空间向量的正交分解及其坐标表示及坐标运算
- 格式:ppt
- 大小:1.55 MB
- 文档页数:24
3.1.4 空间向量的正交分解及其坐标表示学习目标1.了解空间向量的正交分解的含义.2.掌握空间向量的基本定理,并能用空间向量基本定理解决一些简单问题.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.学习重点:空间向量基本定理的应用.学习难点:应用空间向量基本定理解决问题.要点整合细读课本知识点一空间向量基本定理[填一填]1.定理:条件:三个向量a,b,c.结论:对空间任一向量p,存在有序实数组,使得p=x a+y b+z c.2.基底:空间中任何的三个向量a,b,c都可以构成空间的一个基底,即{a,b,c}.3.基向量:空间的一个基底{a,b,c}中的向量a,b,c都叫做基向量.[答一答]1.(1)空间中怎样的向量能构成基底?(2)基底与基向量的概念有什么不同?2.空间的基底唯一吗?3.为什么空间向量基本定理中x,y,z是唯一的?知识点二空间向量的正交分解及其坐标表示[填一填]1.单位正交基底:有公共起点O的三个的单位向量e1,e2,e3称为.2.空间直角坐标系:以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz.3.空间向量的坐标表示:对于空间任意一个向量p ,一定可以把它 ,使它的起点与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.把 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作p =(x ,y ,z ),即点P 的坐标为 .[答一答]4.与坐标轴或坐标平面垂直的向量坐标有何特点?5.向量可以平移,向量p 在坐标系中的坐标唯一吗?特别关注1.空间向量基本定理注意点空间向量基本定理表明,用空间三个不共面的已知向量组{a ,b ,c }可以线性表示出空间任意一个向量,而且表示的结果是唯一的.我们在用选定的基向量表示指定的向量时.要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量,再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止.2.空间向量与平面向量的坐标运算的联系类比平面向量的坐标运算,空间向量的坐标运算是平面向量坐标运算的推广,两者实质是一样的,只是表达形式不同而已,空间向量多了个竖坐标.典例讲破类型一 空间向量基本定理的理解例1 已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底?通法提炼判断给出的某一向量组能否作为基底,关键是要判断它们是否共面.如果从正面难以入手,可用反证法或利用一些常见的几何图形进行判断. 针对训练1已知a 、b 、c 是不共面的三个向量,则下列选项中能构成一组基底的一组向量是( ) A .2a ,a -b ,a +2b B .2b ,b -a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c类型二 用基底表示向量例2 如图所示,平行六面体ABCD A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.(1)证明A ,E ,C 1,F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z .通法提炼在几何体中,根据图形的特点,选择公共起点最集中的向量中的三个不共面的向量作为基底,或选择有公共起点且关系最明确如夹角或线段长度的三个不共面的向量作为基底,这样更利于解题. 针对训练2已知平行六面体OABC O ′A ′B ′C ′,OA →=a ,OC →=c ,OO ′→=b ,D 是四边形OABC 的对角线交点,则( ) A.O ′D →=-a +b +c B.O ′D →=-b -12a -12cC.O ′D →=12a -b -12cD.O ′D →=12a -b +12c类型三 求向量的坐标例3 如图所示,已知点P 为正方形ABCD 所在平面外一点,且P A ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,且P A =AD ,求向量MN →的坐标.通法提炼用坐标进行向量的运算,关键之一是把相关的向量以坐标形式表示出来.这里有两个方面的问题:一是如何恰当地建系,一定要分析空间几何体的构造特征,选合适的点作原点、合适的直线和方向作坐标轴,一般来说,有共同的原点,且两两垂直的三条数轴,只要符合右手系的规定,就可以作为空间直角坐标系.二是在给定的空间直角坐标系中如何表示向量的坐标,这里又有两种方法,其一是运用基底法,把空间向量进行正交分解;其二是运用投影法,求出起点和终点的坐标. 针对训练3在直三棱柱ABC A 1B 1C 1中,∠ACB =90°,CA =CB =1,CC 1=2,M 为A 1B 1的中点.以C 为坐标原点,分别以CA ,CB ,CC 1所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则AB 1→的坐标为 ,MB →的坐标为(-12,12,-2).课堂达标1.设命题p :a ,b ,c 是三个非零向量;命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.已知{a ,b ,c }是空间的一个基底,则可以和向量p =a +b ,q =a -b 构成基底的向量是( ) A .a B .b C .a +2bD .a +2c3.设{i ,j ,k }是空间向量的一个单位正交基底,则向量a =3i +2j -k ,b =-2i +4j +2k 的坐标分别是 . 【答案】(3,2,-1),(-2,4,2)【解析】∵i ,j ,k 是单位正交基底,故根据空间向量坐标的概念知a =(3,2,-1), b =(-2,4,2).4.已知点G 是△ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值是 . 5.如图,四棱锥P OABC 的底面为一矩形,设OA →=a ,OC →=b ,OP →=c ,E 、F 分别是PC 和PB 的中点,用a ,b ,c 表示BF →、BE →、AE →、EF →.参考答案要点整合 细读课本知识点一 空间向量基本定理[填一填]1.不共面 {x ,y ,z }2.不共面[答一答]1.提示:(1)空间任意三个“不共面”的向量都可以作为空间向量的一个基底.(2)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.2.提示:不唯一,只要是三个向量不共面,这三个向量就可以组成空间的一个基底. 3.提示:平移向量a ,b ,c ,p 使它们共起点,如图所示,以p 为体对角线,在a ,b ,c 方向上作平行六面体,易知这个平行六面体是唯一的,因此p 在a ,b ,c 方向上的分解是唯一的,即x ,y ,z 是唯一的.知识点二 空间向量的正交分解及其坐标表示[填一填]1.两两垂直 单位正交基底 3.平移 x ,y ,z (x ,y ,z )[答一答]4.提示:xOy 平面上的点的坐标为(x ,y,0),xOz 平面上的点的坐标为(x,0,z ),yOz 平面上的点的坐标为(0,y ,z ),x 轴上的点的坐标为(x,0,0),y 轴上的点的坐标为(0,y,0),z 轴上的点的坐标为(0,0,z ).另外还要注意向量OP →的坐标与点P 的坐标相同.5.提示:唯一.在空间直角坐标系中,向量平移后,其正交分解不变,故其坐标也不变.典例讲破类型一 空间向量基本定理的理解例1 解:假设OA →,OB →,OC →共面,由向量共面的充要条件知存在实数x ,y ,使OA →=xOB →+yOC →成立.∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3)=(-3x +y )e 1+(x +y )e 2+(2x -y )e 3.∵{e 1,e 2,e 3}是空间的一个基底, ∴e 1,e 2,e 3不共面,∴⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解,即不存在实数x ,y ,使OA →=xOB →+yOC →成立.∴OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底. 针对训练1 【答案】C【解析】因为a ,b ,c 不共面,易知a,2b ,b -c 不共面.故应选C. 类型二 用基底表示向量例2 (1)证明:∵AC 1→=AE →+EC 1→,又EC 1→=EB 1→+B 1C 1→=23BB 1→+B 1C 1→=23AA 1→+AD →,AF →=AD →+DF →=AD →+23DD 1→=AD →+23AA 1→,∴EC 1→=AF →,∴AC 1→=AE →+AF →,∴A ,E ,C 1,F 四点共面. (2)解:∵EF →=AF →-AE →=AD →+DF →-(AB →+BE →) =AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,∴x =-1,y =1,z =13.∴x +y +z =13.针对训练2 【答案】D【解析】O ′D →=O ′O →+OD →=O ′O →+12OA →+12OC →=-b +12a +12c .类型三 求向量的坐标例3 解:设正方形的边长为a ,∵P A =AD =AB , 且P A ,AD ,AB 两两互相垂直,故可设DA →=a i ,AB →=a j ,AP →=a k .以i ,j ,k 为坐标向量建立如图所示的空间直角坐标系.方法一:∵MN →=MA →+AP →+PN →=-12AB →+AP →+12PC →=-12AB →+AP →+12(AD →+AB →-AP →)=-12a j +a k +12(-a i +a j -a k )=-12a i +12a k ,∴MN →=(-12a,0,12a ).方法二:∵P (0,0,a ),C (-a ,a,0), ∴N 点的坐标为(-12a ,12a ,12a ).∵M 点的坐标为(0,12a,0),∴MN →=(-12a,0,12a ).针对训练3 【答案】(-1,1,2)【解析】A (1,0,0),B (0,1,0),B 1(0,1,2),M (12,12,2),AB 1→=CB 1→-CA →=(-1,1,2),MB →=(-12,12,-2). 课堂达标1.【答案】B【解析】当非零向量a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底,当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量. 2.【答案】D【解析】能与p ,q 构成基底,则与p ,q 不共面.∵a =p +q 2,b =p -q 2,a +2b =3p -q 2,∴A 、B 、C 都不合题意,由于{a ,b ,c }构成基底,∴a +2c 与p ,q 不共面,可构成基底. 3.【答案】(3,2,-1),(-2,4,2)【解析】∵i ,j ,k 是单位正交基底,故根据空间向量坐标的概念知a =(3,2,-1), b =(-2,4,2). 4.【答案】3【解析】如图,G 为△ABC 重心,E 为AB 中点,∴OE →=12(OA →+OB →),CG →=23CE →=23(OE →-OC →),∴OG →=OC →+CG →=OC →+23(OE →-OC →)=13(OA →+OB →+OC →),∴λ=3.5.解:BF →=12BP →=12(BO →+OP →)=12(c -b -a )=-12a -12b +12c . BE →=BC →+CE →=-a +12CP →=-a +12(CO →+OP →)=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b +12c .EF →=12CB →=12OA →=12a .。
高考数学知识点之空间向量的正交分解及坐标高考数学知识点之空间向量的正交分解及坐标空间中具有大小和方向的量叫做空间向量。
向量的大小叫做向量的长度或模。
下面小编给大家介绍空间向量的正交分解及坐标,赶紧来看看吧!高考数学知识点之空间向量的.正交分解及坐标空间向量的正交分解的定义:对空间的任意向量,均可分解为不共面的三个向量,使,如果两两垂直,这种分解就是空间向量的正交分解。
空间向量的坐标表示:在空间直角坐标系O—xyz中,对空间任一点A,存在唯一的有序实数组(x,y,z),使,初中学习方法,有序实数组(x,y,z)叫作向量A 在空间直角坐标系O—xyz中的坐标,记作A(x,y,z),x叫横坐标,y叫纵坐标,z叫竖坐标。
空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组x,y,z,使。
若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设O,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使。
基底在向量中的应用:(l)用基底表示出相关向量来解决向量问题是常用的方法之一.(2)在空间中选择基底主要有以下几个特点:①不共面;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。
用已知向量表示未知向量:用已知向量表示未知向量,一定要结合图像,可从以下角度如手:(1)要用基向量意识,把有关向量尽量统一到基向量上来;(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。