括信道容量、编码理论、数据压缩、加密解密等。
量子信息论主要研究量子信息的传输、存储和处理的基本理论和技术,包括量子通信、量子计算、量子密码等。
02信息论的研究内容1信息的度量23度量随机变量的平均不确定性熵度量两个随机变量之间的相关性互信息度量两个概率分布之间的距离相对熵描述信道传输信息的最大速率信道容量证明达到信道容量的编码存在编码定理常见的信道编码方式线性码和循环码信道编码信源编码有损编码压缩信源并损失部分信息熵编码根据信源的概率分布进行编码无损编码压缩信源而不损失信息加密与解密加密算法将明文转换为密文,保护信息不被窃取解密算法将密文转换为明文,恢复原始信息对称加密与非对称加密根据加密和解密所用的密钥是否相同来分类03信息论的应用03数据压缩应用广泛应用于图像、音频、视频以及文本等数据的压缩。
数据压缩01数据压缩概述数据压缩是信息论的一个重要应用,通过去除冗余和相关性,减少数据的存储空间和传输带宽。
序言一.扩展频谱技术概述概念:所谓扩展频谱技术一般是指用比信号带宽宽得多的频带宽度来传输信息的技术。
一种典型的扩展频谱系统如图0-1所示:图0-1 典型扩展频谱系统框图它主要由原始信息,信源编译码,信道编译码〔过掉控制〕,载波调制与解调,扩频调制与解扩频和信道六大局部组成。
信源编码的目的是去掉信息的冗余度,压缩信源的数码率,提高信道的传输效率。
过掉控制的目的是增加信息在信道传输中的冗余度,使其具有检错或纠错能力,提高信道传输质量。
调制局部是为使经信道编码后的符号能在适当的频段传输,如微波频段,短波频段等。
扩频调制和解扩是为了某种目的而进行的信号频谱展宽和复原技术。
框图中各点信号的时域和频域特性如图0-2所示。
与传统通信系统不同的是,在信道中传输的是一个宽带的低谱密度的信号。
为什麽要进行扩频?这是因为它具有一些独特的长处。
特点:1)抗干扰能力强,出格是抗窄带干扰能力。
2)可检性抵,(LPI---Low Probability of Intercept),不容易被侦破。
3)具有多址能力,易于实现码分多址〔CDMA〕技术。
4)可抗多径干扰。
5)可抗频率选择性衰落。
6)频谱操纵率高,容量大〔可有效操纵纠错技术、正交波形编码技术、话音激活技术等〕。
7)具有测距能力。
8)技术复杂。
应用:基于以上这些特点,扩频技术首先应用于军事通信,此刻也开始民用和商用。
1)卫星通信〔多址,抗干扰,便于保密,降低平均功率谱密度〕2)移动通信〔多址,抗干扰,便于保密,抗多径,提高频谱操纵率〕3)无线当地环路4)G PS〔选址,抗干扰,保密,测距〕5)测试仪,干扰仪测时延,无码测试仪`````主要错误谬误:技术复杂,但是随着数字处置技术的开展,集成工艺进步,使扩频系统的实现变的简单,只需对扩展技术有一般的了解就可以从事扩频系统的设计工作。
因此,扩频技术在这些年开展非常迅速,由军用到民用,商用,范围很广。
理论根底:扩展频谱技术的理论根底是信息论中的香农定理[1]此中C------信道容量〔比特/秒〕N-----噪声功率W----带宽〔赫兹〕S ---------信号功率当S/N 很小时〔≤0.1〕得到:在无过掉传输的信息速率C 不变时,如N/S 很大,那么必需使用足够大的带宽W 来传输信号。
Chapter I Introduction1)什么是基因?基因有哪些主要特点?基因是一段可以编码具有某种生物学功能物质的核苷酸序列。
①不同基因具有相同的物质基础。
②基因是可以切割的。
③基因是可以转移的。
④多肽与基因之间存在对应关系.⑤遗传密码是通用的.⑥基因可以通过复制把遗传信息传递给下一代。
2)翻译并解释下列名词genetic engineering遗传工程gene engineering基因工程:通过基因操作,将目的基因或DNA片段与合适的载体连接转入目标生物获得新的遗传性状的操作。
gene manipulation基因操作:对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称.recombinant DNA technique重组DNA技术gene cloning基因克隆:是指对基因进行分离和扩大繁殖等操作过程,其目的在于获得大量的基因拷贝,在技术上主要包括载体构建、大肠杆菌遗传转化、重组子筛选和扩大繁殖等环节。
molecular cloning分子克隆3)什么是基因工程?简述基因工程的基本过程?p2 p44)简述基因工程研究的主要内容?p55)简述基因工程诞生理论基础p2和技术准备有哪些p3?6)基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么?否,密码子简并性7)举例说明基因工程技术在医学、农业、工业等领域的应用。
医学:人胰岛素和疫苗农业:抗虫BT农药工业:工程酿酒酵母Chapter ⅡThe tools of trade1)什么是限制性核酸内切酶?简述其主要类型和特点?是一种核酸水解酶,主要从细菌中分离得到.类型特点p112)II型核酸内切酶的基本特点有哪些p12—14?简述影响核酸内切酶活性的因素有哪些p14?3)解释限制酶的信号活性?抑制星号活性的方法有哪些?4)什么是DNA连接酶p15?有哪几类p16?有何不同p16?5)什么叫同尾酶、同裂酶p12?在基因工程中有何应用价值?同裂酶:识别位点、切割位点均相同,来源不同.在载体构建方面往往可以取得巧妙的应用.应用较多的同裂酶比如Sma1和Xma1,它们均识别CCCGGG,但前者切后产生钝同尾酶:来源各异,识别序列各不相同,但切割后产生相同的粘性末端。
扩频通信原理chapter1一.扩展频谱技术概述概念:所谓扩展频谱技术通常是指用比信号带宽宽得多的频带宽度来传输信息的技术。
一种典型的扩展频谱系统如图0-1所示:图0-1 典型扩展频谱系统框图它要紧由原始信息,信源编译码,信道编译码(差错操纵),载波调制与解调,扩频调制与解扩频与信道六大部分构成。
信源编码的目的是去掉信息的冗余度,压缩信源的数码率,提高信道的传输效率。
差错操纵的目的是增加信息在信道传输中的冗余度,使其具有检错或者纠错能力,提高信道传输质量。
调制部分是为使经信道编码后的符号能在适当的频段传输,如微波频段,短波频段等。
扩频调制与解扩是为了某种目的而进行的信号频谱展宽与还原技术。
框图中各点信号的时域与频域特性如图0-2所示。
与传统通信系统不一致的是,在信道中传输的是一个宽带的低谱密度的信号。
为什麽要进行扩频?这是由于它具有一些特殊的优点。
特点:1)抗干扰能力强,特别是抗窄带干扰能力。
2)可检性抵,(LPI---Low Probability of Intercept),不容易被侦破。
3)具有多址能力,易于实现码分多址(CDMA)技术。
4)可抗多径干扰。
5)可抗频率选择性衰落。
6)频谱利用率高,容量大(可有效利用纠错技术、正交波形编码技术、话音激活技术等)。
7)具有测距能力。
8)技术复杂。
应用:基于以上这些特点,扩频技术首先应用于军事通信,现在也开始民用与商用。
1)卫星通信(多址,抗干扰,便于保密,降低平均功率谱密度)2)移动通信(多址,抗干扰,便于保密,抗多径,提高频谱利用率)3)无线本地环路4)G PS(选址,抗干扰,保密,测距)5)测试仪,干扰仪测时延,无码测试仪`````要紧缺点:技术复杂,但是随着数字处理技术的进展,集成工艺进步,使扩频系统的实现变的简单,只需对扩展技术有通常的熟悉就能够从事扩频系统的设计工作。
因此,扩频技术在这些年进展非常迅速,由军用到民用,商用,范围很广。
理论基础:扩展频谱技术的理论基础是信息论中的香农定理[1]其中C------信道容量(比特/秒)N-----噪声功率W----带宽(赫兹)S ---------信号功率当S/N 很小时(≤0.1)得到:在无差错传输的信息速率C 不变时,如N/S 很大,则务必使用足够大的带宽W 来传输信号。
信息论与编码第⼀章1、信息,信号,消息的区别信息:是事物运动状态或存在⽅式的不确定性的描述消息是信息的载体,信号是消息的运载⼯具。
2、1948年以“通信的数学理论”(A mathematical theory of communication )为题公开发表,标志着信息论的正式诞⽣。
信息论创始⼈:C.E.Shannon(⾹农)第⼆章1、⾃信息量:⼀个随机事件发⽣某⼀结果后所带来的信息量称为⾃信息量,简称⾃信息。
单位:⽐特(2为底)、奈特、笛特(哈特)2、⾃信息量的性质(1)是⾮负值(2) =1时, =0, =1说明该事件是必然事件。
(3) =0时, = , =0说明该事件是不可能事件。
(4)是的单调递减函数。
3、信源熵:各离散消息⾃信息量的数学期望,即信源的平均信息量。
)(log )(])(1[log )]([)( 212i ni i i i a p a p a p E a I E X H ∑=-===单位:⽐特/符号。
(底数不同,单位不同)信源的信息熵;⾹农熵;⽆条件熵;熵函数;熵。
4、信源熵与信息量的⽐较(书14页例2.2.2)()log () 2.1.3 i i I a p a =-()5、信源熵的意义(含义):(1)信源熵H(X)表⽰信源输出后,离散消息所提供的平均信息量。
(2)信源熵H(X)表⽰信源输出前,信源的平均不确定度。
(3)信源熵H(X)反映了变量X 的随机性。
6、条件熵:(书15页例2.2.3) 7、联合熵:8、信源熵,条件熵,联合熵三者之间的关系:H(XY)= H(X)+H(Y/X) H(XY)= H(Y)+H(X/Y)条件熵⼩于⽆条件熵,H(Y/X)≤H(Y)。
当且仅当y 和x 相互独⽴p(y/x)=p(y),H(Y/X)=H(Y)。
两个条件下的条件熵⼩于⼀个条件下的条件熵H(Z/X,Y)≤H(Z/Y)。
当且仅当p(z/x,y)=p(z/y)时取等号。
联合熵⼩于信源熵之和, H(YX)≤H(Y)+H(X)当两个集合相互独⽴时得联合熵的最⼤值 H(XY)max =H(X)+H(Y) 9、信息熵的基本性质:(1)⾮负性;(2)确定性;(3)对称性;(4)扩展性(5)可加性 ( H(XY) = H(X)+ H(Y) X 和Y 独⽴ H (XY )=H (X )+ H (Y/X )H (XY )=H (Y )+ H (X/Y ) )(6)(重点)极值性(最⼤离散熵定理):信源中包含n 个不同离散消息时,信源熵H(X)有当且仅当X 中各个消息出现的概率全相等时,上式取等号。
信息理论与编码信息理论与编码是通信领域中的两个非常重要的学科,它们的发展对于现代通信技术的发展起到了至关重要的作用。
本文将从信息的概念入手,分别介绍信息理论和编码理论的基本概念、发展历程、主要应用以及未来发展的前景和挑战。
一、信息的概念信息可以理解为一种可传递的事实或知识,它是任何通信活动的基础。
信息可以是文字、图像、音频、视频等形式,其载体可以是书本、报纸、电视、广告、手机等媒介。
信息重要性的意义在于它不仅可以改变人的思想观念、决策行为,还可以推动时代的发展。
二、信息理论信息理论是由香农在1948年提出的,目的是研究在通信过程中如何尽可能地利用所传输的信息,以便提高通信的效率和容错性。
信息理论的核心是信息量的度量,即用信息熵来度量信息的多少。
信息熵越大,信息量越多,反之就越少。
比如一篇内容丰富的文章的信息熵就比较大,而一张黑白的图片的信息熵就比较小。
同时,信息熵还可以用来计算信息的编码冗余量,从而更好地有效利用信道带宽。
信息理论具有广泛的应用,特别是在数字通信系统中,例如压缩编码、纠错编码、调制识别等。
通过利用信息理论的相关技术,我们可以在有限的带宽、时间和功率条件下,实现更高效的数据传输。
三、编码理论编码理论是在通信领域中与信息理论密切相关的一门学科。
其核心在于如何将所传输的信息有效地编码,以便提高信息的可靠性和传输效率。
编码技术主要分为三类:信源编码、信道编码和联合编码。
信源编码,也称数据压缩,是通过无损压缩或有损压缩的方式将数据压缩到最小,以便更加高效地传输和存储。
常见的信源编码算法有赫夫曼编码、算术编码、LZW编码等。
信道编码则是为了提高错误率而采用的一种编码方法。
通过添加冗余信息,例如校验和、海明码等技术,可以实现更高的错误检测和纠正能力。
联合编码则是信源编码和信道编码的组合。
它的核心思想是将信源编码和信道编码结合起来,以得到更加高效的编码效果。
编码理论在现代通信系统中具有广泛的应用,包括数字电视、移动通信、卫星通信、互联网数据传输等。