高一数学几何第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征
- 格式:ppt
- 大小:3.44 MB
- 文档页数:29
第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征考点学习目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象旋转体中的计算问题会根据旋转体的几何体特征进行相关运算直观想象、数学运算问题导学预习教材P101-P104的内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体■名师点拨(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概念轴:圆锥的轴底面:圆锥的底面和截面侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径■名师点拨(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.判断(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.()(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)半圆绕其直径所在直线旋转一周形成球.()(4)圆柱、圆锥、圆台的底面都是圆面.()答案:(1)×(2)×(3)×(4)√下列几何体中不是旋转体的是()解析:选D.由旋转体的概念可知,选项D不是旋转体.过圆锥的轴作截面,则截面形状一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形答案:B可以旋转得到如图的图形的是()解析:选A.题图所示几何体上面是圆锥,下面是圆台,故平面图形应是由一个直角三角形和一个直角梯形构成.指出图中的几何体是由哪些简单几何体构成的.解:①是由一个圆锥和一个圆柱组合而成的;②是由一个圆柱和两个圆台组合而成的;③是由一个三棱柱和一个四棱柱组合而成的.圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(3)到定点的距离等于定长的点的集合是球.解:(1)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(2)正确.(3)错误.应为球面.简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】 A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解:(1)以AB边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.旋转体中的计算问题如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.【解】设圆台的母线长为l cm,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO作截面,如图所示,则△SO′A′∽△SOA,SA′=3 cm.所以SA ′SA =O ′A ′OA ,所以33+l =r 4r =14.解得l =9,即圆台O ′O 的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.[注意] 在研究与截面有关的问题时,要注意截面与物体的相对位置的变化.由于相对位置的改变,截面的形状也会随之发生变化.1.已知一个圆台的上、下底面半径分别是1 cm ,2 cm ,截得圆台的圆锥的母线长为12 cm ,则圆台的母线长为________.解析:如图是圆台的轴截面,由题意知AO =2 cm ,A ′O ′=1 cm ,SA =12 cm.由A ′O ′AO =SA ′SA ,得SA ′=A ′O ′AO ·SA =12×12=6(cm).所以AA ′=SA -SA ′=12-6=6(cm).所以圆台的母线长为6 cm.答案:6 cm2.轴截面是直角三角形的圆锥的底面半径为r ,则其轴截面面积为________. 解析:由圆锥的结构特征可知,轴截面为等腰直角三角形,其高为r ,所以S =12×2r 2=r 2.答案:r 21.如图所示的图形中有( )A .圆柱、圆锥、圆台和球B .圆柱、球和圆锥C .球、圆柱和圆台D .棱柱、棱锥、圆锥和球解析:选B.根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.2.用一个平面去截一个几何体,得到的截面是圆面,则这个几何体不可能是() A.圆锥B.圆柱C.球D.棱柱答案:D3.下列说法中正确的是________.①连接圆柱上、下底面圆周上两点的线段是圆柱的母线;②圆锥截去一个小圆锥后剩余部分是圆台;③通过圆台侧面上一点,有无数条母线.解析:①错误,连接圆柱上、下底面圆周上两点的线段不一定与圆柱的轴平行,所以①不正确.③错误,通过圆台侧面上一点,只有一条母线.答案:②4.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高h为________cm.解析:h=20cos 30°=20×32=103(cm).答案:10 35.如图所示,将等腰梯形ABCD绕其底边所在直线旋转一周,可得到怎样的空间几何体?该几何体有什么特点?解:若将等腰梯形ABCD绕其下底BC所在的直线旋转一周,所得几何体可以看作是以AD为母线,BC所在的直线为轴的圆柱和两个分别以AB,CD为母线的圆锥组成的几何体,如图(1)所示.若将等腰梯形ABCD绕其上底AD所在的直线旋转一周,所得几何体可以看作是以BC 为母线,AD所在的直线为轴的圆柱中两底分别挖去以AB,CD为母线的两个圆锥得到的几何体,如图(2)所示.[A基础达标]1.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:选D.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周,如图,钝角△ABC中,AB边最小,以AB为轴,其他两边旋转一周,得到的几何体是一个圆锥挖去一个同底的小圆锥.故选D.2.如图所示的组合体的结构特征是()A.一个棱柱中截去一个棱柱B.一个棱柱中截去一个圆柱C.一个棱柱中截去一个棱锥D.一个棱柱中截去一个棱台解析:选C.如题图,可看成是四棱柱截去一个角,即截去一个三棱锥后得到的简单组合体,故为一个棱柱中截去一个棱锥所得.3.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由2个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余各面均为三角形解析:选D.该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.故D说法不正确.4.如图,将阴影部分图形绕图示直线l旋转一周所得的几何体是()A.圆锥B.圆锥和球组成的简单组合体C.球D.一个圆锥内部挖去一个球后组成的简单组合体答案:D5.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A.①②B.①③C.④D.①⑤解析:选D.一个圆柱挖去一个圆锥,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.6.如图所示的组合体的结构特征有以下几种说法:①由一个长方体割去一个四棱柱构成.②由一个长方体与两个四棱柱组合而成.③由一个长方体挖去一个四棱台构成.④由一个长方体与两个四棱台组合而成.其中正确说法的序号是__________.解析:该组合体可以看作是由一个长方体割去一个四棱柱构成的,也可以看作是由一个长方体与两个四棱柱组合而成的.答案:①②7.若母线长是4的圆锥的轴截面的面积是8,则该圆锥的高是________.解析:设圆锥的底面半径为r,则圆锥的高h=42-r2.·2r·h=r42-r2=8,所以r2=8,所以h=2 2.由题意可知12答案:2 28.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C .在Rt △ABC 中,AC =12 cm ,BC =8-3=5 (cm).所以AB=122+52=13(cm). 答案:13 9.指出图中的三个几何体分别是由哪些简单几何体组成的.解:(1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成.(2)几何体由一个六棱柱和一个圆柱拼接而成.(3)几何体由一个球和一个圆柱中挖去一个以圆柱下底面为底面、上底面圆心为顶点的圆锥拼接而成.10.一个圆锥的高为2 cm ,母线与轴的夹角为30°,求圆锥的母线长及圆锥的轴截面的面积.解:如图轴截面SAB ,圆锥SO 的底面直径为AB ,SO 为高,SA 为母线,则∠ASO =30°.在Rt △SOA 中,AO =SO ·tan 30°=233(cm). SA =SO cos 30°=232=433(cm). 所以S △ASB =12SO ·2AO =433(cm 2). 所以圆锥的母线长为433cm ,圆锥的轴截面的面积为433cm 2. [B 能力提升]11.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是( )A .2B .2π C.2π或4π D.π2或π4解析:选C.如图所示,设底面半径为r ,若矩形的长8恰好为卷成圆柱底面的周长,则2πr =8,所以r =4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr =4,所以r =2π.所以选C.12.某地球仪上北纬30°纬线圈的长度为12π cm ,如图所示,则该地球仪的半径是________cm.解析:如图所示,由题意知,北纬30°所在小圆的周长为12π,则该小圆的半径r =6,其中∠ABO =30°,所以该地球仪的半径R =6cos 30°= 4 3 cm.答案:4 313.圆锥底面半径为1 cm ,高为 2 cm ,其中有一个内接正方体,这个内接正方体的棱长为________cm.解析:圆锥的轴截面SEF 、正方体对角面ACC 1A 1如图.设正方体的棱长为x cm ,则AA 1=x cm ,A 1C 1=2x cm.作SO ⊥EF 于点O ,则SO = 2 cm ,OE =1 cm.因为△EAA 1∽△ESO ,所以AA 1SO =EA 1EO ,即x 2=1-22x 1. 所以x =22,即该内接正方体的棱长为22 cm. 答案:2214.一个圆台的母线长为12 cm ,两底面面积分别为4π cm 2和25π cm 2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解:(1)圆台的轴截面是等腰梯形ABCD (如图所示).由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm ,又因为腰长为12 cm ,所以高AM =122-(5-2)2=315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO 可得l -12l =25,解得l =20(cm),即截得此圆台的圆锥的母线长为20 cm. [C 拓展探究]15.如图所示,有一圆锥形粮堆,母线与底面直径构成边长为6 m 的正三角形ABC ,粮堆母线AC 的中点P 处有一只老鼠正在偷吃粮食.此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,求小猫所经过的最短路程.(结果不取近似值)解:因为△ABC 为等边三角形,所以BC =6,所以l =2π×3=6π,根据底面圆的周长等于展开后扇形的弧长,得:n π×6180=6π, 故n =180°,则∠B ′AC =90°,所以B ′P =36+9=35(m),所以小猫所经过的最短路程是3 5 m.。
第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱的结构特征(1)在圆柱中,圆柱的任意两条母线是什么关系?过两条母线的截面是怎样的图形?提示:圆柱的任意两条母线平行,过两条母线的截面是矩形.(2)在圆柱中,过轴的截面是轴截面,圆柱的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆柱的轴截面是矩形,轴截面中含有圆柱的底面圆的直径与圆柱的母线.2.圆锥的结构特征在圆锥中,过轴的截面是轴截面,圆锥的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆锥的轴截面是等腰三角形,轴截面中含有圆锥的底面圆的直径与圆锥的母线.3.圆台的结构特征经过圆台的任意两条母线作截面,截面是什么图形?提示:因为圆台的任意两条母线长度均相等,且延长后相交,故经过任意两条母线的截面是以这两条母线为腰的等腰梯形.4.球的结构特征球体与球面的区别和联系是什么?提示:区别联系球面球的表面是球面,球面是旋转形成的曲面球面是球体的表面球体球体是几何体,包括球面及其所围成的空间部分5.简单组合体定义由简单几何体组合而成的几何体构成的基本形式由简单几何体拼接而成由简单几何体截去或挖去一部分而成1.辨析记忆(对的打“√”,错的打“×”)(1)圆柱上底面圆周上任一点与下底面圆周上任一点的连线是圆柱的母线.( ×)提示:圆柱的母线与轴是平行的.(2)圆台有无数条母线,它们相等,延长后相交于一点. ( √)提示:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台,由此可知此说法正确.(3) 用一个平面去截圆锥,得到一个圆锥和一个圆台.( ×)提示:用与底面平行的平面去截圆锥,才能得到一个圆锥和一个圆台.(4) 用任意一个平面去截球,得到的是一个圆面.( √)提示:因为球是一个几何体,包括表面及其内部,所以用一个平面去截球,得到的是一个圆面.2.如图所示的图形中有( )A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球【解析】选B.根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台.3.(教材习题改编)若一个圆锥的轴截面是等边三角形,其面积为 3 ,则这个圆锥的母线长为________.【解析】如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC =34AB2,所以 3 =34AB2,所以AB=2.答案:2类型一圆柱、圆锥、圆台、球的结构特征(直观想象)1.下列说法中错误的是( )A.以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥B.以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥C.经过圆锥任意两条侧面的母线的截面是等腰三角形D.圆锥侧面的母线长有可能大于圆锥底面圆的直径2.下列说法中正确的是( )①用不过球心的截面截球,球心和截面圆心的连线垂直于截面;②球面上任意三点可能在一条直线上;③球的半径是连接球面上任意一点和球心的线段.A.①B.①②C.①③D.②③3.下列几种说法:①圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;②圆锥的顶点与底面圆周上任意一点的连线是圆锥侧面的母线;③圆柱的轴截面是过侧面的母线的截面中最大的一个;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.【解析】1.选A.A错误.如图(1)所示旋转轴是直角三角形的斜边所在直线时,得到的旋转体不是圆锥;B正确.由圆锥的定义可知此说法正确;C正确.如图(2),由圆锥侧面的母线相等可知,所得截面是等腰三角形;D正确.圆锥侧面的母线和底面圆的直径构成等腰三角形,当圆锥侧面母线和底面的直径所成的夹角大于60°时,圆锥侧面的母线长大于圆锥底面圆的直径.2.选C.由球的结构特征可知①③正确.3.由圆锥的定义及母线的性质知①②正确,圆柱的轴截面过上下底的直径,所以是过母线的截面中最大的一个.④不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.答案:①②③1.判断旋转体形状的步骤(1)明确旋转轴l.(2)确定平面图形中各边(通常是线段)与l的位置关系.(3)依据圆柱、圆锥、圆台、球的定义和一些结论来确定形状.2.与简单旋转体的截面有关的结论(1)圆柱、圆锥、圆台平行于底面的截面都是圆面.(2) 圆柱、圆锥、圆台的轴截面(即过旋转轴的截面)分别是矩形、等腰三角形、等腰梯形.【补偿训练】下列说法正确的是________.(填序号)①一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;②圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;③到定点的距离等于定长的点的集合是球.【解析】①错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.②正确.③错,应为球面.答案:②类型二简单组合体的结构特征(直观想象)【典例】如图(1)、(2)所示的图形绕虚线旋转一周后形成的几何体分别是由哪些简单几何体组成的?【思路导引】依据简单旋转体的结构特征从上到下逐一分析.【解析】旋转后的图形如图所示.其中图(1)是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图(2)是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.由旋转体组成的简单几何体的确定(1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力,或亲自动手做出平面图形的模型来分析旋转体的形状.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是_______.【解析】由圆锥的定义知是两个同底的圆锥形成的组合体.类型三旋转体中的计算问题(直观想象、数学运算)角度1 有关圆柱、圆锥、圆台和球的计算问题【典例】(2021·新高考I卷)已知圆锥的底面半径为 2 ,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 2 C.4 D.4 2【解析】选B.设母线长为l,则底面周长为2 2 π,其侧面展开图半周长为πl,故πl=2 2 π,所以l=2 2 .角度2 旋转体表面的两点间的距离最大(小)值【典例】如图,圆台侧面的母线AB的长为20 cm,上、下底面的半径分别为5 cm,10 cm,从母线AB的中点M处拉一条绳子绕圆台侧面转到B点,求这条绳子长度的最小值.【思路导引】转化为在圆台的侧面展开图中,求两个点距离最小值的问题.【解析】作出圆台的侧面展开图,如图所示,由Rt△OPA与Rt△OQB相似,得OAOA+AB=PAQB,即OAOA+20=510,解得OA =20,所以OB =40.设∠BOB ′=α,由弧BB ′的长与底面圆Q 的周长相等, 得2×10×π=π·OB ·α180°, 解得α=90°.所以在Rt △B ′OM 中, B ′M 2=OB ′2+OM 2=402+302=502,所以B ′M =50.即所求绳长的最小值为50 cm.1.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量. (2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想. 2.与圆锥有关的截面问题的解决策略 (1)画出圆锥的轴截面.(2)在轴截面中借助直角三角形或三角形的相似关系建立高、母线长、底面圆的半径长的等量关系,求解便可.1.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为( ) A .4 B .3 2 C .2 3 D .2 6【解析】选D.圆台的母线长l 、高h 和上、下两底面圆的半径r ,R 满足关系式l 2=h 2+(R -r)2,求得h =2 6 ,即两底面之间的距离为2 6 .2.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M. (1)若OA =1,求圆M 的面积;(2)若圆M 的面积为3π,求OA. 【解析】(1)若OA =1,则OM =12 ,故圆M 的半径r =OA 2-OM 2 =12-⎝ ⎛⎭⎪⎫122=32 ,所以圆M 的面积S =πr 2=34π.(2)因为圆M 的面积为3π,所以圆M 的半径r = 3 , 则OA 2=⎝ ⎛⎭⎪⎫OA 2 2+3,所以34 OA 2=3,所以OA 2=4,所以OA =2.。
1.1.2 简单组合体的结构特征整体设计教学分析立体几何是研究现实世界中物体的形状、大小与位置关系的学科,只有把我们周围的物体形状正确迅速分解开,才能清醒地认识几何学,为后续学习打下坚实的基础.简单几何体(柱体、锥体、台体和球)是构成简单组合体的基本元素.本节教材主要是为了让学生在学习了柱、锥、台、球的基础上,运用它们的结构特征来描述简单组合体的结构特征.三维目标1.掌握简单组合体的概念,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会通过建立几何模型来研究空间图形,培养学生的数学建模思想.重点难点描述简单组合体的结构特征.课时安排1课时教学过程导入新课思路1.在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师指出课题:简单几何体的结构特征.思路2.现实世界中的物体表示的几何体,除柱体、锥体、台体和球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体,这节课学习的课题是:简单几何体的结构特征.推进新课新知探究提出问题①请指出下列几何体是由哪些简单几何体组合而成的.图1②观察图1,结合生活实际经验,简单组合体有几种组合形式?③请你总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?活动:让学生仔细观察图1,教师适当时候再提示.①略.②图1中的三个组合体分别代表了不同形式.③学生可以分组讨论,教师可以制作有关模型展示.讨论结果:①由简单几何体组合而成的几何体叫做简单组合体.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.②常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.③常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的对角线是球的直径;2°一球与正方体的所有棱相切,则正方体每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.应用示例思路1例1 请描述如图2所示的组合体的结构特征.图2活动:回顾简单几何体的结构特征,再将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.点评:本题主要考查简单组合体的结构特征和空间想象能力.变式训练如图3所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.图3答案:一个大球内部挖去一个同球心且半径较小的球.例2 连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.活动:先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形如图4(1),再作出判断.(1) (2)图4解:如图4(1),正方体ABCD—A1B1C1D1,O1、O2、O3、O4、O5、O6分别是各表面的中心.由点O1、O2、O3、O4、O5、O6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图4(2)所示.点评:本题中的八面体,事实上是正八面体——八个面都是全等的正三角形,并且以每个顶点为其一端,都有相同数目的棱.由图还可见,该八面体可看成是由两个全等的四棱锥经重合底面后而得到的,而且中间一个四边形O2O3O4O5还是正方形,当然其他的如O1O2O6O4等也是正方形.为了增强立体效果,正方体应画得“正”些,而八面体的放置应稍许“倾斜”些,并且“后面的”线,即被前面平面所遮住的线,如图中的O1O5、O6O5、O5O2、O5O4应画成虚线. 变式训练连接上述所得的几何体的相邻各面的中心,试问所得的几何体又是几面体?答案:六面体(正方体).思路2例1 已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图5 图6活动:让学生思考AB、AD、DC与旋转轴BC是否垂直,以此确定所得几何体的结构特征.解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.点评:本题主要考查空间想象能力以及旋转体、简单组合体.变式训练如图7所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图7 图8答案:如图8所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体. 例2 如图9(1)、(2)所示的两个组合体有什么区别?图9活动:让学生分组讨论和思考,教师及时点拨和评价学生.解:图9(1)所示的组合体是一个长方体上面又放置了一个圆柱,也就是一个长方体和一个圆柱拼接成的组合体;而图9(2)所示的组合体是一个长方体中挖去了一个圆柱剩余部分构成的组合体.点评:考查空间想象能力和组合体的概念.变式训练如图10,说出下列物体可以近似地看作由哪几种几何体组成?图10答案:图10(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图10(2)中的螺帽可以近似看作是一个正六棱柱中挖掉一个圆柱构成的组合体.知能训练1.(2005湖南数学竞赛,9)若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是()A.64B.66C.68D.70分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数.答案:B2.图11是一个奖杯,可以近似地看作由哪几种几何体组成?图11答案:奖杯的底座是一个正棱台,底座的上面是一个正四棱柱,奖杯的最上部,在正棱柱上底面的中心放着一个球.拓展提升1.请想一想正方体的截面可能是什么形状的图形?活动:静止是相对的,运动是绝对的,点动成线,线动成面.用运动的观点看几何问题的形成,容易建立空间想象力,这样对于分割和组合图形是有好处的.明确棱柱、棱锥、棱台等多面体的定义及圆柱、圆锥、圆台的生成过程,以及柱、锥、台的相互关系,对于我们正确的割补图形也是有好处的.对于正方体的分割,可通过实物模型,实际切割实验,还可借助于多媒体手段进行切割实验.对于切割所得的平面图形可根据它的定义进行证明,从而判断出各个截面的形状.探究:本题考查立体几何的空间想象能力,通过尝试、归纳,可以有如下各种肯定或否定性的答案:(1)截面可以是三角形:等边三角形、等腰三角形、一般三角形.(2)截面三角形是锐角三角形,截面三角形不能是直角三角形、钝角三角形.(3)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形至少有一组对边平行.(4)截面不能是直角梯形.(5)截面可以是五边形:截面五边形必须有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形.(6)截面可以是六边形:截面六边形必须有分别平行的边,同时有两个角相等.(7)截面六边形可以是等角(均为120°)的六边形,即正六边形.截面图形如图12中各图所示:图12课堂小结本节课学习了简单组合体的概念和结构特征. 作业习题1.1 A组第3题;B组第2题.。
圆柱、圆锥、圆台、球及简单组合体的结构特征[学习目标] 1.认识圆柱、圆锥、圆台、球的结构特征.2.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.知识点一圆柱的结构特征1.定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱.2.相关概念(图1).3.表示法:圆柱用表示它的轴的字母表示,图中圆柱表示为圆柱O′O.思考圆柱的母线有多少条?它们之间有什么关系?答圆柱的母线有无数条;相互平行.知识点二圆锥的结构特征1.定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.2.相关概念(图2).3.表示法:圆锥用表示它的轴的字母表示,图中圆锥表示为圆锥SO.思考圆锥过轴的截面叫做轴截面,那么圆锥的轴截面是什么形状?答等腰三角形.知识点三圆台的结构特征1.定义:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.2.相关概念(图3).3.表示法:圆台用表示轴的字母表示,图中圆台表示为圆台OO′.思考圆台的两条母线所在的直线一定相交吗?答一定.由于圆台是由圆锥截得的,故两条母线所在的直线一定相交.知识点四球的结构特征1.定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.2.相关概念(图4).3.表示法:球常用表示球心的字母表示,图中的球表示为球O.思考球能否由圆面旋转而成?答能.圆面以直径所在的直线为旋转轴,旋转半周形成的旋转体即为球.知识点五简单组合体1.概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.2.基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.题型一旋转体的结构特征例1判断下列各命题是否正确:(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)到定点的距离等于定长的点的集合是球.解(1)错.由圆柱母线的定义知,圆柱的母线应平行于轴.(2)错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(3)正确.(4)错.应为球面.跟踪训练1下列命题正确的是________.(只填序号)①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转180°形成的曲面围成的几何体是圆锥;⑤球面上四个不同的点一定不在同一平面内;⑥球的半径是球面上任意一点和球心的连线段;⑦球面上任意三点可能在一条直线上;⑧用一个平面去截球,得到的截面是一个圆面.答案④⑥⑧解析①以直角三角形的一条直角边所在直线为轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的一腰所在直线为轴旋转一周才可以得到圆台;③它们的底面为圆面;④正确;作球的一个截面,在截面的圆周上任意取四个不同的点,则这四点就在球面上,故⑤错误;根据球的半径定义,知⑥正确;球面上任意三点一定不共线,故⑦错误;用一个平面去截球,一定截得一个圆面,故⑧正确.题型二简单组合体的结构特征例2如图(1)、(2)所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?解旋转后的图形如图所示.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.跟踪训练2已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解(1)以AB边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC边所在的直线为轴旋转所得旋转体是一组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD边所在的直线为轴旋转得到一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.题型三有关几何体的计算问题例3如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.解设圆台的母线长为l cm,由截得圆台上、下底面面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r,4r.过轴SO作截面,如图所示.则△SO′A′∽△SOA,SA′=3 cm.∴SA ′SA =O ′A ′OA . ∴33+l =r 4r =14. 解得l =9(cm), 即圆台的母线长为9 cm.跟踪训练3 圆台的上、下底面半径分别为5 cm,10 cm ,母线长AB =20 cm ,从圆台母线AB 的中点M 拉一条绳子绕圆台侧面转到点A ,求: (1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离.解 (1)如图所示,将侧面展开,绳子的最短距离为侧面展开图中AM 的长度,θ=10-520×360°=90°.设OB ′=L ′, 则5L ′·360°=90°,L ′=20 cm. ∴OA =40 cm ,OM =30 cm. ∴AM =OA 2+OM 2=50 cm. 即绳子最短长度为50 cm.(2)作OQ ⊥AM 于点Q ,交弧BB ′于点P , 则PQ 为所求的最短距离. ∵OA ·OM =AM ·OQ , ∴OQ =24 cm.故PQ =OQ -OP =24-20=4(cm),即上底圆周上的点到绳子的最短距离为4 cm.1.下列几何体是台体的是( )2.给出下列说法:①直线绕直线旋转形成柱面;②曲线平移一定形成曲面;③直角梯形绕一边旋转形成圆台;④半圆绕直径所在直线旋转一周形成球.其中正确的个数为()A.1B.2C.3D.03.向高为H的水瓶中以恒定的速度注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是()4.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为________cm.5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为_______.一、选择题1.用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是()A.圆柱B.圆台C.球体D.棱台2.过球面上任意两点A、B作大圆,可能的个数是()A.有且只有一个B.一个或无穷多个C.无数个D.以上均不正确3.一个正方体内接于一个球,过球心作一截面,则截面可能的图形是()A.①③B.②④C.①②③D.②③④4.一平面截球O得到半径为 5 cm的圆面,球心到这个平面的距离是2 cm,则球的半径是()A.9 cmB.3 cmC.1 cmD.2 cm5.过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°,则该截面的面积是()A.πB.2πC.3πD.23π6.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是()A.4B.3C.2D.0.57.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的()二、填空题8.若母线长是4的圆锥的轴截面的面积是8,则该圆锥的高是________.9.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列图形中的______.(填序号)10.一个无盖的正方体盒子展开后的平面图如图所示,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=________.11.在半径为13的球面上有A、B、C三点,其中AC=6,BC=8,AB=10,则球心到经过这三个点的截面的距离为________.三、解答题12.圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.13.如图所示,已知圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.求:(1)绳子的最短长度的平方f(x);(2)绳子最短时,顶点到绳子的最短距离;(3)f(x)的最大值.当堂检测答案1.答案 D解析 台体包括棱台和圆台两种,A 的错误在于四条侧棱没有交于一点,B 的错误在于截面与圆锥底面不平行.C 是棱锥,结合棱台和圆台的定义可知D 正确. 2.答案 A解析 ①错,当两直线相交时,不能形成柱面;②错,也可能形成平面;③错,若绕底边旋转,则形成组合体;④根据球的定义知正确. 3.答案 B解析 令h =H2,由图象知此时注水体积大于几何体体积的一半,所以B 正确.4.答案 10 3解析 h =20cos 30°=10 3 (cm). 5.答案 2解析 如图所示,设等边三角形ABC 为圆锥的轴截面,由题意知圆锥的母线长即为△ABC 的边长,且S △ABC =34AB 2,∴3=34AB 2,∴AB =2.故正确答案为2.课时精练答案一、选择题 1.答案 D解析 圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱),不可能截出三角形.只有棱台可以截出三角形,故选D. 2.答案 B解析 当过A ,B 的直线经过球心时,经过A ,B 的截面所得的圆都是球的大圆,这时过A ,B 作球的大圆有无数个;当直线AB 不经过球心O 时,经过A ,B ,O 的截面就是一个大圆,这时只能作出一个大圆. 3.答案 C解析 当截面平行于正方体的一个侧面时得③,当截面过正方体的体对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能截出④. 4.答案 B解析 设球的半径为R .根据勾股定理,有R =(5)2+22=3(cm).5.答案 A解析 如图,可知∠OAO ′=60°,∴O ′A =12OA =1,即截面圆的半径是1,则该截面的面积是π. 6.答案 B解析 如图所示,∵两个平行截面的面积分别为5π、8π,∴两个截面圆的半径分别为r 1=5,r 2=2 2.∵球心到两个截面的距离d 1=R 2-r 21,d 2=R 2-r 22,∴d 1-d 2=R 2-5-R 2-8=1,∴R 2=9,∴R =3. 7.答案 B解析 由组合体的结构特征知,球只与正方体的上、下底面相切,而与两侧棱相离,故正确答案为B. 二、填空题 8.答案 2 2解析 设圆锥的底面半径为r ,则圆锥的高h =42-r 2. ∴由题意可知12·2r ·h =r 42-r 2=8,∴r 2=8,∴h =2 2. 9.答案 ③解析 易知截面是一个非等边的等腰三角形,排除①④;等腰三角形的底边是正三棱锥的一条棱,这条棱不可能与内切球有交点,所以排除②;而等腰三角形的两条腰正好是正三棱锥两个面的中线,且经过内切球在两个面上的切点,所以正确答案是③. 10.答案 90°解析 如图所示,将平面图折成正方体.很明显点A ,B ,C 是上底面正方形的三个顶点,则∠ABC =90°.11.答案 12解析 由线段的长度知△ABC 是以AB 为斜边的直角三角形,所以其外接圆的半径r =AB 2=5,所以d =R 2-r 2=12.11 三、解答题12.解 将圆台还原为圆锥,如图所示.O 2,O 1,O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2,则⎩⎨⎧ h +h 1h =49+121,h +h 1+h 2h =491,所以⎩⎪⎨⎪⎧h 1=4h ,h 2=2h , 即h 1∶h 2=2∶1.13.解 将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,∴L =2πr =2π.∴∠ASM =L 2πl ×360°=2π2π×4×360°=90°. (1)由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4). f (x )=AM 2=x 2+16(0≤x ≤4).(2)绳子最短时,在展开图中作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,在△SAM 中,∵S △SAM =12SA ·SM =12AM ·SR , ∴SR =SA ·SM AM =4x x 2+16(0≤x ≤4), 即绳子最短时,顶点到绳子的最短距离为4x x 2+16(0≤x ≤4). (3)∵f (x )=x 2+16(0≤x ≤4)是增函数,∴f(x )的最大值为f (4)=32.。
圆柱、圆锥、圆台、球的结构特征与简单组合体的结构特征【知识梳理】1.旋转体由简单几何体组合而成的几何体叫做简单组合体.3.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.【常考题型】题型一、旋转体的结构特征【例1】给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径,其中正确说法的序号是________.[解析](1)不正确,因为当直角三角形绕斜边所在直线旋转得到的旋转体就不是圆锥,而是两个同底圆锥的组合体;(2)正确,以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)正确,如图所示,经过圆锥任意两条母线的截面是等腰三角形;(4)正确,如图所示,圆锥侧面的母线长有可能大于圆锥底面圆半径的2倍(即直径).[答案](2)(3)(4)【类题通法】1.判断简单旋转体结构特征的方法(1)明确由哪个平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.【对点训练】1.给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.解析:(1)正确,圆柱的底面是圆面;(2)正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长相交于一点;(4)不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.答案:(1)(2)题型二、简单组合体【例2】观察下列几何体的结构特点,完成以下问题:(1)图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①;(2)图②所示几何体结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②;(3)图③所示几何体是由哪些简单几何体构成的?并说明该几何体的面数、棱数、顶点数.[解析](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.【类题通法】1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.【对点训练】2.下列组合体是由哪些几何体组成的?解:(1)由两个几何体组合而成,分别为球、圆柱.(2)由三个几何体组合而成,分别为圆柱、圆台、圆柱.(3)由三个几何体组合而成,分别为圆锥、圆柱、圆台.【练习反馈】1.圆锥的母线有()A.1条B.2条C.3条D.无数条答案:D2.右图是由哪个平面图形旋转得到的()解析:选A图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.3.等腰三角形绕底边上的高所在直线旋转180°,所得几何体是________.答案:圆锥4.如图所示的组合体的结构特征为________.解析:该组合体上面是一个四棱锥,下面是一个四棱柱,因此该组合体的结构特征是四棱锥和四棱柱的一个组合体.答案:一个四棱锥和一个四棱柱的组合体5.如图,AB为圆弧BC所在圆的直径,∠BAC=45°.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.解:如图所示,这个组合体是由一个圆锥和一个半球体拼接而成的.。