12-2 根据欧姆定律测量导体的电阻+Flash
- 格式:ppt
- 大小:2.10 MB
- 文档页数:22
12.2 根据欧姆定律测量导体的电阻(教学目标知识与技能应用欧姆定律,学习用电流表和电压表测量小灯泡的电阻。
过程与方法:通过测量电阻,了解欧姆定律的应用,进一步了解和学习物理研究问题的方法。
情感、态度、价值观培养学生设计实验、连接电路、测量及分析归纳物理规律的兴趣。
教学重点:1. 学习应用欧姆定律,用电流表和电压表测量电阻 2.理解电阻是导体本身固有属性,与导体两端的电压及通过导体的电流无关。
教学难点实验电路的设计、连接,电流表、电压表量程的选择,滑动变阻器的使用,实验数据表格的设计。
教学过程:、复习: 、学生练习题目:1. 某同学用电源、电压表、电流表、滑动变阻器、电键和若干导线,测定电阻RX 的值。
所有元件均完好,电源电压不变,所用滑动变阻器上标有“ 20 2A 字”样。
他正确连接电路,实验步骤正确。
闭合电键S ,观察到电流表、电压表的示数分别如图1(a 、(b 所示。
当他把滑动变阻器的滑片P 移到某位置时,电流表、电压表的示数分别为0. 20安、2. 5伏。
接着,他继续移动滑片,发现电流表的最大值为0. 37安。
请将有关的数据填入表格内,并求出R X的阻值。
(计算电阻时,精确到0. 1欧U I lir I [- I I2. 某同学利用电压表和电流表测量电阻R X的阻值,所用的电源由两节新干电池组成,选用的滑动变阻器上标有“ 20 Q 2A ”字样。
他按图2连接电路,实验步骤正确,闭合电键S后,无论怎样移动滑动变阻器的滑片,电压表始终无示数。
已知电路中各处均接触良好,除电阻R X和滑动变阻器R外,其它元件均完好。
(1若电路中只有一处出现故障,则故障可能是路”、“ F断路”或“ R X短路”。
(a (b 图2 (a b 图3(2若第(1小题的判断正确,则在R x两端接入一根导线后,闭合电键S,两电表的示数情况为(3排除故障后,该同学按正确步骤进行实验,闭合电键S ,两电表示数如图3(a 、(b 所示,他记下实验数据后,进行计算,然后整理实验器材,完成实验。
12.2根据欧姆定律测量导体的电阻教学目标:知识与技能知道用电流表和电压表测电阻的实验原理;同时使用电流表和电压表测导体的电阻;测量小灯泡的电阻,并找出电阻与温度的关系;学会用图像法处理实验数据。
过程与方法通过测量小灯泡的电阻,学习一种应用欧姆定律测量电阻的方法。
通过多次测量去平均值进一步体会减小测量误差的方法。
通过补充实验---“测量小灯泡的电阻”,培养训练学生的观察、思考、分析、解决问题能力。
情感态度和价值观通过应用欧姆定律测量电阻,体验物理规律在解决实际问题中的意义。
认真完成实验,养成做事严谨的科学态度。
在与小组成员合作完成实验过程中,加强与他人的协同、合作能力。
教学重点:根据欧姆定律测导体电阻。
教学难点:实验电路的设计,实验数据的处理,实验误差的来源。
课前准备:电流表、电压表、开关、电池组(3V)、待测电阻教学过程:一、创设情景----提出问题老师:现在有一只小灯泡,额定电压为2.5V(即正常发光时需要加2.5V的电压),老师只有6V的电源,因此需要用1个12Ω的电阻和它串联才可安全使用。
实验员给了老师3个电阻,其中有1个是12Ω,但是没有做标记,你有办法通过实验找出这个12Ω的电阻吗?学生思考,回答:利用欧姆定律I=U/R 推出R=U/I,用电压表测出电压,电流表测出电流,计算出电阻值即可。
----找出实验原理。
二、制定计划:师:现在请大家根据刚才的想法,设计具体的实验电路,注意选择适当的实验器材,并设计出实验步骤和实验记录表格(要求10分钟内完成)。
学生进行设计,老师巡回;教师用投影仪展示学生方案(交流互动):(一)实验电路:如:图1、 图2、 图3、师生共同点评各电路优缺点,找出最佳电路方案3: 分析:图1测的是一组电压、电流值。
算出的电阻误差大。
图2通过改变电池的节数来改变电阻两端电压,操作不方便。
图3可以弥补1、2的缺陷,用滑动变阻器来调节,通过改变电路中电流,从而改变电路两端的电压,可以多测量几组对应的电压值和电流值分别算出相对应的电阻值,就可以得到多个电阻测量值,然后通过求平均值,减小测量的误差。
欧姆和欧姆定律
电学中最重要的定律之一欧姆定律,是德国物理学家欧姆(1787-1854)发现的。
欧姆从小在父亲的指导下学习数学,并在父亲的制锁作坊里练出一双巧手,这为他后来自己动手制作实验仪器进行实验研究打下了很好的基础。
1811年他毕业于埃尔兰根大学并获博士学位。
在欧姆之前,人们对电流强度、电压概念都不大明确,电阻的概念根本没有。
由于经济困难,欧姆长期担任家庭教师和中学教师,因一直忙于教学工作,他几乎没有机会跟那个时代的伟大物理学家接触。
工作之余,在极其艰苦条件下自己动手设计和制造仪器来进行实验研究。
他独创地应用库仑的方法制造了电流扭力秤,用来测量电流强度,引入和定义了电动势、电流强度和电阻的精确概念。
他受热传导研究的启发,对电流的流动和热量的流动进行科学类比,以找出相似的规律。
并通过大量实验对电路中电流、电压、电阻的关系进行了仔细的研究,终于在1826年导出了以他的名字命名的欧姆定律。
然而这一欧姆为之付出了十年心血的研究成果公布后,并没有引起科学界的重视,反而受到一些人的怀疑甚至攻击。
在德国只有少数科学家承认欧姆定律,其中有位叫施威格的给了欧姆很大支持,为欧姆发表论文,并写信给欧姆:“请你相信,在乌云和尘埃后面的真理之光最终会透射出来,并含笑驱散它们。
”然而真正“驱散乌云和尘埃”的“风暴”来自英国。
英国皇家学会1841年授予欧姆以科普利奖章,这是当时科学界的最高荣誉。
从此欧姆的工作才得到了普遍的承认。
为了纪念这位科学家,以他的名字命名了欧姆定律和电阻的单位。