利用坐标计算数量积
- 格式:docx
- 大小:29.51 KB
- 文档页数:3
向量的数量积的坐标运算的推导
向量的数量积是两个向量之间的一种运算,它表示这两个向量之间的夹角和它们长度的乘积。
在向量的数量积中,有一种常见的运算方式是坐标运算,它可以将向量的数量积表示为各个坐标的乘积之和。
在进行向量的数量积的坐标运算之前,需要先了解向量的基本概念,包括向量的表示、向量的坐标、向量的长度和向量的夹角等。
向量的表示可以使用有向线段或箭头表示,向量的坐标则可以表示为一个有序数对(x,y),其中x和y分别表示向量在x轴和y轴上的投影长度。
向量的长度可以通过勾股定理求出,而向量的夹角则可以使用余弦定理求解。
在进行向量的数量积的坐标运算时,需要将两个向量的坐标进行分别相乘,并将结果相加,即:
向量a·向量b = a1b1 + a2b2 + a3b3
其中,a1、a2、a3分别表示向量a在x、y、z轴上的投影长度,b1、b2、b3分别表示向量b在x、y、z轴上的投影长度。
在进行向量的数量积的坐标运算时,需要注意向量的顺序,即a在前,b 在后。
通过以上的推导,我们可以得出向量的数量积的坐标运算的公式,使得我们在进行向量的数量积运算时更加方便。
同时,这也是数学中一个重要的概念,在物理、工程等领域中经常使用到。
- 1 -。
数量积和向量积的公式
数量积AB=ac+bd
向量积要利用行列式
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
则向量a·向量b=a1a2+b1b2+c1c2
向量a×向量b= |i j k| |a1 b1 c1| |a2 b2 c2| =(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
i、j、k分别为空间中相互垂直的三条坐标轴的单位向量【数量积】
也称为标量积、点积、点乘,是接受在实数R上的两个矢量并返回一个实数值标量的二元运算。
它是欧几里得空间的标准内积。
【坐标表示】
已知两个非零向量a=(x1,y1),b=(x2,y2),则有a·b=x1x2+y1y2,即两个向量的数量积等于它们对应坐标的乘积的和。
【向量积】
数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。
与点积不同,它的运算结果是一个向量而不是一个标量。
并且两个向量的叉积与这两个向量和垂直。
【性质】
叉积的长度| a×b| 可以解释成这两个叉乘向量a, b共起点时,所构成平行四边形的面积。
据此有:混合积[ a b c] = ( a×b)·c可以得到以a,b,c为棱的平行六面体的体积。
向量数量积的坐标运算与度量公式1.向量数量积及向量垂直的坐标表示设a=(a1,a2),b=(b1,b2)(1)数量积a·b=a1b1+a2b2.(2)若a,b为非零向量,a⊥b⇔a1b1+a2b2=0.[点睛]记忆口诀:数量积的坐标表示可简记为“对应相乘计算和”.2.三个重要公式(1)向量的长度公式:已知a=(a1,a2),则|a|=a21+a22.(2)两点间的距离公式:A(x1,y1),B(x2,y2),则|AB|=(x2-x1)2+(y2-y1)2.(3)向量的夹角公式:a=(a1,a2),b=(b1,b2),则cos〈a,b〉=a1b1+a2b2a21+a22b21+b22.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)向量的模等于向量坐标的平方和.()(2)若a=(a1,a2),b=(b1,b2),则a⊥b⇔a1b1+a2b2=0.()(3)若两个非零向量的夹角θ满足cos θ<0,则两向量的夹角θ一定是钝角.()答案:(1)×(2)×(3)×2.已知a=(-3,4),b=(5,2),则a·b的值是() A.23B.7C.-23D.-7答案:D3.已知向量a =(x -5,3),b =(2,x ),且a ⊥b ,则由x 的值构成的集合是( )A .{2,3}B .{-1,6}C .{2}D .{6} 答案:C4.已知a =(1,3),b =(-2,0),则|a +b |=________. 答案:2[典例] (1)(全国卷Ⅱ)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( )A .-1B .0C .1D .2(2)(广东高考)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB =(1,-2),AD =(2,1),则AD ·AC =( ) A .5 B .4 C .3D .2[解析] (1)a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1.(2)由AC =AB +AD =(1,-2)+(2,1)=(3,-1),得AD ·AC =(2,1)·(3,-1)=5.[答案](1)C(2)A数量积坐标运算的两条途径进行向量的数量积运算,前提是牢记有关的运算法则和运算性质.解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.[活学活用]已知向量a与b同向,b=(1,2),a·b=10.(1)求向量a的坐标;(2)若c=(2,-1),求(b·c)·a.解:(1)因为a与b同向,又b=(1,2),所以a=λb=(λ,2λ).又a·b=10,所以1·λ+2·2λ=10,解得λ=2>0.因为λ=2符合a与b同向的条件,所以a=(2,4).(2)因为b·c=1×2+2×(-1)=0,所以(b·c)·a=0·a=0.向量的模的问题[典例](1)),c=(2,-4),且a⊥c,b∥c,则|a+b|=()A. 5B.10 C .2 5D .10(2)已知点A (1,-2),若向量 AB 与a =(2,3)同向,|AB |=213,则点B 的坐标是________.[解析] (1)由⎩⎪⎨⎪⎧ a ⊥c ,b ∥c ⇒⎩⎪⎨⎪⎧ 2x -4=0,2y +4=0⇒⎩⎪⎨⎪⎧x =2,y =-2.∴a =(2,1),b =(1,-2),a +b =(3,-1). ∴|a +b |=10.(2)由题意可设AB =λa (λ>0), ∴ AB =(2λ,3λ).又|AB |=213,∴(2λ)2+(3λ)2=(213)2,解得λ=2或-2(舍去).∴AB =(4,6).又A (1,-2),∴B (5,4).[答案] (1)B (2)(5,4)求向量的模的两种基本策略(1)字母表示下的运算:利用|a |2=a 2,将向量的模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算:若a =(x ,y ),则a ·a =a 2=|a |2=x 2+y 2,于是有|a |=x 2+y 2.[活学活用]1.已知向量a =(cos θ,sin θ),向量b =(3,0),则|2a -b |的最大值为________.解析:2a-b=(2cos θ-3,2sin θ),|2a-b|=(2cos θ-3)2+(2sin θ)2=4cos2θ-43cos θ+3+4sin2θ=7-43cos θ,当且仅当cos θ=-1时,|2a-b|取最大值2+ 3.答案:2+ 32.已知平面向量a=(2,4),b=(-1,2),若c=a-(a·b)b,则|c|=________.解析:∵a=(2,4),b=(-1,2),∴a·b=2×(-1)+4×2=6,∴c =a-(a·b)b=(2,4)-6(-1,2)=(2,4)-(-6,12)=(8,-8),∴|c|=82+(-8)2=8 2.答案:8 2[典例](1)已知a=(3,2),b=(-1,2),(a+λb)⊥b,则实数λ=________.(2)已知a=(2,1),b=(-1,-1),c=a+kb,d=a+b,c与d的夹角为π4,则实数k的值为________.[解析](1)∵a=(3,2),b=(-1,2),∴a +λb =(3-λ,2+2λ). 又∵(a +λb )⊥b , ∴(a +λb )·b =0,即(3-λ)×(-1)+2×(2+2λ)=0, 解得λ=-15.(2)c =a +kb =(2-k,1-k ),d =a +b =(1,0), 由cos π4=22得(2-k )×1+(1-k )×0(2-k )2+(1-k )2·12+02=22, ∴(2-k )2=(k -1)2,∴k =32.[答案] (1)-15 (2)32解决向量夹角问题的方法及注意事项(1)先利用平面向量的坐标表示求出这两个向量的数量积a ·b 以及|a ||b |,再由cos θ=a ·b|a ||b |求出cos θ,也可由坐标表示cos θ=a 1b 1+a 2b 2a 21+a 22 b 21+b 22直接求出cos θ.由三角函数值cos θ求角θ时,应注意角θ的取值范围是0≤θ≤π.(2)由于0≤θ≤π,利用cos θ=a ·b|a ||b |来判断角θ时,要注意cos θ<0有两种情况:一是θ是钝角,二是θ=π;cos θ>0也有两种情况:一是θ为锐角,二是θ=0.[活学活用]已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且a ∥b ,a ⊥c . (1)求b 与c ;(2)若m =2a -b ,n =a +c ,求向量m ,n 的夹角的大小. 解:(1)∵a ∥b ,∴3x =4×9,∴x =12. ∵a ⊥c ,∴3×4+4y =0,∴y =-3, ∴b =(9,12),c =(4,-3).(2)m =2a -b =(6,8)-(9,12)=(-3,-4), n =a +c =(3,4)+(4,-3)=(7,1). 设m ,n 的夹角为θ,则cos θ=m ·n|m ||n |=-3×7+(-4)×1(-3)2+(-4)272+12=-25252=-22.∵θ∈[0,π],∴θ=3π4,即m ,n 的夹角为3π4.[典例] 已知点A ,B ,C 满足|AB |=3,| BC |=4,| CA |=5,求AB ·BC + BC · CA + CA ·AB 的值. [解] [法一 定义法]如图,根据题意可得△ABC 为直角三角形,且B =π2,cos A =35,cos C =45,∴ AB ·BC + BC · CA + CA ·AB = BC · CA + CA ·AB =4×5cos(π-C )+5×3cos(π-A ) =-20cos C -15cos A =-20×45-15×35=-25.[法二 坐标法]如图,建立平面直角坐标系, 则A (3,0),B (0,0),C (0,4).∴AB =(-3,0), BC =(0,4), CA =(3,-4).∴ AB · BC =-3×0+0×4=0, BC · CA =0×3+4×(-4)=-16, CA ·AB =3×(-3)+(-4)×0=-9. ∴ AB ·BC + BC · CA + CA · AB =0-16-9=-25. [法三 转化法]∵|AB |=3,| BC |=4,| AC |=5,∴AB ⊥BC ,∴ AB ·BC =0, ∴ AB · BC + BC · CA + CA · AB = CA ·(AB + BC )= CA ·AC =-| AC |=-25.[活学活用]如果正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,那么cos ∠DOE 的值为________.解析:法一:以O 为坐标原点,OA ,OC 所在的直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,则由已知条件,可得 OD =⎝ ⎛⎭⎪⎫1,12, OE =⎝ ⎛⎭⎪⎫12,1.故cos ∠DOE = OD · OE | OD |·| OE |=1×12+12×152×52=45.法二:∵ OD = OA +AD = OA +12OC ,OE = OC + CE = OC +12OA,∴| OD |=52,| OE |=52,OD · OE =12 OA 2+12OC 2=1,∴cos∠DOE= OD·OE|OD||OE|=45.答案:4 5层级一学业水平达标1.已知向量a=(0,-23),b=(1,3),则向量a在b方向上的投影为()A.3B.3C.- 3 D.-3解析:选D向量a在b方向上的投影为a·b|b|=-62=-3.选D.2.设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|=() A. 5 B.10C.2 5 D.10解析:选B由a⊥b得a·b=0,∴x×1+1×(-2)=0,即x=2,∴a+b=(3,-1),∴|a+b|=32+(-1)2=10.3.已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=() A.-12 B.-6C.6 D.12解析:选D2a-b=(4,2)-(-1,k)=(5,2-k),由a·(2a-b)=0,得(2,1)·(5,2-k )=0,∴10+2-k =0,解得k =12.4.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( )A.865 B .-865C.1665D .-1665解析:选C 设b =(x ,y ),则2a +b =(8+x,6+y )=(3,18),所以⎩⎪⎨⎪⎧ 8+x =3,6+y =18,解得⎩⎪⎨⎪⎧x =-5,y =12,故b =(-5,12),所以cos 〈a ,b 〉=a ·b |a ||b |=1665. 5.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形解析:选A 由题设知AB =(8,-4), AC =(2,4), BC =(-6,8),∴ AB ·AC =2×8+(-4)×4=0,即AB ⊥ AC . ∴∠BAC =90°, 故△ABC 是直角三角形.6.设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a|=________.解析:a +c =(3,3m ),由(a +c )⊥b ,可得(a +c )·b =0,即3(m +1)+3m =0,解得m =-12,则a =(1,-1),故|a |= 2.答案: 2角为θ,则θ=________.解析:∵a =(1,3),2a +b =(-1,3), ∴|a |=2,|2a +b |=2,a ·(2a +b )=2, ∴cos θ=a ·(2a +b )|a ||2a +b |=12,∴θ=π3.答案:π38.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a·b =3,则向量b 的坐标为________.解析:设b =(x ,y )(y ≠0),则依题意有⎩⎪⎨⎪⎧x 2+y 2=1,3x +y =3,解得⎩⎨⎧x =12,y =32,故b =⎝ ⎛⎭⎪⎫12,32.答案:⎝ ⎛⎭⎪⎫12,329.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R. (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |. 解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1×(2x +3)+x (-x )=0,即x-2x-3=0,解得x=-1或x=3.(2)若a∥b,则1×(-x)-x(2x+3)=0,即x(2x+4)=0,解得x=0或x=-2.当x=0时,a=(1,0),b=(3,0),a-b=(-2,0),|a-b|=2.当x=-2时,a=(1,-2),b=(-1,2),a-b=(2,-4),|a-b|=4+16=2 5.综上,|a-b|=2或2 5.10.在平面直角坐标系xOy中,已知点A(1,4),B(-2,3),C(2,-1).(1)求AB·AC及|AB+AC|;(2)设实数t满足(AB-tOC)⊥OC,求t的值.解:(1)∵AB=(-3,-1),AC=(1,-5),∴AB·AC=-3×1+(-1)×(-5)=2.∵AB+AC=(-2,-6),∴|AB+AC|=4+36=210.(2)∵AB-tOC=(-3-2t,-1+t),OC=(2,-1),且(AB-tOC)⊥OC,∴(AB-tOC)·OC=0,∴(-3-2t)×2+(-1+t)·(-1)=0,∴t=-1.层级二应试能力达标1.设向量a=(1,0),b=⎝⎛⎭⎪⎫12,12,则下列结论中正确的是()C .a -b 与b 垂直D .a ∥b解析:选C 由题意知|a |=12+02=1,|b |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,a ·b =1×12+0×12=12,(a -b )·b =a ·b -|b |2=12-12=0,故a -b 与b 垂直.2.已知向量 OA =(2,2), OB =(4,1),在x 轴上有一点P ,使 AP ·BP 有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C 设P (x,0),则 AP =(x -2,-2),BP =(x -4,-1),∴ AP ·BP =(x -2)(x -4)+2=x 2-6x +10=(x -3)2+1, 故当x =3时, AP ·BP 最小,此时点P 的坐标为(3,0). 3.若a =(x,2),b =(-3,5),且a 与b 的夹角是钝角,则实数x 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,103 B.⎝ ⎛⎦⎥⎤-∞,103 C.⎝ ⎛⎭⎪⎫103,+∞ D.⎣⎢⎡⎭⎪⎫103,+∞ 解析:选C x 应满足(x,2)·(-3,5)<0且a ,b 不共线,解得x >103,且x ≠-65,∴x >103. 4.已知 OA =(-3,1), OB =(0,5),且 AC ∥ OB , BC ⊥AB (O 为坐标原点),则点C 的坐标是( )A.⎝ ⎛⎭⎪⎫-3,-294B.⎝ ⎛⎭⎪⎫-3,294C.⎝⎛⎭⎪⎫3,294 D.⎝⎛⎭⎪⎫3,-294 解析:选B 设C (x ,y ),则OC =(x ,y ). 又OA =(-3,1), ∴ AC = OC -OA =(x +3,y -1). ∵ AC ∥ OB ,∴5(x +3)-0·(y -1)=0, ∴x =-3.∵OB =(0,5), ∴ BC = OC - OB =(x ,y -5),AB = OB - OA =(3,4). ∵ BC ⊥ AB ,∴3x +4(y -5)=0,∴y =294,∴C 点的坐标是⎝ ⎛⎭⎪⎫-3,294.5.平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.解析:因为向量a =(1,2),b =(4,2),所以c =ma +b =(m +4,2m +2),所以a ·c =m +4+2(2m +2)=5m +8,b·c =4(m +4)+2(2m +2)=8m +20.因为c 与a 的夹角等于c 与b 的夹角,所以c·a |c|·|a|=c·b |c|·|b|,即a·c|a |=b·c|b |,所以5m +85=8m +2025,解得m =2. 答案:26.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE · CB 的值为______; DE ·DC 的最大值为______.解析:以D 为坐标原点,建立平面直角坐标系如图所示.则D (0,0),A (1,0),B (1,1),C (0,1), 设E (1,a )(0≤a ≤1).所以 DE ·CB =(1,a )·(1,0)=1,DE · DC =(1,a )·(0,1)=a ≤1, 故 DE · DC 的最大值为1.答案:1 17.已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|c |=25,且c ∥a ,求c 的坐标; (2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ. 解:(1)设c =(x ,y ),∵|c |=25,∴x 2+y 2=25, ∴x 2+y 2=20. 由c ∥a 和|c |=25,可得⎩⎪⎨⎪⎧1·y -2·x =0,x 2+y 2=20,解得⎩⎪⎨⎪⎧ x =2,y =4,或⎩⎪⎨⎪⎧x =-2,y =-4.故c =(2,4)或c =(-2,-4).(2)∵(a +2b )⊥(2a -b ),∴(a +2b )·(2a -b )=0, 即2a 2+3a ·b -2b 2=0,∴2×5+3a ·b -2×54=0,整理得a ·b =-52,∴cos θ=a ·b|a ||b |=-1. 又θ∈[0,π],∴θ=π.8.已知 OA =(4,0), OB =(2,23), OC =(1-λ) OA +λ OB (λ2≠λ).(1)求 OA ·OB 及 OA 在OB 上的射影的数量; (2)证明A ,B ,C 三点共线,且当AB = BC 时,求λ的值;(3)求|OC |的最小值.解:(1) OA · OB =8,设 OA 与OB 的夹角为θ,则cos θ= OA · OB | OA || OB |=84×4=12, ∴ OA 在 OB 上的射影的数量为| OA |cos θ=4×12=2.(2)AB = OB - OA =(-2,23), BC = OC - OB =(1-λ)·OA -(1-λ) OB =(λ-1)AB ,所以A ,B ,C 三点共线.当AB = BC 时,λ-1=1,所以λ=2.(3)| OC |2=(1-λ)22OA +2λ(1-λ) OA ·OB +λ22 OB =16λ2-16λ+16=16⎝ ⎛⎭⎪⎫λ-122+12, ∴当λ=12时,| OC |取到最小值,为2 3.。
平面向量数量积的坐标表示高中数学 1.掌握平面向量数量积的坐标表示,会进行平面向量数量积的坐标运算.2.能够用两个向量的坐标来解决与向量的模、夹角、垂直有关的问题.导语 同学们,前面我们学习了平面向量数量积及其性质,我们也学会了用“坐标语言”去描述向量的加法、减法、数乘运算,那么,我们能否用坐标去表示两向量的数量积呢?一、平面向量数量积的坐标表示问题 在平面直角坐标系中,设i,j分别是与x轴和y轴方向相同的两个单位向量,你能计算出i·i,j·j,i·j的值吗?若设非零向量a=(x1,y1),b=(x2,y2),你能给出a·b的值吗?提示 i·i=1,j·j=1,i·j=0.∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1j·i+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.知识梳理 设非零向量a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.例1 (1)已知a=(2,-1),b=(1,-1),则(a+2b)·(a-3b)等于( )A.10 B.-10C.3 D.-3答案 B解析 a+2b=(4,-3),a-3b=(-1,2),所以(a+2b)·(a-3b)=4×(-1)+(-3)×2=-10.(2)已知a=(1,1),b=(2,5),c=(3,x),若(8a-b)·c=30,则x等于( )A.6 B.5 C.4 D.3答案 C解析 由题意可得,8a-b=(6,3),又(8a-b)·c=30,c=(3,x),∴18+3x=30,解得x=4.反思感悟 进行数量积运算时,要正确使用公式a·b=x1x2+y1y2,并能灵活运用以下几个关系(1)|a|2=a·a.(2)(a +b )·(a -b )=|a |2-|b |2.(3)(a +b )2=|a |2+2a ·b +|b |2.跟踪训练1 已知正方形ABCD 的边长为2,E 为CD 的中点,点F 在AD 上,=2,AF → FD → 则·=________.BE → CF → 答案 23解析 建立平面直角坐标系如图所示,则A (0,2),E (2,1),D (2,2),B (0,0),C (2,0),因为=2,所以F .AF → FD → (43,2)所以=(2,1),=-(2,0)=,BE → CF → (43,2)(-23,2)所以·=(2,1)·BE → CF → (-23,2)=2×+1×2=.(-23)23二、平面向量的模知识梳理 1.若a =(x ,y ),则|a |2=x 2+y 2或|a |=.x 2+y 22.若A (x 1,y 1),B (x 2,y 2),则|AB |=.(x 2-x 1)2+(y 2-y 1)2例2 设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|3a +b |等于( )A. B.56C. D.1726答案 A解析 ∵a ∥b ,∴1×y -2×(-2)=0,解得y =-4,从而3a +b =(1,2),|3a +b |=.5反思感悟 求向量a =(x ,y )的模的常见思路及方法(1)求模问题一般转化为求模的平方,即a 2=|a |2=x 2+y 2,求模时,勿忘记开方.(2)a ·a =a 2=|a |2或|a |==,此性质可用来求向量的模,可以实现实数运算与向量a 2x 2+y 2运算的相互转化.跟踪训练2 已知向量a =(2,1),a·b =10,|a +b |=5,则|b |等于( )2A. B. C .5 D .25510答案 C解析 ∵a =(2,1),∴a 2=5,又|a +b |=5,∴(a +b )2=50,2即a 2+2a ·b +b 2=50,∴5+2×10+b 2=50,∴b 2=25,∴|b |=5.三、平面向量的夹角、垂直问题知识梳理 设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.1.cos θ==.a·b |a||b|x 1x 2+y 1y 2x 21+y 21x 2+y 22.a ⊥b ⇔x 1x 2+y 1y 2=0.注意点:(1)两向量垂直与两向量平行的坐标表示易混淆.(2)两向量夹角的余弦值大于0的夹角不一定是锐角.例3 已知a =(4,3),b =(-1,2).(1)求a 与b 夹角的余弦值;(2)若(a -λb )⊥(2a +b ),求实数λ的值.解 (1)因为a ·b =4×(-1)+3×2=2,|a |==5,|b |==,设a 与b 的夹角为θ,所以cos θ===.42+32(-1)2+225a ·b |a ||b |2552525(2)因为a -λb =(4+λ,3-2λ),2a +b =(7,8),又(a -λb )⊥(2a +b ),所以7(4+λ)+8(3-2λ)=0,解得λ=.529反思感悟 解决向量夹角问题的方法及注意事项(1)求解方法:由cos θ==直接求出cos θ.a ·b |a ||b |x 1x 2+y 1y 2x 21+y 21x 2+y 2(2)注意事项:利用三角函数值cos θ求θ的值时,应注意角θ的取值范围是0°≤θ≤180°.利用cos θ=判断θ的值时,要注意cos θ<0时,有两种情况:一是θ是钝角,二是θ为a ·b|a ||b |180°;cos θ>0时,也有两种情况:一是θ是锐角,二是θ为0°.跟踪训练3 (1)已知向量a =(1,),b =(3,m ).若向量a ,b 的夹角为,则实数m 等于( )3π6A .2 B. C .0 D .-333答案 B解析 因为a =(1,),b =(3,m ).所以|a |=2,|b |=,a ·b =3+m ,39+m 23又a ,b 的夹角为,所以=cos ,即=,所以+m =,解得m =.π6a ·b |a ||b |π63+3m 29+m 23239+m 23(2)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.答案 7解析 ∵a =(-1,2),b =(m ,1),∴a +b =(-1+m,2+1)=(m -1,3).又a +b 与a 垂直,∴(a +b )·a =0,即(m -1)×(-1)+3×2=0,解得m =7.1.知识清单:(1)平面向量数量积的坐标表示.(2)a ⊥b ⇔x 1x 2+y 1y 2=0(a ,b为非零向量).(3)cos θ=(θ为非零向量a ,b 的夹角).x 1x 2+y 1y 2x 21+y 21x 2+y 22.方法归纳:化归与转化.3.常见误区:两向量夹角的余弦公式易记错.1.若向量a =(x ,2),b =(-1,3),a·b =3,则x 等于( )A .3B .-3 C. D .-5353答案 A 解析 a·b =-x +6=3,故x =3.2.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为( )A.B. 636565C.D.13513答案 A解析 |a |==5,|b |==13.32+4252+122a·b =3×5+4×12=63.设a 与b 的夹角为θ,所以cos θ==.635×1363653.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( )A .1 B. 2C .2D .4答案 C解析 ∵(2a -b )·b =2a ·b -|b |2=2(-1+n 2)-(1+n 2)=n 2-3=0,∴n 2=3,∴|a |==2.12+n 24.已知点A (0,1),B (1,-2).向量=(4,-1),则·=________,||=________.AC → AB → AC → BC → 答案 7 13解析 =(1,-3),AB → ∴·=1×4+(-3)×(-1)=7,AB → AC → =-=(4,-1)-(1,-3)=(3,2),BC → AC → AB → ∴||==.BC → 32+2213课时对点练1.(多选)设向量a =(2,0),b =(1,1),则下列结论中正确的是( )A .|a |=b 2B .a ·b =0C .a ∥bD .(a -b )⊥b答案 AD解析 |a |=b 2=2,故A 正确,B ,C 显然错误,a -b =(1,-1),所以(a -b )·b =1-1=0,所以(a -b )⊥b .故D 正确.2.已知向量a =(x ,1),b =(1,-2),且a ⊥b ,则|a +b |等于( )A.B. 510C .2D .105答案 B解析 由题意可得a ·b =x ·1+1×(-2)=x -2=0,解得x =2.再由a +b =(x +1,-1)=(3,-1),可得|a +b |=.103.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形答案 A解析 由题设知=(8,-4),=(2,4),=(-6,8),所以·=2×8+(-4)AB → AC → BC → AB → AC → ×4=0,即⊥.所以∠BAC =90°,故△ABC 是直角三角形.AB → AC → 4.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( )A. B .2 C .4 D .1233答案 B解析 a =(2,0),|b |=1,∴|a |=2,a ·b =2×1×cos 60°=1.∴|a +2b |==2.a 2+4a ·b +4b 235.设点A (4,2),B (a ,8),C (2,a ),O 为坐标原点,若四边形OABC 是平行四边形,则向量与的夹角为( )OA → OC → A. B. C. D.π3π4π6π2答案 B解析 ∵四边形OABC 是平行四边形,∴=,即(4-0,2-0)=(a -2,8-a ),OA → CB → ∴a =6,∵=(4,2),=(2,6),OA → OC → 设向量与的夹角为θ,OA → OC → ∴cos θ===,OA → ·OC → |OA → ||OC → |4×2+2×642+22×22+6222又θ∈(0,π),∴与的夹角为.OA → OC → π46.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=3,则b 等于( )5A .(-3,6) B .(3,-6)C .(6,-3)D .(-6,3)答案 A 解析 由题意,设b =λa =(λ,-2λ)(λ<0),则|b |==|λ|=3,λ2+(-2λ)255又λ<0,∴λ=-3,故b =(-3,6).7.已知a =(-1,1),b =(1,2),则a ·(a +2b )=________.答案 4解析 ∵a +2b =(1,5),∴a ·(a +2b )=4.8.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.答案 -1解析 由题意得m a -b =(m +1,-m ),根据向量垂直的充要条件可得1×(m +1)+0×(-m )=0,所以m =-1.9.已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1).(1)若|c |=3,且c ∥a ,求向量c 的坐标;2(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.解 (1)设c =(x ,y ),由|c |=3,c ∥a 可得2Error!所以Error!或Error!故c =(-3,3)或c =(3,-3).(2)因为|a |=,且a ⊥(a -2b ),所以a ·(a -2b )=0,2即a 2-2a ·b =0,所以a ·b =1,故cos θ==,a ·b |a |·|b |22因为θ∈[0,π],所以θ=.π410.已知向量a =(1,),b =(-2,0).3(1)求a -b 的坐标以及a -b 与a 之间的夹角;(2)当t ∈[-1,1]时,求|a -t b |的取值范围.解 (1)因为向量a =(1,),b =(-2,0),3所以a -b =(1,)-(-2,0)=(3,),33设a -b 与a 之间的夹角为θ,所以cos θ===.(a -b )·a |a -b |·|a |64332因为θ∈[0,π],所以向量a -b 与a 的夹角为.π6(2)|a -t b |2=a 2-2t a ·b +t 2b 2=4t 2+4t +4=42+3.易知当t ∈[-1,1]时,|a -t b |2∈[3,12],(t +12)所以|a -t b |的取值范围是[,2 ].3311.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( )A .-4B .-3C .-2D .-1答案 B解析 由m +n =(2λ+3,3),m -n =(-1,-1),(m +n )⊥(m -n ),可得(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3.12.(多选)在△ABC 中,=(2,3),=(1,k ),若△ABC 是直角三角形,则k 的值可能为AB → AC → ( )A .-B.23113C. D.3±13223答案 ABC解析 ∵=(2,3),=(1,k ),AB → AC → ∴=-=(-1,k -3).BC → AC → AB → 若∠A =90°,则·=2×1+3×k =0,∴k =-;AB → AC → 23若∠B =90°,则·=2×(-1)+3(k -3)=0,AB → BC → ∴k =;113若∠C =90°,则·=1×(-1)+k (k -3)=0,AC → BC → ∴k =.3±132故所求k 的值为-或或.231133±13213.已知O 为坐标原点,向量=(2,2),=(4,1),在x 轴上有一点P 使得·有最小OA → OB → AP → BP → 值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)答案 C解析 设点P 的坐标为(x ,0),则=(x -2,-2),AP → =(x -4,-1).BP → ·=(x -2)(x -4)+(-2)×(-1)AP → BP → =x 2-6x +10=(x -3)2+1,所以当x =3时,·有最小值1.AP → BP → 此时点P 的坐标为(3,0).14.如图所示,在矩形ABCD 中,AB =,BC =2,点E 在边CD 上,且=2,则·2DE → EC → AE → 的值是________.BE →答案 329解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =,BC =2,2∴A (0,0),B (,0),C (,2),D (0,2),22∵点E 在边CD 上,且=2,DE → EC → ∴E .∴=,=,(223,2)AE → (223,2)BE → (-23,2)∴·=-+4=.AE → BE → 4932915.已知A ,B ,C 是锐角三角形ABC 的三个内角,向量p =(sin A ,1),q =(1,-cos B ),则p 与q 的夹角是( )A .锐角B .钝角C .直角D .不确定答案 A解析 因为△ABC 是锐角三角形,所以A +B >,π2即>A >-B >0,π2π2又因为函数y =sin x 在上单调递增,(0,π2)所以sin A >sin =cos B ,(π2-B )所以p ·q =sin A -cos B >0,设p 与q 的夹角为θ,所以cos θ=>0,p ·q|p ||q |又因为p 与q 不共线,所以p 与q 的夹角是锐角.16.已知向量=(6,1),=(x ,y ),=(-2,-3).AB → BC → CD → (1)若∥,求x 与y 之间的关系式;BC → DA → (2)在(1)的条件下,若⊥,求x ,y 的值及四边形ABCD 的面积.AC → BD → 解 (1)∵=++=(x +4,y -2),AD → AB → BC → CD → ∴=-=(-x -4,2-y ).DA → AD → 又∥,且=(x ,y ),BC → DA → BC → ∴x (2-y )-y (-x -4)=0,即x +2y =0.(2)=+=(x +6,y +1),AC → AB → BC → =+=(x -2,y -3).BD → BC → CD → ∵⊥,∴·=0,AC → BD → AC → BD → 即(x +6)(x -2)+(y +1)(y -3)=0.由(1)知x +2y =0,与上式联立,化简得y 2-2y -3=0,解得y =3或y =-1.当y =3时,x =-6,此时=(0,4),=(-8,0);AC → BD → 当y =-1时,x =2,此时=(8,0),=(0,-4);AC → BD → ∴S 四边形ABCD =||·||=16.12AC → BD →。
向量的点乘和叉乘以及几何意义一、向量的点乘1.定义:向量的点乘,又称为数量积或内积,是两个向量之间的一种乘法运算。
对于两个n维向量a和b,它们的点乘定义为a·b = ,a,b,cosθ,其中,a,和,b,分别表示向量a和b的模的大小,θ表示a和b之间的夹角。
2.计算方法:(1)向量坐标表示计算方法:如果a=(a₁,a₂,...,aₙ)和b=(b₁,b₂,...,bₙ)是两个n维向量,它们的点乘可以用下面的公式来计算:a·b=a₁b₁+a₂b₂+...+aₙbₙ。
(2)向量模和夹角计算方法:如果,a,和,b,分别是向量a和b的模的大小,θ是向量a和b之间的夹角,则向量的点乘可以用下面的公式来计算:a·b = ,a,b,cosθ。
3.几何意义:(1)判断两个向量是否相互垂直:如果两个向量的点乘结果为0,即a·b=0,那么这两个向量相互垂直。
(2)计算向量在一些方向上的投影:如果向量a的模为,a,θ是a与b之间的夹角,那么向量a在向量b的方向上的投影长度为,a,cosθ。
(3)计算两个向量之间的夹角:如果向量a和b的点乘为a·b = ,a,b,cosθ,那么两个向量之间的夹角θ可以通过反余弦函数计算:θ = arccos(a·b / ,a,b,)。
二、向量的叉乘1.定义:向量的叉乘,又称为向量积或外积,是两个三维向量之间的一种乘法运算。
对于两个三维向量a和b,它们的叉乘定义为a×b = ,a,b,sinθn,其中,a,和,b,分别表示向量a和b的模的大小,θ表示a和b之间的夹角,n表示与a和b所在平面垂直的单位向量。
2.计算方法:向量的叉乘的计算可以利用行列式的方法进行计算:a×b=,ijk,,a₁a₂a₃,,b₁b₂b₃,其中,ijk,表示三个单位向量i、j、k所组成的行列式,a₁、a₂、a₃和b₁、b₂、b₃分别表示向量a和b的坐标。
在二维或三维坐标系中,向量的数量积(也称为点积或内积)是一个标量,它表示两个向量的“相似度”或“夹角”的余弦值。
假设有两个向量 和 ,则它们的数量积定义为:
这个公式在二维坐标系(即 )下也适用,此时公式简化为:
数量积的一个重要性质是,它等于两个向量模长的乘积与它们之间夹角的余弦值的乘积,即:其中, 和 分别是向量 和 的模长, 是它们之间的夹角。
数量积还有另一个重要的性质,即当两个向量垂直(即夹角为 )时,它们的数量积为零。
这是因为 。
以上就是在坐标下向量数量积的公式和性质。
=A (A ,A ,A )x y z =B (B ,B ,B )x y z ⋅A =B A ×x B +x A ×y B +y A ×z B z
z =0⋅A =B A ×x B +x A ×y B y
⋅A =B ∣∣×A ∣∣×B cos(θ)
∣∣A ∣∣B A B θ90∘cos(90)=∘0。
利用坐标计算数量积
各位评委老师,你们好 !
我是8号考生,今天我说课的题目是《利用坐标计算数量积》,下面我将从教材分析、教法与学法分析、教学过程与教学评价四方面对本节课的设计与理解进行说明。
(第一部分) 教材分析
教材分析主要体现在以下三方面:
1、教材的地位与作用
本节课是湘教版《数学》必修第四章第5.3节的内容,它是在前面学习了两向量数量积计算的基础上学习的,同时为后面学习向量的综合应用奠定了知识基础,所以本节课在教材中起到承上启下的作用。
在高考中,向量知识是必考的内容,特别是数量积计算的应用,往往与三角形问题,圆锥曲线问题相结合,在大题中出现,因此利用坐标计算数量积作为研究向量的基础就显得十分重要。
2、教学目标
根据本节的内容特点、课标要求以及学生的实际水平,我将本节课的教学目标定位为:
(1)知识目标:理解并掌握利用坐标计算数量积,求模,求夹角,并会利用两向
量垂直的条件求解
(2)能力目标:培养学生观察、分析、归纳、推理的自学能力,
为学生可持续发展打下基础。
(3)情感目标:通过以利用坐标计算数量积的学习,
激发学生的学习兴趣;
培养学生主动探索、勇于发现的求知精神;
养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点与难点
根据已确定的教学目标,我把本节课的教学重点定为:
教学重点:掌握利用坐标计算数量积,求模,求夹角,两向量垂直条件的应用;教学难点:利用坐标计算数量积,求模,求夹角公式的推导,两向量垂直条件的推导以及应用;
(第二部分) 教法与学法分析
1.教法分析
基于本节课的内容特点,我主要采用以下几种教学方法:
1).直观演示法
2).集体讨论法
3).活动探究法
4).讲练结合法
并充分利用现代技术教学手段,使学生主动参与数学实践活动,在教师的指导下发现问题、分析问题和解决问题。
2.学法分析
学生作为教学活动中的主体,在学习过程中学生的参与度和参与状态将会影响教学效果,因此在学法的选择上,我主要采用以下几种:
1).自主探究法
2).合作交流法
3).观察发现法
4).归纳总结法
(第三部分) 教学过程
本节课的教学过程由以下几个教学环节构成:
1、复习导入:
教师利用多媒体课件跟学生简单回顾向量的线性组合,向量的坐标表示的相关知识,为本节课的公式推导奠定了知识基础。
2、新课探究
教师利用多媒体课件将例3的题目展示出来,教师提出问题“利用已知条件,我们如何计算两向量的数量积,计算两向量的模,两向量垂直时坐标要满足什么条件?”让学生分组讨论,整理出本组同学所想到的思路。
在整个讨论交流过程中,教师对正确的认识加以赞赏,对错误的见解加以分析,并对胆怯的学生加以鼓励。
通过分组讨论,学生得出以下的方案,教师利用多媒体将方案展示出来。
2111e y e x u +=,2212e y e x v += 由前面的数量积计算公式()
212122122111)(y y x x e y e x e y e x v u ++∙+=∙=
2
121y x +=,
通过分组讨论,让学生体会到团结协助的精神,同时,也化解了本节课的教学难点。
3、例题讲解
例4是考查学生对利用坐标计算数量积、求模、求夹角公式的灵活运用
在讲解过程中,教师要注意引导学生把已知条件中点A、B两点坐标构造所要求解的两个向量,即)3,
(-
=
=AB
OA,再利用向量相关求模,求夹角余
16
21
(
),
12
,
弦的公式来求.在讲完第3小题时,教师提问”本小题要求BD线段长度作为高来求三角形的面积,除了书本求法外,还有其他的方法吗?”学生通过教师的引导,可以转化为点B到直线OA的距离来求.
4、课堂练习
这一环节,主要是以课本后面的练习为主,要求学生在规定时间内完成。
通过练习,让学生进一步加深利用坐标计算数量积,求模,以及两向量垂直充要条件的运用。
教师通过巡视,抽查,及时发现问题并及时解决。
5、课堂小结
在这一环节,主要是在教师的引导下,让学生归纳总结:
(1)知识:利用坐标计算数量积,求模,求两向量夹角的余弦的推导以及应用(2)方法:两向量垂直充要条件的灵活运用;
这样做不仅锻炼了学生的概括能力与表达能力,而且让学生强化了本节课的知识要点。
6、布置作业
必做题:课本P114 习题3.2第2,6 题
选做题:以学科的资料第一题。
通过分层作业,提高学生的求知欲和满足不同层次的学生的学习需求。
(第四部分)教学评价
本节课是学生在已有的知识基础上学习,在教学过程中,通过自主探索、合作交流,充分调动学生的主动性与积极性,并通过学生的自评、互评,促使学生的数学素养不断提高。
以上就是我对本节课的理解与设计。
谢谢
后记:这些说课稿我是为参加市教师公选所准备的,我参考了一些说课稿的固定模式,以及一些优秀说课比赛所固定下来的一个模型,在说稿过程中,以不变应万变。
本说课稿是12分钟的内容,说课中,最好在10-11分钟内完成,不要说得过满,也不要说得太短。
机会是留给有准备的人,很高兴我以说课第一名的身份晋级教师公选。
这些说课稿,但愿能给有缘你带来些许帮助!!!!。