【教案】 有理数的加法
- 格式:doc
- 大小:35.50 KB
- 文档页数:4
13有理数的加法【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!13有理数的加法【优秀3篇】在教学工作者开展教学活动前,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。
有理数的加法数学七年级教案(精选17篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!有理数的加法数学七年级教案(精选17篇)教学工作计划的质量与教师的教学能力和教学态度密切相关。
初一有理数加减法教案【篇一:有理数加减法教案】有理数的加减法(一)[本节课内容] 1.有理数的加法2.有理数的加法的运算律[本节课学习目标]1、理解有理数的加法法则.2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3、掌握异号两数的加法运算的规律.4、理解有理数的加法的运算律.5、能够应用有理数的加法的运算律进行计算.[知识讲解]一、有理数加法:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作? 5m;如果物体先向右移动5m,再向右移动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动了 8m,写成算式就是(?5)+(?3) = ?81如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动了 2m,写成算式就是5+(?3) = 2探究这三种情况运动结果的算式如下:3+(—5)=—2;5+(—5)= 0;(—5)+5= 0.如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.例题例1、计算(-3)+(-9); (2)(-4.7)+3.9.2例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为()=( ).二、有理数加法的运算律通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.例题例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(-25)+ 24 +(-35)= (16 + 24)+ [(-25)+(-35)]= 40 +(-60)3=-20.例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1答:总计超过 5千克,10袋水泥的总质量是 505千克.三、小结:有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.有理数加法运算律:①加法交换律:a+ b = b + a②加法结合律:(a+ b)+ c = a+( b +c)有理数的加减法(二)学习目标1、会将有理数的减法运算转化为有理数的加法运算.2、会将有理数的加减混合运算转化为有理数的加法运算.重点、难点4会进行有理数的减法运算,会进行有理数的加减混合运算.教学过程一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4oc,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:oc).显然,这天的温差是4―(―3).这里就用到了有理数的减法.我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即4―(―3) = 7. (1)另一方面,我们知道4+(+3) = 7 (2)由(1),(2)有4―(―3) = 4+(+3) (3)从(3)式能看出减―3相当于加哪个数吗?用上面的方法考虑:0―(―3) =___,0+(+3) =___;1―(―3) =___,1+(+3)=____;―5―(―3) =___,―5+(+3) =___.这些数减?3的结果与它们加+3的结果相同吗?计算: 9-8=___, 9+(- 8)=____; 15-7=___, 15+(-7)=____.上述式子表明:减去一个数,等于加上这个数的相反数.于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a?b = a+(?b)例题5【篇二:有理数的加法的教案】1.3.1 有理数的加法教案(第二课时)教学目标1.知识与技能①能运用加法运算律简化加法运算.②理解加法运算律在加法运算中的作用,适当进行推理训练.2.过程与方法①培养学生的观察能力和思维能力.②经历对有理数的运算,领悟解决问题应选择适当的方法.3.情感、态度与价值观在数学学习中获得成功的体验.教学重点难点重点:如何运用加法运算律简化运算.难点:灵活运用加法运算律.教与学互动设计(一)情境创设,导入新课思考在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适于有理数范围吗?今天,我们一起来探究这个问题.(二)合作交流,解读探究体验 1.自己任举两个数(至少有一种是负数 ,并比较它们的运算结果,你发现了什么?发现:对任选择的数,即小学里学过的加法交换律在有理数范围内仍是成立的.体验 2.任选三个有理数(至少有一个是负数),并比较它们的运算结果.发现都有些什么?这就是说,小学的加法结合律,在有理数范围内都是成立的.小结有理数的加法仍满足交换律和结合律.加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,用式子表示成(a+b)+c=a+(b+c)(三)应用过移,巩固提高例1 说出下列每一步运算的依据(-0.125)+(+5)+(-7)+(+)+(+2)=(-0.125)+(+)+(+5)+(+2)+(-7)(加法交换律)=[(-0.125)+(+)]+[(+5)+(+2)]+(-7)(加法结合律)=0+(+7)+(-7)(有理数的加法法则)=0(有理数的加法法则)例2 利用有理数的加法运算律计算,使运算简便.(1)(+9)+(-7)+(+10)+(-3)+(-9)(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)【答案】(1)0 (2)-6.7 (3)-1002例3 某出租司机某天下午营运全是在东西走向的人民大道进行的,?如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?解:(1)+15+(+14)+(-3)+(-11)+(+10)+(-12)+4+(-15)+16+(-18) =[15+(-15)]+(14+10+4+16)+[(-3)+(-11)+(-12)+(-18)]=0=118a【答案】(1)将最后一名乘客送到目的地,该司机仍在其出发点.(2)共耗油118a公升.例4 若│2x-3│与│y+3│互为相反数,求x+y的相反数.【提示】两个非负数互为相反数,只有都为0.解:根据题意,有2x-3=0,y+3=0 则x=,y=-3x+y= +(-3)=-.所以x+y的相反数是备选例题.小王上周在股市以收盘价/(收市时的价格)每股25?元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期每股涨跌(元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价、最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.?若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?【答案】(1)星期二收盘价为25+2-0.5=26.5(元/股)(2)收盘最高价为25+2-0.5+1.5=28(元/股)收盘最低价为25+2-0.5+1.5-1.8=26.2(元/股)∴小王的本次收益为1740元.(五)总结有理数的加法仍满足交换律和结合律.加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.一 +2 二 -0.5 三 +1.5 四 -1.8 五 +0.8【篇三:人教版七年级上册第一章有理数的加法教学设计】人教版七年级上册第一章《有理数》第三节有理数的加减法第一课时1.3.1有理数的加法一、教学目标(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。
数学有理数的加法教案精选8篇有理数的加法教案篇一(一)知识与技能目标1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、运用有理数加法法则熟练进行整数加法运算。
(二)过程与方法目标1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
3、渗透由特殊到一般的唯物辩证法思想(三)情感态度与价值观目标(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
二、教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则三、教学组织与教材处理:在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。
新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)=+5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。
又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。
小学数学教案有理数的加减【教案一】教学目标:1. 通过教学使学生能够掌握有理数的加法和减法的基本概念和运算方法;2. 培养学生观察和分析问题的能力,提高解决问题的能力;3. 培养学生积极思考、合作交流的学习习惯。
教学重点:1. 有理数的加法和减法的运算规则;2. 加法和减法运算的实际应用;3. 运用有理数进行问题解决的能力。
教学难点:1. 解决实际问题时的有理数运算;2. 运用有理数进行推理和论证。
教学过程:一、导入(5分钟)1. 准备一些简单的问题,引导学生思考如何进行有理数的加法和减法运算。
二、讲解有理数的加法和减法的基本概念(15分钟)1. 向学生介绍有理数的概念和加法、减法的定义;2. 通过具体例子解释有理数的加法和减法运算规则。
三、练习与讨论(20分钟)1. 分发练习题,让学生自主完成,然后进行讨论和解答;2. 引导学生掌握运算规则,解决各种有理数运算题。
四、拓展应用(10分钟)1. 设计一些实际问题,让学生应用有理数进行解决;2. 鼓励学生积极思考、分析问题,找到解决问题的方法。
五、归纳总结(10分钟)1. 回顾有理数的加法和减法运算规则;2. 提醒学生注意常见问题和易错点。
六、拓展练习(20分钟)1. 分发一些较难的练习题,让学生巩固运算能力;2. 引导学生通过解答问题来理解有理数的实际应用。
七、小结与展望(5分钟)1. 对本节课所学内容进行总结;2. 展望下节课将学习的内容。
【教案二】教学目标:1. 通过教学,使学生掌握有理数的加法和减法运算规则;2. 培养学生运用有理数解决实际问题的能力;3. 培养学生观察分析问题的能力和合作交流的习惯。
教学重点:1. 有理数的加法和减法运算规则;2. 运用有理数解决实际问题。
教学难点:1. 运用有理数解决实际问题;2. 解决复杂问题时的有理数运算。
教学过程:一、导入(5分钟)1. 创设情境,引导学生思考如何进行有理数的加法和减法运算。
二、讲解有理数的加法和减法运算规则(15分钟)1. 介绍有理数的概念和加法、减法的定义;2. 通过例题讲解有理数的运算规则。
有理数的加法教案优秀15篇有理数的加法教案篇一一、教学目标(一)知识与技能1、使学生掌握有理数加法法则,并能运用法则进行计算;2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点会用有理数加法法则进行运算。
三、教学难点异号两数相加的#39;法则。
四、教学方法探究法、引导发现法五、教具准备多媒体课件、导学案六、教学过程(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把�(二)探究新知1、大家开始画数轴,以原点为起点,规定向右的�(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(-2)+(-3)= -5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(-3)= -1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(-2)+ (+3)= +12、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。
我们可以借助数轴来得知两个有理数相加的结果。
请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1)(-4)+ (-1)2)(+5)+(-3)3)(-4)+(+7)4)(-6)+33、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。
有理数的加法教案(优秀7篇)有理数的加法公开课教案篇一一、学情及学习内容分析“有理数的加法与减法”是基于规则为主的新授课型有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。
本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作------有理数减法算式-------有理数减法法则-------有理数减法的应用二、教学目标及教学重(难)点教学目标:1、知识与技能:会根据减法的法则进行有理数减法的运算。
2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。
3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。
教学重点:有理数减法法则与运用教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。
教学方法:观察探究、合作交流。
三、教学过程设计:在课前让学生玩有理数加法中的扑克牌游戏。
1、情境引入:师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。
2、建构活动活动1:计算温差师:有理数加减3_百度文库生1:利用温度计的刻度直观得到算式5 + 3 = 8生2:利用日温差的定义可得到算式:5 -(-3)= 8师:比较两式,我们有什么发现吗?生:“-”变“+”,(-3)变3。
活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。
有理数的加法教案(精选多篇)第一篇:《有理数加法》教案《有理数加法》教案通榆县第十中学——杜建军一.教学目标1.知识与技能(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.2.过程与方法通过观察,比较,归纳等得出有理数加法法则。
能运用有理数加法法则解决实际问题。
3.情感态度与价值观认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重难点及关键:重点:会用有理数加法法则进行运算.难点:异号两数相加的法则.关键:通过实例引入,循序渐进,加强法则的应用.三、教学方法发现法、归纳法、与师生轰动紧密结合.四、教材分析“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
五、教学过程(一)问题与情境我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。
章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。
于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。
(二)师生共同探究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是(+3)+(+1)=+4.(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.(三)应用举例变式练习例1 口答下列算式的结果(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.例2(教科书的例1)解:(1)(-3)+(-9) (两个加数同号,用加法法则的第1条计算)=-(3+9) (和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,把大的绝对值减去小的绝对值)=-0.8例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数下面请同学们计算下列各题以及教科书第23页练习第1与第2题(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9);学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
2.1.1有理数的加法第1课时【教学目标】1.了解有理数加法的意义,理解有理数加法法则的合理性.2.能运用该法则准确进行有理数的加法运算.3.经历探索有理数加法法则的过程,理解并掌握有理数加法法则.【教学重点难点】重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.【教学过程】一、温故知新,导入新课(一)复习:1.比较下列各数的大小:747-4-74-7-4.2.如果向东走5米记作+5米,那么向西走3米记作.3.已知a=-5,b=+3,|a|+|b|=.4.已知a=-5,b=+3,|a|-|b|=.(二)导入新课:在小学,我们学过正数及0的加法运算,引入负数后,在有理数范围内怎样加法运算呢?在实际问题中,有时会遇到与负数有关的加法运算,例如:李明同学经常对家里的生活垃圾分类,并卖出积攒的可回收物.这样既保护了环境,又增加了零花钱.如表是他某个月零花钱的部分收支情况.收支情况表日期收入(+)或支出(-)/元结余/元备注2日3.518.5卖可回收物8日-6.512.0买中性笔、记号笔12日-15.2-3.2买科普书,同学代付你知道结余如何求吗?怎样列式子计算8日及12日的结余呢?这样的算式如何计算呢?这就是本节课我们要研究的内容.二、探究归纳探究点1:有理数的加法法则一只可爱的小企鹅,在一条东西走向的笔直公路上行走,现规定向东为正,向西为负.问题1:如果小企鹅先向东行走2米,再继续向东行走1米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅一共向东行走了米,写成算式为:(+2)+(+1)=+()(米)问题2:如果小企鹅先向西行走2米,再继续向西行走1米,则小企鹅两次一共向哪个方向行走了多少米?解:两次行走后,小企鹅向西走了米.用算式表示:(-2)+(-1)=-()(米).要点归纳:有理数加法法则一:同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.问题3:(1)如果小企鹅先向西行走3米,再继续向东行走2米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅两次一共向西走了米.用算式表示为:(-3)+(+2)=-()(米)(2)如果小企鹅先向西行走2米,再继续向东行走3米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅两次一共向东走了()米.用算式表示为:-2+(+3)=+()(米).(3)如果小企鹅先向西行走2米,再继续向东行走2米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅一共行走了米.写成算式为:(-2)+(+2)=(米).要点归纳:有理数加法法则二:绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.想一想:如果小企鹅先向西行走3米,然后在原地休息,则小企鹅向哪个方向行走了多少米?解:小企鹅向西行走了米.写成算式为:(-3)+0=(米).要点归纳:有理数加法法则三:一个数与0相加,仍得这个数.显然,两个有理数相加,和是一个有理数.【典例剖析】例1:教材P27【例1】【解题反思】一、法则挖掘有理数加法运算的步骤:师生活动:学生逐题作答后师生共同总结.进行有理数加法,先要判断两个加数是同号还是异号,加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.归纳总结【方法技巧】1.先判断加数的类型(同号、异号);2.再确定和的符号:同号取相同的符号;异号取绝对值较大的加数的符号;3.最后进行绝对值的加减运算.二、和与加数的关系借助数轴,思考以下问题:1.以任何一个点为起点(任意数),往正方向移动任意距离(加上一个正数),终点的位置(所表示的数是两个数的和)在起点的哪边?2.以任何一个点为起点(任意数),往负方向移动任意距离(加上一个负数),终点的位置(所表示的数是两个数的和)在起点的哪边?3.根据利用数轴比较有理数大小的方法,你能得到什么结论?你能用有理数的加法法则进行验证你的结论吗?【归纳总结】任何一个数加上一个正数,和比这个数大,任何一个数加上一个负数,和比这个数小.【设计意图】1.通过对法则的深度挖掘,帮助学生熟悉法则,使学生明晰做有理数加法运算时的常用方法和步骤,并养成“算必有据”的习惯.同时将有理数的加法运算转化为小学学习过的数的加减运算,渗透了化归思想.2.借助数轴,研究和与加数的关系,使学生明确,引入负数之后,有理数加法运算的结果与小学阶段得到的认知(和大于等于任意一个加数)是不同的.例2:足球循环赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=+(4-2)=2;黄队共进2球,失4球,净胜球数为(+2)+(-4)=-(4-2)=;蓝队共进球,失球,净胜球数为=.要点归纳:在解与有理数加法有关的实际应用问题时,先利用正负数表示实际问题中的量,再列式计算.三、检测反馈1.如果规定存款为正,取款为负,请根据李明同学的存取款情况填空:①一月份先存入10元,后又存入30元,两次合计存入 元,就是(+10)+(+30)= .②三月份先存入25元,后取出10元,两次合计存入 元,就是(+25)+(-10)= .2.计算:(1)(-2.2)+(-3.8).(2)413+(-516). (3)(-516)+0. (4)(+215)+(-2.2). 3.解决问题:某潜水员先潜入水下61米,然后又上升32米,这时潜水员处在什么位置?【拓展提高】4.若|x |=3,|y |=2,且x >y ,则x +y 的值为 ( )A.1B.-5C.-5或-1D.5或1 5.(1)a +|a |=0,a 是什么数?(2)若|a +1|=2,那么a 的取值为多少?四、本课小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法法则.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.五、布置作业P28练习,P34T1六、板书设计七、教学反思本节课采用以学生为主体教师为主导的方式进行合作探究的教学方法.通过创设问题情境,提供开展自主、合作、交流的学习的背景;整个探究新知的教学过程基本上由5个问题统领,在教师引导下,学生能对有理数的加法法则进行探究.学生积极思考问题,大部分主动参与讨论,敢于发表自己的见解.学生能多样化理解有理数的加法法则,并运用类比、数形结合、游戏等手段形象具体地理解有理数的加法法则.以问题为主线,能减少教师占用课堂时间,把主要时间交给学生去探索新知识,避免教师“讲得太多”.第2课时【教学目标】1.能概括出有理数的加法交换律和结合律.2.灵活熟练地运用加法交换律、结合律简化运算.3.在学生已有的知识经验基础上,通过主动探索有理数加法的运算律,培养学生观察、比较、归纳及运算能力.4.经历对有理数的运算过程,领悟解决问题应选择适当的方法.【教学重点难点】重点:掌握有理数的加法交换律和结合律.难点:灵活运用加法交换律、结合律简化运算.【教学过程】一、创设情境1.叙述有理数加法法则.2.计算:(1)6.18+(-9.18).(2)(+5)+(-12).(3)(-12)+(+5).(4)3.75+2.5+(-2.5).(5)12+(-23)+(-12)+(-13). 3.有了有理数的加法法则后,还要研究加法运算律,我们以前学过加法交换律、结合律,对于有理数的加法它们还成立吗?这就是我们这节课要研究的内容.二、探究归纳探究点1:加法运算律问题1:观察下面的算式,你们能再举一些数字也符合这样的结论吗?试试看!(1)(-8)+(-9)(-9)+(-8)(2)4+(-7)(-7)+4(3)6+(-2)(-2)+6(4)[2+(-3)]+(-8)2+[(-3)+(-8)](5)10+[(-10)+(-5)][10+(-10)]+(-5)问题2:通过上面的计算和对比你能发现什么?你能用字母表示出这个规律吗?要点归纳:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).【思考】多个有理数相加,可以任意交换加数的位置吗?交换了加数的位置后,能先把其中的几个数相加吗?【归纳总结】根据加法交换律和结合律,多个有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.【典例剖析】例1:教材P29【例2】思考:怎样使计算简化?这样做的根据是什么?解:(1)8+(-6)+(-8)=[8+(-8)]+(-6)=0+(-6)=-6.(2)16+(-25)+24+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20.要点归纳:把正数与负数分别相加,从而计算简化,这样做既运用加法交换律又运用加法的结合律.例2:计算:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5).(2)(+325)+(-278)+(-3512)+(-118)+(+535)+(+5512). (3)(+614)+(+12)+(-6.25)+(+13)+(-79)+(-56). 思考:回顾以上例题的解答,将怎样的加数结合在一起,可使运算简便?要点归纳:(1)互为相反数的两个数可先相加.(2)几个数相加得整数时,可先相加.(3)同分母的分数可以先相加,将带分数拆开,计算比较简便.一定要注意不要遗漏括号;相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或通过拆数、部分结合凑成相反数抵消掉,计算比较简便.(4)符号相同的数可以先相加.探究点2:有理数加法运算律的应用例3:教材P29【例3】【解题引导】1.求10袋小麦的总重,可以使用什么方法?2.根据相反意义的量,在给定质量标准的情况下,我们如何来表示这10袋小麦的重量?3.计算10袋小麦总计超过或不足多少千克时,使用哪种表示重量的方法更简便,为什么?【解题反思】对比两种解法,哪种方法更简便?解法2中,使用了哪些运算律?解法1中能运用运算律简便计算吗?为什么?三、检测反馈1.P30练习T12.P36T93.计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100).四、本课小结三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的位置,简化运算.常见技巧有:(1)凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加.(2)同号集中:按加数的正负分成两类分别结合相加,再求和.(3)同分母结合:把分母相同或容易通分的结合起来.(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加.注意带分数拆开后的两部分要保持原来分数的符号.五、布置作业P30练习T2,3;P34T2;P35T8六、板书设计七、教学反思1.过去不少人错误地认为,推理训练是几何教学的目的,代数可以不讲理由.其实,计算本身就是推理.计算法则、运算性质都是进行计算的根据.学生要知道每进行一步运算都要有理有据.这样通过运算就能逐步培养学生的逻辑思维能力.运算教学时,要求学生明确每一步变形或计算的依据,鼓励学生提供多种计算方法.2.在课堂教学中,应当把更多的时间交给学生,本节课中有理数运算律的探究、例题的讲解、习题的完成、知识的总结尽可能全部交给学生完成,教师所起的作用是点拨、评价和指导,这样做,可以更好地体现以学生为中心的教学思想,能更好地提高学生的综合能力.。
可编辑修改精选全文完整版
有理数的加法(第一课时)教案
教学目标
1.知识与技能
经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.
2.过程与方法
①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.
②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.
3.情感、态度与价值观
①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.
②运用知识解决问题的成功体验.
教学重点难点
重点:有理数的加法法则的理解和运用.
难点:异号两数相加.
教与学互动设计
(一)创设情境,导入新课
课件展示下午放学时,小新的车子坏了,他去修车,不能按时回家,怕妈妈担心,打电话告诉妈妈,可妈妈坚持要去接他,问他在什么地方修车,他说在我们学校门前的东西方向的路上,你先走20米,再走30米,就能看到我了.于是妈妈来到校园门口.
(二)合作交流,解读探究
讨论妈妈能找到他吗?
讨论交流若规定向东为正,向西为负.
(1)若两次都向东,很显然,一共向东走了50米.
算式是:20+30=50
即这位同学位于学校门口东方50米.这一运算可用数轴表示为。
《有理数的加法》教案【优秀4篇】《有理数的加法》教案篇一教学目标:1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,教学难点:准确、熟练地进行加减混合运算教学过程一、课前预习1、有理数的加法法则是什么?2、有理数的减法法则是什么?3、有理数的加法有什么运算律?具体内容是什么?4、计算下列各题(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索根据有理数减法法则,有理数的加减混合运算可以统一为加法运算例1、计算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)____统一为加法= 26+(-42)____运用运算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算:解:(-6)-(-13)+(-5)-(+3)+(+6)=(-6)+(+13)+(-5)+(-3)+(+6)__统一加号=-6+13-5-3+6____省略加号=-6-5-3+13+6____-运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。
例2.计算:(1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)例4、若a=-2,b=3,c=-4,求值(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 __ [ 数据代入时,注意括号的运用](2) (3)(4)例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查,约定向东为正,某天从A地到B地结束时行走记录为(单位:km)+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?(2)这小组这一天共走了多少千米三、学习小结这节课你学会了哪几种运算?四、随堂练习A类1、计算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)(3)(+ )-(- )+(- )-(+ )(4) -7.52+ -1.48(5)21-12+33+12-67 (6)-3.2+5.8-8.6+122 计算(1) 1+2-3-4+5+6-7-8++97+98-99-100(2) 66-12+11.3-7.4+8.1-2.5(6)-2.7-[3-(-0.6+1.3)]B类3. 计算(1) + + ++ (2) + + ++《有理数的加法》教案篇二教材分析分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。
《有理数的加法》课堂教学设计《有理数的加法》课堂教学设计作为一位杰出的教职工,通常需要准备好一份教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。
你知道什么样的教学设计才能切实有效地帮助到我们吗?以下整理的《有理数的加法》课堂教学设计,供大家参考借鉴。
《有理数的加法》课堂教学设计篇1今天我说课的题目是“有理数的加法(一)”,“有理数的加法”说课教案、课堂设计及教后反思。
本节课选自华东师范大学出版社出版的《义务教育课程标准实验教科书》七年级(上),。
这一节课是本册书第二章第六节第一课时的内容。
下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。
首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。
初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。
运算能力的培养主要是在初一阶段完成。
有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
2、就第二章而言,有理数的加法是本章的一个重点。
有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
有理数的加法教案教案内容:一、教学目标:1. 了解有理数的概念和性质。
2. 掌握有理数的加法运算方法。
3. 能够运用有理数的加法规则解决实际问题。
二、教学重点:1. 有理数的概念和性质。
2. 有理数的加法规则和运算方法。
三、教学难点:1. 掌握有理数的加法运算方法。
2. 运用有理数的加法规则解决实际问题。
四、教学过程:1. 了解有理数的概念和性质:- 引导学生回顾整数和分数的概念,并引入有理数的定义。
- 解释有理数的性质:有理数可以相互比较大小;有理数有加法、减法、乘法和除法运算;有理数可以表示数轴上的点等。
2. 有理数的加法运算方法:- 提供几个有理数的加法算式,让学生观察规律。
- 解析有理数的加法规则:同号相加取同号,异号相加取绝对值较大的数的符号。
- 分步讲解有理数的加法运算方法,并通过练习巩固掌握。
3. 运用有理数的加法规则解决实际问题:- 给出一些实际问题,要求学生应用有理数的加法规则解决。
- 帮助学生分析问题、提取关键信息、设立方程,以及运用有理数加法运算方法解答问题。
五、课堂练习:1. 让学生自主练习有理数的加法运算,巩固所学知识。
2. 给出一些应用题,让学生灵活运用有理数的加法规则解决实际问题。
六、作业布置:布置一些相关的练习题,要求学生完成并提交。
七、课堂总结:1. 学生回顾所学内容,总结有理数的加法规则和运算方法。
2. 教师对学生的学习情况进行总结评价,并提出进一步的学习建议。
八、板书设计:无九、课后拓展:1. 学生继续自主完成有理数的加法练习题。
2. 学生独立思考有理数加法规则的应用,并写下自己的思考和总结。
初中七年级数学《有理数的加法》教案篇一、教学目标1.掌握有理数加法的基本概念、运算规律和计算方法。
2. 正确理解数轴上有理数加减法的意义,掌握数轴上有理数加减法的方法。
3. 通过有理数加法的练习,提高学生的综合数学运算能力和数学表达能力。
二、教学准备1. 教材、黑板、粉笔、教学PPT、学生练习题及电子媒体等。
2.根据学生的学情,设置多种教学方式,如组织小组活动,进行展示及分析等。
3.教师需要具有高度的教学热情和责任心,以引导学生积极主动探索、学习,提高课堂效率。
三、教学内容1.引入向学生阐明有理数的概念,解释有理数的大小关系和在数轴上的位置。
引导学生回顾整数加减法的计算步骤,并解释有理数加法的操作步骤。
2. 正式学习(1) 有理数的加法的运算规律:同号相加,异号相减;例如:+2+3=+5;-5-7=-12;+3-4=-1;+7-10=-3。
(2) 数轴上有理数加法的方法:在数轴上表示加数和被加数,计算得出结果的位置。
比如:+10+5,表示+10在数轴上的位置,向右移动五个单位,就可以找到+15的位置。
(3) 有理数的加法练习:教师通过PPT和黑板画出各种加法实例,让学生进行练习,并向学生提供挑战性的题目。
例如:-2+8=?5+(-3)=?-4+6=?1/2+3/4=?(4) 拓展练习:引导学生分析解决实际问题的方法和思路,自行实践和探究。
例如:一个球从离地面10米的位置上落下,第一秒落下5米,第二秒落下3米,请问第二秒球在几米高度。
4.总结教师总结有理数加法的基本概念,运算规律和计算方法,帮助学生理解有理数的加法是整数加减法的扩展。
并提醒学生练习过程中的常见错误,并简单分享优秀学员的思考和实践方法,以提高学生的思维和表达能力。
五、教学方法1.多元化的教学方法:采用PPT课件、黑板、讲解、讨论、小组讨论、练习等多种形式。
2.以实际问题为导向:引导学生接触实际问题,寻求解决问题的方法和思路,进一步拓展知识。
有理数的加法教案1.有理数的加法教案(精选篇1)师:在小学里,同学们已经学过数的加、减、乘、除四则运算。
这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。
自从引进负数后,数的范围就扩大到整个有理数。
那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。
(教师板书课题:有理数的加法)请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。
生1:加数都是正数或都是负数。
(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)师:还有其他情况吗?生2:正数与零,负数与零,或者两个都是零师:同学们回答得很好。
现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?①先向东走了5米,再向东走3米,结果怎样?生3:向东走了8米师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示?生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。
(教师用投影仪显示图1)②先向西走了5米,再向西走了3米,结果如何?生5:向西走了8米。
可以表示为:(-5)+(-3)=-8[教师板书](教师用投影仪显示图2)③向东走了5米,再向西走了3米,结果呢?生6:向东走了2米。
可以表示为:(+5)+(-3)=+2[教师板(教师用投影仪显示图3)④先向西走了5米,再向东走了3米,结果呢?生7:向西走了2米。
可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)⑤先向东走5米,再向西走5米,结果呢?生8:回到原地位置。
可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)⑥先向西走5米,再向东走5米,结果呢?生9:仍回到原地位置。
可以表示为:(-5)+(+5)=0[教师板书](教师用投影仪显示图6)师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。
有理数的加法教案优秀6篇有理数的加法教案篇一一、教学目标1.知识与技能(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。
2.过程与方法通过观察,比较,归纳等得出有理数加法法则。
能运用有理数加法法则解决实际问题。
3.情感态度与价值观认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重难点及关键:重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
关键:通过实例引入,循序渐进,加强法则的应用。
三、教学方法发现法、归纳法、与师生轰动紧密结合。
四、教材分析“有理数的加法”是人教版七年级数学上册一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
五、教学过程(一)问题与情境我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。
章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。
于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。
(二)师生共同探究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。
这节课我们来研究两个有理数的加法。
两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量。
若我们规定赢球为“正”,输球为“负”,打平为“0”。
比如,赢3球记为+3,输1球记为-1。
学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球。
也就是(+3)+(+1)=+4。
有理数的加法
一、教学目标
1.知识与技能:掌握有理数加法法则和加法运算律;能够熟练运用有理数的加法法则和运算律进行计算,并且会运用有理数加法运算律简化运算;
2.过程与方法:经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法;
3.情感态度与价值观:在学习探索的过程中,培养学生的观察,比较,归纳及运算的能力;
二、教学重点和难点
教学重点:有理数的加法法则以及加法运算律;
教学难点:异号两数相加的加法法则以及运算律的运用;
三、教学手段
现代课堂教学手段;
四、教学方法
启发式教学;
五、教学过程
(一)创设情境,导入新课
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.
【问】两个有理数相加,有多少种不同的情形?
为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是
(+3)+(+2)=+5.①
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是
(-2)+(-1)=-3.②
现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1;③
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)+(+2)=-1;④
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(+3)+0=+3;⑤
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(-2)+0=-2;⑥
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0.⑦
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.
【问】现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数.
(二)应用举例,变式练习
【例】计算下列算式的结果,并说明理由:
(1)(+4)+(+7);(2)(-4)+(-7);(3)(+4)+(-7);(4)(+ 4)+(-4);(5)(-9)+0; (6)0+(+2);(7)0+0;
学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
全班学生书面练习,学生板演,教师对学生板演进行讲评.
(三)从学生原有认知结构提出问题
【问】1.叙述有理数的加法法则.
2.“有理数加法”与小学里学过的数的加法有什么区别和联系?
答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算.
3.计算下列各题,并说明是根据哪一条运算法则?
(1)(-9.18)+6.18;(2)6.18+(-9.18); (3)(-2.3 7)+(-4.63);
4.计算下列各题:
(1)[8+(-5)]+(-4); (2)8+[(-5)+(-4)]; (3)[(-7)+(-10)]+(-
(4)(-7)+[(-10)+(-11)];(5)[(-22)+(-27)]+(+27);
(四)共同探索,归纳有理数运算律
通过上面练习,引导学生得出:
交换律——两个有理数相加,交换加数的位置,和不变.
用代数式表示上面一段话:a+b=b+a.
运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示上面一段话:(a+b)+c=a+(b+c).
这里a,b,c表示任意三个有理数.
(五)运用举例,变式练习
根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.
【例】计算16+(-25)+24+(-32).
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便.
解:16+(-25)+24+(-32)
=16+24+(-25)+(-32) (加法交换律)
=[16+24]+[(-25)+(-32)] (加法结合律)
=40+(-57) (同号相加法则)
=-17.
(异号相加法则)
本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数.
【例】1.计算:(要求注理由)
(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);
2.计算:(要求注理由)
(1)(-8)+10+2+(-1); (2)5+(-6)+3+9+(-4)+(-7);
3.当a=-11,b=8,c=-14时,求下列代数式的值:
(1)a+b;(2)a+
(3)a+a+a; (4)a+b+c.
利用有理数的加法解下列各题(第4~8题):
4.飞机的飞行高度是1000米,上升300米,又下降500米,这时飞行高度是多少?
5.存折中有450元,取出80元,又存入150元以后,存折中还有多少钱?
6.一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少?
7.小吃店一周中每天的盈亏情况如下(盈余为正):
128.3元,-25.6元,-15元,27元,-7元,36.5元,98元
一周总的盈亏情况如何?
8.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:
1.5,-3,2,-0.5,1,-2,-2,-
2.5
8筐白菜的重量是多少?
(六)小结
这节课,我们从实例出发,经过比较,归纳,得出了有理数的加法法则和有理数的加法运算律,在应用有理数的加法法则时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。
对于有理数加法的运算律的应用,我们要注意观察,探究简便运算的特点,让计算更加快捷,简单。
(七)布置作业。